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Abstract15

Despite advancements in computational science, nonlinear geophysical processes still present16

important modeling challenges. Physical sensors (e.g. satellites, AUVs, and buoys) can col-17

lect data at specific points, but are often sparse or inaccurate. We present a framework to18

build improved spatiotemporal models that combine dynamics inferred from high-fidelity19

models and sensor measurements. Specifically, we consider ocean temperature because it is20

an indicator for ocean acidification, and we are motivated by a data set of sensor measure-21

ments only available at the ocean’s surface. We first apply standard principal component22

analysis (PCA) at every ocean surface coordinate to a reanalysis data set of the time-23

evolving 3D temperature field. Next, a conditionally Gaussian model implemented through24

a temporal convolutional neural network (TCN) is built to predict the time coefficients of25

the PCA modes, and their variance, as a function of surface temperature. The 2D surface26

temperature field is estimated by a multi-fidelity Gaussian process regression scheme, for27

which buoy data have highest fidelity and satellite data have lower fidelity. The surface28

temperature is then used as input to the neural network to probabilistically predict the29

PCA coefficients and reconstruct the full 3D temperature field. The results are compared30

to in-situ measurements at all depths, and the model can be leveraged for optimal sam-31

pling and path planning. Overall, the proposed framework can build less expensive and32

more accurate conditionally Gaussian models in real time, and it can be applied to other33

geophysical systems for which data from sensors and numerical models are available.34

Plain Language Summary35

Nonlinear geophysical systems are challenging to model. Sensor measurements are36

sparse and physics-based numerical simulations are expensive. Here we present a method to37

build models of geophysical systems that combine physics-based numerical simulations with38

real-time sensor measurements. We apply this method to a model of ocean temperature39

for which sensor measurements are only available at the surface of the ocean. We use data40

science techniques to extract the vertical structure of the temperature field from the physics-41

based simulation. Then, we train a neural network on the data from the numerical simulation42

to predict the temperature over depth as a function of surface temperature. Finally, we43

reconstruct the full 3D temperature field given real-time satellite and buoy measurements,44

and we compare the predictions with measurements at all depths. Our model also provides45

an estimate for the variance associated with the physical system. We discuss how our model46

can be used for active sampling and path planning.47

1 Introduction48

Environmental and geophysical systems can be modeled with nonlinear equations that49

typically require complex and computationally expensive numerical solvers. Even with50

highly accurate numerical methods, model errors still exist, and there can be losses of51

predictability due to intrinsic instabilities in the system. Such challenges can be mitigated52

with physical sensors which can be used to collect additional information on quantities of53

interest. However, sensors only provide information about the system locally in space (e.g.54

buoys or drifters) or with a high degree of sparsity (e.g. satellite data). There is a need55

for improved data assimilation techniques that can estimate the state and uncertainty of a56

system in real time.57

To provide a specific example, we consider the temperature of the Massachusetts and58

Cape Cod Bays, an area with great biodiversity (fish, shellfish, whales, etc.) and significant59

fishing and tourism industries. The ability to predict temperature is helpful in tracking ocean60

health and ocean acidification properties (Juranek et al., 2009). Coastal waters are more61

susceptible to temperature rise and acidification because the influx of freshwater changes the62

composition of the ocean and reduces its buffering capacity. Naturally, ocean acidification63

has greater implications in coastal waters where most fisheries are located (Gledhill et al.,64
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2015; Wallace et al., 2014; Ekstrom et al., 2015; Friedland et al., 2020). Ocean temperature65

is governed by a set of high dimensional nonlinear equations. These nonlinear equations can,66

in principle, be solved to evaluate the temperature field using a numerical scheme, such as67

finite volumes, but such approaches are typically computationally demanding and need to68

be repeated for each new set of boundary, initial, and excitation conditions (Lermusiaux et69

al., 2006). The temperature can also be determined using in-situ buoys and satellites. The70

buoys provide reliable measurements, but they are scarce. On the other hand, a satellite71

can cover the whole domain, but there are gaps in the data due to cloud coverage, and the72

measurements are less accurate. Most importantly, sensor measurements are only available73

at or near the surface of the ocean, leaving the bottom depths of the ocean unaccounted for74

(Klemas & Yan, 2014; B. Li et al., 2017).75

The goal of this work is to leverage data science techniques to characterize the vertical76

structure of the ocean temperature field from physics-based numerical simulations, and sub-77

sequently combine machine-learning methods with real-time sensor measurements of surface78

temperature to reconstruct and hindcast the full 3D temperature field and its uncertainties.79

We consider temperature data because it is readily available, and it is a useful indicator80

for ocean acidification, but the techniques discussed can be applied to other quantities of81

interest such as salinity, dissolved inorganic carbon (DIC), aragonite, and pH. We develop a82

framework that can estimate the full 3D field of ocean temperature from real-time satellite83

and buoy measurements of surface temperature. In addition, the model can estimate the84

uncertainty associated with both the system and the model. Specifically, we use a combi-85

nation of data science techniques including principal component analysis (PCA), temporal86

convolutional neural networks (TCN) and Gaussian process regression (GPR). As a result,87

we develop a computationally inexpensive model for the Massachusetts and Cape Cod Bays88

that leverages data from physics-based numerical models, buoys, and satellites to predict89

the temperature and uncertainty in real time at all points in the domain of interest. The90

model is also useful to make decisions about where and how to sample future data (Sapsis,91

2020; X. Yang et al., 2010) and to evaluate the quality of new sensors.92

The framework is organized into multiple steps as outlined in Figure 1. The first two93

steps are independent. First, in step 1, we use multi-fidelity Gaussian process regression94

(GPR) to estimate the ocean surface temperature by merging information from satellites95

and in-situ buoys (Babaee et al., 2020). Next, in step 2, we use the reanalysis data to96

build a data-driven reduced order model and derive a functional relationship between 3D97

temperature and surface temperature; this connection is possible given the reduced-order98

vertical structure of the problem that we obtain from principal component analysis (PCA).99

Finally, in step 3, we input the real-time 2D surface temperature measurements into the100

reduced-order model to obtain a real-time estimate for the 3D temperature field and its101

uncertainty. The framework can be modified or rearranged based on the type and location102

of new data that become available.103

2 Reanalysis Data and Measurements104

Our starting point is reanalysis data consisting of a time-evolving 3D temperature105

field of the Northeast Coastal Ocean from the FVCOM (Finite Volume Community Ocean106

Model) simulation from Chen et al. (2003). Reanalysis data refer to data from a numerical107

simulation that integrates real world measurements into the computation. The model uses108

a fractional step method to solve the spatially and temporally evolving fields for velocity,109

density, temperature, and salinity, among other variables. A study by B. Li et al. (2017)110

found that the model agreed well with in-situ measurements with a root mean squared error111

of 2.28 ◦C. We consider a truncated portion of the domain in the Massachusetts and Cape112

Cod Bays that consists of 45 sigma levels from January 2005 to December 2013 (9 years113

total). Here, a sigma level refers to a layer of the sigma coordinate system. In the sigma114

coordinate system, horizontal layers follow the model terrain, so for a given (x, y) point,115

each horizontal layer has the same thickness (Mellor et al., 2002). This coordinate system116
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Figure 1. Framework. Flow chart describing the developed framework for real-time estimation

of the 3D ocean temperature field. Reanalysis data are employed to estimate a reduced-order model.

Ocean surface information, obtained from satellite and buoy measurements, are used as input.

is a convenient way to discretize the domain because it results in a continuous temperature117

field. As an example, a snapshot of the data from September 13th, 2012 at sigma level -0.5118

is plotted in Figure 2.119

In addition to the data from the finite volume scheme, we have surface temperature data120

from physical sensors: satellites, in-situ stations, and buoys. Satellites measure sea surface121

temperature by quantifying the energy of wavelengths coming from the ocean. Different122

satellites operate at varying resolutions and levels of accuracy (Chao et al., 2009), but the123

main challenge associated with using satellite data is that there are gaps due to cloud cover-124

age. In this project, we have access to daily satellite imagery from the MODerate-resolution125

Imaging Spectroradiometer (MODIS) Terra. In Figure 3 we observe that each day has a dif-126

ferent amount of cloud coverage. Most importantly, many days during winter months have127

no available satellite measurements. In contrast to satellites, in-situ stations and buoys are128

not affected by cloud coverage. Measurements are available from the Massachusetts Water129

Resources Authority (MWRA) (Figure 3), but they are only collected on a monthly basis,130

and there are only 14 locations. The MWRA stations gather data by collecting samples131

of water at multiple depths and directly measuring the temperature. While this method is132

more accurate, it is also very costly. Finally, we also have National Oceanic and Atmospheric133

Administration (NOAA) measurements from environmental monitors on lobster traps and134
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Figure 2. Reanalysis Data of the Northeast Coastal Ocean from FVCOM. The tem-

perature field is plotted for September 13th, 2012 at sigma level -0.5.

large trawlers (eMOLT) and the Northeast Fisheries Science Center (NEFSC). Unlike for135

the MWRA measurements, there is less information about the accuracy and maintenance136

of the NOAA sensors. Consequently, we only use surface data from the MWRA stations to137

build our model, but the model can be augmented with any number of available sources of138

data. At the validation stage we employ in-depth measurements from the aforementioned139

sensors to assess the quality of our model.

Figure 3. Sensor Data. The low fidelity data (satellite) is only available on days with low

cloud coverage. The high fidelity data (buoys) is local in space and sparse.

140

3 Framework Description141

3.1 Temperature Field Order-Reduction Using Vertical PCA142

We first apply standard principal component analysis to the reanalysis data set to
reduce the dimensionality while retaining patterns and information. Principal component
analysis (PCA), also known as proper orthogonal decomposition (POD) or Karhunen–Loève
decomposition, among other names, has long been used in many fields. In the context of
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fluid mechanics, weather prediction (Lorenz, n.d.; Hannachi et al., 2007), and oceanography,
PCA extracts features or trends from large empirical data sets to accurately reconstruct the
dynamics of the system using a small number of empirical orthogonal functions (EOF) and
corresponding coefficients. Significant work has been done on the use of empirical orthogonal
functions to reconstruct spatio-temporal sea surface temperature (SST) for which empirical
measurements from sensors are available (Everson et al., 1996; Berliner et al., 2000; Ganzedo
et al., 2011; Smith et al., 1996). In some cases, the basis is used to fill gappy data (Everson
& Sirovich, 1995). Here, we use PCA to extract the vertical structure, or 3D features, of
existing reanalysis data. This process allows us to represent the vertical structure of the
temperature field with just a few modes at each location of the ocean surface, and it can be
proven that PCA results in an optimal orthogonal transformation that captures maximum
variance. We are interested in the vertical structure of the temperature field because most of
the energy of the system is coming from solar radiative flux which is normal to the surface of
the ocean, and the vertical modes capture vertical mixing and diffusion. At each horizontal
location i, (xi, yi), the temperature field is discretized into n depths and m time steps.

Ti =


T (z1, t1) ... T (z1, tm)
T (z2, t1) ... T (z2, tm)

...
T (zn, t1) ... T (zn, tm)

 (1)

Using this data matrix, we evaluate the eigenvectors

TiT
T
i ϕij = λϕij , j = 1, ..., n (2)

Finally, for each location i, the in-depth structure of the temperature is represented using
2 vertical modes and a mean temperature mode:

Ti,proj(t) =

2∑
j=1

qij(t)ϕij + T̄i(t) (3)

The eigenvalues obtained from the decomposition confirm that we have a low rank problem143

as the first two modes capture more than 85% of the data’s energy and are sufficient for144

reconstructing the temperature field (Figure 4b). The spatial modes ϕij represent the145

vertical structure of the field and vary with respect to the horizontal location. The first146

mode roughly corresponds to the thermocline (Figure 4d). The coefficients qij(t) and mean147

temperature T̄i(t) are functions of time and are extracted from the reanalysis data set via148

projection. The error between the PCA projection and the original reanalysis field is shown149

in Figure 5 for different sigma levels. Of course, for the case where there is no full 3D150

information, a functional relationship between surface information and these coefficients151

needs to be determined. This is the scope of the next section.152

3.2 Machine Learning Functional Relationships Between PCA Coefficients153

and Surface Temperature154

Next, we machine learn a functional relationship between the surface temperature and155

the temperature over depth at each horizontal location i, (xi, yi). We choose surface tem-156

perature as the input of the neural network because it is readily accessible from sensor157

measurements (Figure 3). We also build a second neural network to predict the associated158

standard deviation and estimate the uncertainty of our predictions. These uncertainties159

exclusively model the error made by the neural network in modeling the in-depth PCA160

coefficients.161

Recent developments in machine learning have increased the popularity of using neural162

networks to model geophysical processes. A previous study from Ali et al. (2004) used a163

neural network to predict subsurface temperature as a function of surface variables. How-164

ever, they did not perform data preprocessing to reduce the dimensionality of their outputs,165

–6–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 4. Vertical Order-reduction. a) Time series for the surface temperature at a specific

horizontal location, b) energy distribution of the vertical modes, c) time series for the PCA coeffi-

cients obtained by projection of the reanalysis temperature field, d) the first two vertical modes.

nor did they predict the variance associated with the processes they were modeling. We166

specifically build a neural network that predicts the mean and standard deviation of the167

PCA coefficients qij(t) and mean temperature T̄i(t) obtained in the previous section. Many168

studies have focused on the use of neural networks to predict such time-varying PCA co-169

efficients (Miao et al., 2019; Maulik et al., 2020; Meng & Karniadakis, 2020; Raissi et al.,170

2017; W. Yang et al., 2020).171

In this project, we build a temporal convolutional network (TCN), a type of convo-172

lutional neural network (CNN) that performs convolutions on one dimensional time series173

data. Unlike a traditional CNN, a TCN is causal which is useful for modeling dynamic sys-174

tems (Wan et al., 2021). TCNs have also been shown to outperform other recurrent neural175

networks for sequence modeling (Bai et al., 2018; Aksan & Hilliges, 2019; Lara-Beńıtez et176

al., 2020). As such, they are increasingly being used in geophysical applications (Yan et177

al., 2020; Baño Medina et al., 2020; Gan et al., 2021; Bolton & Zanna, 2019; Weyn et al.,178

2020). We adapt the Stochastic Machine Learning (SMaL) code from Wan et al. (2021) and179

retain the same residual block architecture (Figure 6). The data are standardized before180
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Figure 5. PCA Projection Error. The reanalysis data (top) and the difference between the

PCA projection and the reanalysis (bottom) are plotted for March 8th, 2012 at three different

sigma layers.

Figure 6. Architecture of TCN. The TCN is built with residual blocks that consist of a

sequence of two convolutional layers with ReLU activation and a dropout. The dilation factor of

each residual block is doubled at each depth.

training for improved results. The batch size of the neural network is set to 5 for model gen-181

eralizability. The filter width is set to 2 which results in a small receptive field for reduced182

computational costs and improved generalizability. The dropout layer has a probability of183

0.5 for regularization. The depth of the network is chosen to be 6 layers as this provided184

an adequate number of degrees of freedom to represent the underlying physical phenomena.185

The dilation factor is doubled at each depth to cover many different time scales.186
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3.2.1 Loss functions for neural network training187

Typically, the weights of a neural network are obtained by minimizing a loss function
that quantifies the error between the true data and the model predictions.

J(θ) =
1

T

∑
L(ŷ(θ)− y). (4)

Here, we build two neural networks at each location i, (xi, yi), one for the mean and one
for standard deviation. We emphasize that each horizontal location is treated separately
to account for spatial inhomogeneities. We train each network sequentially because we
require the mean prediction to train the second neural network for the standard deviation.
Furthermore, we optimize different loss functions for each network. To predict the mean of
the PCA coefficients, we minimize the mean absolute error (MAE), a standard loss function
for neural networks.

JMAE =
1

m

∑
|ŷ − y|. (5)

To predict the standard deviation of the PCA coefficients, we minimize the mean negative
anomaly correlation coefficient (MNACC) (Wan et al., 2021). It is a correlation-based loss
function, so it does not scale with magnitude, therefore more effectively penalizing anomalies.

JMNACC =
1

m

∑ ∑
(ẑ − [ẑ])(z − [z])√∑

(ẑ − [ẑ])2
√∑

(z − [z])2
(6)

z = y − yref (7)

Here, the reference yref is the cyclic mean, and for ocean temperature it corresponds to188

the annual variation due to seasons. Without a reference, this loss reduces to the Pearson189

correlation coefficient, another standard loss function in many machine learning applications.190

3.2.2 Choice of number and location of input points191

While the weights and biases can be found by optimizing a loss function, other param-192

eters of the neural network need to be fine-tuned through discrete numerical experiments.193

For example, the choice of input points affects the output of the neural network. We know194

from the physics of the system that the temperature gradients in the x and y direction also195

contribute to the vertical temperature profile. As such, we include neighboring points in the196

input of the neural network to produce a non-local parametrization. We perform numerical197

experiments to find the number and location of input points that result in the lowest testing198

error and are best suited for generalizability. We perform these tests on three (xi, yi) pairs199

in the neighborhood domain, denoted A, B, and C in Figure 7, and we adopt the same200

parameters for the models of all other (xi, yi) pairs. We first test the neural network with

Figure 7. Input Points. The input of the neural network is augmented to include the surface

temperature at four nearby points in addition to the surface temperature at the corresponding

point of interest. Different neighborhoods, shown here, are tested.
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201

one, two, three, and five neighborhood input points. Then, we experiment with the distance202

between the input points and the point of interest.203

From the results of these numerical experiments, we build the inputs of the TCN204

with the surface temperature of four additional nearby points for which the distance is205

between nine and ten kilometers. This distance, obtained from numerical experiments,206

makes physical sense because it corresponds to submesoscale processes of the ocean (Benway207

et al., 2019).208

3.2.3 Choice of memory for the neural network209

The temporal convolutional network also has parameters associated with the dynamics
in time, i.e. how much memory from the input should be retained in order to achieve the best
prediction. Starting with time series arrays of surface temperature, TS , PCA coefficients,
q1 and q1, and mean temperature, T̄ ,

x =
[
TS(t0) TS(t1) TS(t2) ... TS(tn)

]
(8)

y =

q1(t0) q1(t1) q1(t2) ... q1(tn)
q2(t0) q2(t1) q2(t2) ... q2(tn)
T̄ (t0) T̄ (t1) q2T̄ ... T̄ (tn)

 (9)

we build matrices of smaller sequences on which we apply the convolutional filter.

xTCN =


TS(t0) TS(t1) ... TS(tm)
TS(ts) TS(ts+1) ... TS(tm+1)

...
TS(tn−m+1) ... TS(tn)

 (10)

yTCN =


q1(t1) q1(t2) ... q1(tm)
q1(ts) q2(ts+1) ... q1(tm+1)

...
q1(tn−m+1) ... q1(tn)

 (11)

When building these smaller sequences, we have the ability to choose how much data to210

use which affects the performance of the neural network. The sampling rate determines211

how many time steps to skip within an input time series, the stride, s, determines how212

many time steps to skip between each successive time series, and the memory length scale,213

m, determines how many points back in time to consider in one time series. Again, we214

perform numerical experiments to find the values for these parameters that result in the215

lowest testing error. The memory length scale is set to be 20 days, and the sampling rate216

and stride are both set to 1 day. In our final model, each PCA coefficient is predicted using217

the surface temperature from all of the data from the 20 previous days, a choice that is218

consistent with ocean time scales for upwelling and eddies (Benway et al., 2019).219

3.2.4 Surface temperature constraint220

The output of the neural network is used to reconstruct the full 3D temperature field,
but we want to ensure that the prediction at the surface of the ocean matches exactly the
input surface temperature:

q1ϕ1(z = 0) + q2ϕ2(z = 0) + T̄ = T (z = 0) (12)

This requirement can be written as a constraint function

f(ŷ(θ)) = q1ϕ1(z = 0) + q2ϕ2(z = 0) + T̄ − T (z = 0) (13)

We embed the soft constraint λ|f(ŷ(θ))| into the loss function

J(θ) =
1

T

∑
L(ŷ(θ)− y) + λ|f(ŷ(θ))| (14)
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From numerical experiments, we find that the neural network is able to match the sur-221

face temperature without the soft constraint. Nevertheless the inclusion of the constraint222

guarantees that there will be no significant deviations.223

3.2.5 Results of the neural network training224

By using additional nearby points and previous time steps, we create a non-local225

parametrization in both space and time. The neural network is built using four years of data226

for training (mid 2005 - mid 2009), one and a half years for validation (mid 2009 - 2011),227

and two and a half years for testing (2011 until mid-2013) (Figure 8). The error associated228

with the neural network predictions are calculated relative to both the original reanalysis229

data and the PCA reconstruction (Table 1). The predicted time series for a representative230

horizontal location, as well as the predicted standard deviation, are shown in Figure 8.231

Table 1. Neural Network Model Evaluation

MAE (◦C) RMSE (◦C)

location y (target) ŷ (output) train val. test train val. test

full field FVCOM TCN 0.2088 0.2999 0.3185 0.3552 0.4961 0.5470
full field PCA TCN 0.1942 0.2846 0.3078 0.3359 0.4777 0.5364
surface FVCOM TCN 0.4178 0.6818 0.7051 0.6657 1.0275 1.1249
surface PCA TCN 0.4406 0.7005 0.7384 0.7005 1.0601 1.1816

The raw outputs of the neural network are simply the PCA coefficients and mean232

temperature, as well as their standard deviations. However, these raw outputs can be233

combined with the PCA modes to reconstruct the full 3D temperature field (Figure 9). For234

each (x, y) pair, it takes one minute to train a neural network on a standard CPU. Once235

the neural network is fully optimized, it only takes a few seconds to make a prediction.236

3.3 Filling Gaps in the Surface Sensor Data237

Satellites provide useful information about surface temperature, but they are signif-238

icantly affected by cloud coverage. Work has been done to improve measurements from239

satellites and to blend data from multiple satellites (Chin et al., 2017; Zhu et al., 2019).240

In many projects, in-situ buoy measurements are used to either validate or improve the241

accuracy of models (Zhu et al., 2018; Donlon et al., 2007; A. Li et al., 2013; Reynolds, 1988;242

Reynolds & Smith, 1994; Zhu et al., 2015; Chao et al., 2009). One recent approach that243

has been shown to obtain quick, accurate, and useful results is Gaussian process regression244

(GPR) (Babaee et al., 2020; Raissi et al., 2019). GPR is not ideal because the matrix245

inversion becomes slow for large numbers of input points. However, GPR is convenient246

for problems with a low number of input points. Furthermore, unlike with other machine247

learning techniques, the hyperparameters of the model, specifically those of the kernel, have248

an intuitive physical meaning and can be set according to properties of the system. Here,249

we use GPR to essentially extrapolate the available surface data. Note that we use the250

term extrapolation (as opposed to interpolation) since in many cases the available surface251

data are so sparse that interpolation is not meaningful. The features (inputs) of the model252

are the longitude, latitude, and time, and the value that is being predicted is the surface253

temperature. For points at which sensor data are available, we keep the original data, but254

for points at which there are no measurements, we predict the temperature using nearby255

points both in time and space.256
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Figure 8. TCN Predictions. The first and second PCA coefficients and the mean temperature,

as well as their standard deviation, are predicted for the reanalysis data. The black lines delineate

the training, validation, and test sets, respectively.
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Figure 9. TCN 3D Reconstruction of the Temperature Field. From top to bottom, the

reanalysis data, TCN prediction, and TCN standard deviation prediction are plotted for March

8th, 2012 at three different sigma levels.

3.3.1 Gaussian process regression257

The mean and variance are predicted using the kernel, K, which relates all of the
available data points (Rasmussen & Williams, 2006). Specifically, the mean prediction is

f̄∗ = m(X∗) +K(X∗, X)[K(X,X) + σ2
nI]

−1(y −m(X)) (15)

and the variance is

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]

−1K(X,X∗) (16)

For our application, the mean functionm(X∗) is explicitly set to be the spatial mean (Figure
10) of the available satellite data. To avoid inverting large matrices, we keep the size of the
kernel small by building a new GPR model for each time step. The input data consists of
the available data on the day of interest, data from one day before and one day after. In
other words, we only use data from three days to predict the surface temperature for one
day, and we repeat this process for all time steps. The features for each time step k arexi yi tk−1

xi yi tk
xi yi tk+1

 =

xi yi −1
xi yi 0
xi yi 1

 (17)

where (xi, yi) are all of the available spatial points at each time step k.258
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Figure 10. Spatial Mean of the Satellite Data. The mean over the whole spatial domain

is plotted for each day.

3.3.2 Hyperparameter selection259

For the kernel, we use the radial basis function (RBF) with automatic relevance deter-
mination as the covariance function.

cov(f(xp), f(xq)) = k(xp,xq) = σ2
f ∗ exp(−1

2
(xq − xp)

T θ(xq − xp)) (18)

The signal variance σf and characteristic lengthscales Θ are hyperparameters of the model.260

The characteristic lengthscale represents how far apart two points need to be for their func-261

tion values to become uncorrelated. The inverse of the lengthscale represents how relevant262

a given feature is. The automatic relevance determination chooses different characteristic263

lengthscales for each input to determine the relevant inputs. As such, there are three char-264

acteristic lengthscales: one for the input longitude, one for the input latitude, and one for265

the input time. The noise variance, σn, is not a parameter of the kernel, but it can also be266

considered one of the hyperparameters of the whole system. This parameter assumes that267

we know the uncertainty of the sensors.268

Typically, the hyperparameters are found by optimizing the following loss function.

log p(y|X) = −1

2
yT (K + σ2

nI)
−1y − 1

2
log |K + σ2

nI| −
n

2
log 2π (19)

However, to avoid overfitting and to generalize the models, we manually set the same hy-269

perparameters for all days, changing only the training data for each day. For days with no270

available training data, we take the average over 10 days (5 previous and 5 following days).271

For the spatial lengthscales, we choose a value of 0.25 degrees or 25 kilometers, which is272

equivalent to six “gridpoints” or “pixels,” where one gridpoint is the spatial granularity.273

This choice assigns more weight to spatial points that are within 25 kilometers of the point274

of interest; it corresponds to the mesoscales of the ocean (Benway et al., 2019). For the275

time lengthscale, we set the hyperparameter to one day. Finally, we choose to set the noise276

variance to σn = 0.1, and we set the signal variance to σf = 0.3 by taking the average of277

minimizing the objective function over all models.278
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3.3.3 Multi-fidelity Gaussian process regression279

We improve the model by incorporating the buoy data, which has lower uncertainty than
the satellite data, through a recursive multi-fidelity Gaussian process regression scheme. The
satellite and buoy measurements are shown to have good agreement (Babaee et al., 2020).
Given s levels of fidelity, the model with the lowest fidelity is denoted with x1, y1, f̄∗1, and
the model with the highest fidelity is denoted with xs, ys, f̄∗s (Perdikaris et al., 2015). The
prediction for the model with the lowest fidelity follows the Gaussian process regression
steps from equations (15) and (16)

f̄1(x∗) = K(X∗, X1)[K(X1, X1) + σn1I]
−1y1,

with covariance

cov(f̄1) = K(X∗, X∗)−K(X∗, X1)[K(X1, X1) + σn1I]
−1K(X1, X∗).

Each following model has the form

f̄t(x∗) = ρt−1f̄t−1 + δt t = 2, ..., s (20)

In this project, there are only two levels of fidelity, so the prediction for the highest level of
fidelity, s = 2, can be computed with the following equation

f̄2(x∗) = ρf̄1(x∗) + µd +K(X∗, X2)[K(X2, X2) + σn2I]
−1(y − ρf̄1(x2)− µd).

Its corresponding covariance is

cov(f̄2) = ρ2cov(f̄1) +K(X∗, X∗)−K(X∗, X2)[K(X2, X2) + σn2I]
−1K(X2, X∗),

where, ρ and µd are hyperparameters that are different for each level of fidelity. Like σf and280

θ of the covariance function, ρ and µd can be chosen through maximum likelihood estimation281

or other optimization techniques. We use the Emukit (Paleyes et al., 2019) Python package,282

which builds on the GPy Python package, to build the multi-fidelity model. Such techniques283

have already been used to predict surface temperature ((Babaee et al., 2020)), but our model284

differs with respect to the choice of input points. Babaee et al. (2020) used all of the available285

data to build a model while we only use spatial points from three time steps. Because we286

use less data at each time step, our model is faster at making predictions, and therefore287

more practical for real-time modeling. For consistency, we set ρ and µd to be the same as288

those from the optimized model in Babaee et al. (2020).289

3.3.4 Results of surface temperature extrapolation290

The results of the extrapolation are shown in Figure 11 both for a day with high291

cloud coverage (March 8th, 2016) and for a day with minimal cloud coverage (September292

13th, 2016). The uncertainty of the extrapolation is higher in regions with significant cloud293

coverage. Overall, the results from using just three days compare favorably with those from294

Babaee et al. (2020), while the new model is significantly faster.295

4 Results and Validation of the Full 3D Temperature Field296

Finally, we utilize the real-time estimate for surface temperature obtained from GPR as297

input to the TCN to obtain the PCA coefficients and the mean temperature, as well as their298

uncertainty, at each horizontal location for the day of interest. When estimating surface299

temperature, we left out measurements from three stations (N04, F13, F29 from Figure 3)300

which we saved for validation. These stations also collect measurements for temperature over301

multiple depths, which we divide into shallow (0-25m), medium (25-45m), and deep (>45m).302

We also have NOAA measurements from environmental monitors on lobster traps and large303
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Figure 11. Results of Extrapolation for Two Different Days. The available satellite and

buoy data are extrapolated to obtain a surface temperature field over the full domain. Each row

represents a different day with high cloud coverage (upper row) and low cloud coverage (lower row)

trawlers (eMOLT in Figure 12) and the Northeast Fisheries Science Center (NEFSC in304

Figure 12).305

The neural network predictions from the real-time sensor measurements are plotted in306

Figure 13 for 2015 and 2016. The neural network provides an estimate for the mean and307

standard deviation (red shading) of the quantities of interest. The predicted PCA coefficients308

are then projected onto the deterministic PCA modes and summed with the predicted PCA309

mean to reconstruct the full 3D temperature and uncertainty fields. The results of the full310

3D reconstruction are plotted in Figure 14 for March 8th, 2016 and September 16th, 2016311

at three sigma layers.312

We validate the results of our full model by comparing the predictions from the neural313

network to the in-situ measurements that are not used in the training phase. For the314

MWRA measurements, which are the most reliable in-situ measurements, we find that our315

model performs similarly to other comprehensive, but very expensive, ocean models. The316

mean absolute error of our predictions is 1.37◦C, and 79% of predictions fall withing two317

degrees of the truth. We also observe that the model performs best for days with the most318

amount of available satellite data (80-100%). We found more significant errors when we319

applied our analysis to the eMOLT and NEFSC data sets (Figure 15); some of the errors320

seem to be associated with system trends which require further investigation (e.g. condition321

of sensors, calibration, etc.). We find that there are no significant improvements from322

including the buoy measurements when modeling the surface temperature. However, the323

framework allows us to seamlessly incorporate data from multiple sources which could be324

useful in applications where data are more sparse. Furthermore, the framework provides an325

estimate for uncertainty given the level of accuracy of each sensor.326

5 Conclusions327

We introduced a fast and accurate framework, based on recently developed machine328

learning techniques and reanalysis data obtained from comprehensive ocean models, to329
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Figure 12. Location of In-situ NOAA Sensors for Validation. Left: environmental mon-

itors on lobster traps and large trawlers (eMOLT). Right: Northeast Fisheries Science Center

(NEFSC).

reconstruct 3D ocean temperature fields from real-time sensor measurements of surface330

temperature. We compared the results from our framework to in-situ measurements, and331

we found that the error associated with our predictions is comparable to that of other332

state of the art models that are significantly more expensive. We also demonstrated how333

our model can evaluate the quality of sensor measurements from different sources. In the334

future, we plan to use our model’s estimates of uncertainty to make decisions about the335

system, a process often referred to as active sampling or optimal sampling. For example, we336

can define and optimize an acquisition function to decide where to place additional sensors337

or plan the trajectory of an ocean drifter. In some cases, properly formulated acquisition338

functions can be leveraged to identify extreme values (Y. Yang et al., 2022). Overall, the339

developed model has many applications, ranging from monitoring general ocean health for340

fisheries to understanding changes in ocean acidification, and the techniques described can341

be used for other geophysical systems.342
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Figure 13. TCN Predictions from Satellite Measurements. The first and second PCA

coefficients, the mean temperature, as well as their uncertainties (red shading) are predicted for the

available satellite surface temperature.
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Figure 14. 3D Temperature Field Reconstruction From Real-time Sensor Measurements.

The predicted PCA coefficients are projected onto the corresponding modes and summed with the

predicted mean temperature to reconstruct the full 3D temperature. The results and associated

uncertainty are plotted for March 8th, 2016 and September 13th, 2016 at three sigma layers.
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Figure 15. Validation Comparison between buoy measurements and predictions from the

neural network at different depths for days with different amounts of satellite coverage. We split

the data based on its source: MWRA (top plot), NEFSC (bottom left), EMOLT (bottom right).

The red shading corresponds to the standard deviation of the absolute error.
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Appendix A Open Research343

The Finite Volume Community Ocean Model (FVCOM) data are available from the The344

Northeast Coastal Ocean Forecast System (NECOFS): http://fvcom.smast.umassd.edu/necofs/.345

The Moderate-resolution Imaging Spectroradiometer (MODIS) SST data come from the346

NASA EOSDIS Physical Oceanography Distributed Active Archive Center (PO.DAAC)347

at the Jet Propulsion Laboratory, in Pasadena, CA (https://doi.org/10.5067/MODST-348

1D4N4). The MWRAmeasurements are accessible at https://www.mwra.com/harbor/html/349

wq data.htm. The data from Environmental Monitors on Lobster Traps and Large Trawlers350

(eMOLT) and the Northeast Fisheries Science Center (NEFSC) oceanographic profile data351

set can be downloaded from the National Ocean and Atmospheric Administration’s Envi-352

ronmental Research Division’s Data Access Program (NOAA ERDDAP) website at https://353

comet.nefsc.noaa.gov/erddap/tabledap/index.html. The temporal convolutional network354

was built with Tensorflow, and the multi-fidelity Gaussian process regression was imple-355

mented with Emukit.356
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