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1. Introduction20

Environmental and geophysical fluid systems can be modeled with non-21

linear equations that typically require complex and computationally expen-22

sive numerical solvers. Even with highly accurate numerical methods, model23

errors still exist and intrinsic instabilities in the system make prediction dif-24

ficult. Such challenges can be mitigated with physical sensors (e.g. buoys,25

drifters, and satellites) which can be used to collect additional information26

on quantities of interest. However, sensors only provide information about27

the system locally in space, with significant gaps, or with a high degree of28

sparsity. The field of ocean modeling is far-reaching, and significant work29

has been done to estimate surface properties, design numerical simulations,30

assimilate sensor measurements, and reconstruct 3D fields.31

Work has been done on the development of methods to predict subsurface32

ocean temperature from satellite surface estimates. Historically, climatolog-33

ical averages have been used to estimate such properties [1]. Then, more ad-34

vanced interpolation and regression schemes were employed to improve upon35

the climatological averages [2, 3, 4, 5]. In many of these studies, empirical36

orthogonal functions (EOF) are utilized [6, 7, 4, 8, 9]. In more recent studies,37

neural networks have also been used to predict subsurface properties [10, 11].38

One study tested the use of recurrent neural networks (RNN) and long short-39

term memory (LSTM) neural networks to model vertical EOFs in the North40

Atlantic Ocean [12]. In contrast to making estimates from observations, it is41

also possible to make predictions from physics-based numerical simulations.42

Simulations that integrate real world measurements into the computation43

are referred to as reanalysis data. While there exist many data products and44

numerical simulations, the growing field of machine learning o↵ers many op-45

portunities for improvement. This paper identifies newly-developed methods46

to quickly and parsimoniously estimate the state and uncertainty of regional47

systems at a high resolution and in real time.48

To provide a specific example, we consider the temperature of the Mas-49

sachusetts and Cape Cod Bays, an area with great biodiversity (fish, shell-50

fish, whales, etc.) and significant fishing and tourism industries. The ability51

to predict temperature is helpful in assessing general ocean health, track-52

ing ecosystem functioning, and managing fisheries. Changes in temperature53

have greater implications in coastal waters where most fisheries are located54
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[13, 14, 15, 16]. Ocean temperature is governed by a set of high dimensional55

nonlinear equations. These are coupled with other physical quantities such56

as velocity over di↵erent depths. These nonlinear equations can, in principle,57

be solved to evaluate the temperature field using a numerical scheme, such as58

finite volumes or di↵erences, resulting in an extremely high dimensional and59

chaotic dynamical system. In this context, ocean modeling equations are60

typically complemented by measurements from in-situ buoys, drifters and61

satellites. Buoys and drifters provide reliable measurements, but they are62

very scarce. On the other hand, a satellite can cover the whole domain, but63

there are gaps in the data due to cloud coverage, and the measurements are64

partial and less accurate. Most importantly, sensor measurements are only65

available at or near the surface of the ocean, leaving the bottom depths of66

the ocean unaccounted for [17, 18]. These challenges are combined with the67

inevitable uncertainty in the boundary, initial and excitation conditions, as68

well as modeling uncertainty [19], and eventually result in a very demand-69

ing problem that requires vast computational, mathematical, and modeling70

resources to be solved, especially in real time.71

The goal of this work is di↵erent from traditional and direct ocean mod-72

eling e↵orts. Our aim is to utilize existing reanalysis data (obtained from73

physics-based and observation-driven ocean models o✏ine) and leverage data74

science techniques to characterize the vertical structure of the ocean temper-75

ature field, and subsequently combine machine learning methods with real-76

time sensor measurements of surface temperature to reconstruct and hindcast77

the full 3D temperature field and its uncertainties, for a specific region of in-78

terest. We consider temperature data because it is readily available, but the79

techniques discussed can be applied to other quantities of interest such as80

salinity, dissolved inorganic carbon (DIC), aragonite, and pH. In addition,81

the model can estimate the uncertainty associated with both the system and82

the model. Specifically, we use a combination of data science techniques in-83

cluding principal component analysis (PCA), temporal convolutional neural84

networks (TCN) and Gaussian process regression (GPR). As a result, we de-85

velop a computationally inexpensive model for the Massachusetts and Cape86

Cod Bays that leverages data from physics-based numerical models, buoys,87

and satellites to predict the temperature and uncertainty in real time at all88

points in the domain of interest. The model is also useful to make decisions89

about where and how to sample future data [20, 21] and to evaluate the90

quality of new sensors. Secions 2 and 3 describe the di↵erent types of data91

that are used to train and evaluate the model. Section 4 explains the steps92

3



of the framework. Section 5 shows the results of the model.93

2. Reanalysis Data94

Our starting point is reanalysis data consisting of a time-evolving 3D95

temperature field of the Northeast Coastal Ocean from the FVCOM (Finite96

Volume Community Ocean Model) simulation from Chen et al. [22, 23]. The97

model uses a fractional step method to solve the spatially and temporally98

evolving fields for velocity, density, temperature, and salinity, among other99

variables with a horizontal resolution of approximately 0.1-25 km over 45100

sigma levels. Here, a sigma level refers to a layer of the sigma coordinate101

system. In the sigma coordinate system, horizontal layers follow the model102

terrain, so for a given (x, y) point, each horizontal layer has the same thick-103

ness [24]. This coordinate system is a convenient way to discretize the domain104

because it results in a continuous temperature field. In the data assimilation105

step, FVCOM uses observations from satellite SST and radiation, river dis-106

charge, NOAA C-MAN and NDBC buoys, and NERACOOS buoys. A study107

by Li et al. found that the model agreed well with in-situ measurements108

with a root mean squared error of 2.28 �C [18]. The entire hindcast ranges109

from the Delaware Shelf to the eastern end of the Scotian Shelf over several110

decades, but we only consider a truncated portion of the domain in the Mas-111

sachusetts and Cape Cod Bays from January 2005 to December 2013 (9 years112

total). As an example, a snapshot of the data from September 13th, 2012 at113

sigma level -0.5 is plotted in Figure 1. In the spatial domain of interest, the114

maximum depth reaches 200 m, but most of the points are within 0 and 50115

m.116

3. Measurements and Observations117

In addition to the data from the finite volume scheme, we have sur-118

face temperature data from physical sensors: satellites, in-situ stations, and119

buoys. Satellites measure sea surface temperature by quantifying the energy120

of wavelengths coming from the ocean. Di↵erent satellites operate at vary-121

ing resolutions and levels of accuracy [25], but the main challenge associated122

with using satellite data is that there can be gaps due to cloud coverage.123

There exist many satellite sea surface temperature (SST) data products: e.g.124

Optimal Interpolation SST (OISST), Hadley Centre Global Sea Ice and SST125

(HadISST), Climate Change Initiative SST (CCI SST). Each of these is at a126
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Figure 1: Reanalysis Data of the Northeast Coastal Ocean from FVCOM. The

temperature field is plotted for September 13th, 2012 at sigma level -0.5. The bathymetry

of the region of interest is shown in (b) in brown.

di↵erent spatial and temporal resolution, some of which are not su�cient for127

the region of interest. It is also critical for our analysis that the SST product128

we use comes with uncertainty estimates. For the region of interest, we have129

access to unprocessed daily satellite imagery from the MODerate-resolution130

Imaging Spectroradiometer (MODIS) Terra. In Figure 2 we observe that131

each day has a di↵erent amount of cloud coverage. Most importantly, many132

days during winter months have no available satellite measurements. In con-133

trast to satellites, in-situ stations and buoys are not a↵ected by cloud cov-134

erage. Measurements are available from the Massachusetts Water Resources135

Authority (MWRA) (Figure 2), but they are only collected on a monthly136

basis, and there are only 14 locations. The MWRA stations gather data by137

collecting samples of water at multiple depths and directly measuring the138

temperature. While this method is more accurate, it is also very costly. At139

the validation stage we employ below the surface measurements at multiple140

depths from the aforementioned sensors to assess the quality of our model.141

4. Framework Description142

The framework is organized into multiple steps as outlined in Figure 3.143

The first two steps are independent. First, in step 1, we use the reanalysis144

data to build a data-driven reduced order model and derive a functional rela-145

tionship between 3D temperature and surface temperature; this connection146

is possible given the reduced-order vertical structure of the problem that we147
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Figure 2: Sensor Data. The low fidelity data (satellite (a)) is only available on days with

low cloud coverage. The high fidelity data (buoys (b)) is local in space and sparse.

obtain from principal component analysis (PCA). Next, in step 2, we use148

multi-fidelity Gaussian process regression (GPR) to estimate the ocean sur-149

face temperature by merging information from satellites and in-situ buoys150

as described in Babaee et al. [26]. We reuse most of the methodology from151

Babaee et al., but we modify the choice of inputs to speed up the process152

to cover a larger domain. Finally, in step 3, we input the real-time 2D sur-153

face temperature measurements into the reduced-order model to obtain a154

real-time estimate for the 3D temperature field and its uncertainty. The155

framework can be modified or rearranged based on the type and location of156

new data that become available.157

4.1. Temperature Field Order-Reduction Using Vertical PCA158

We first apply standard principal component analysis to the reanaly-159

sis data set to reduce the dimensionality while retaining patterns and in-160

formation. Principal component analysis (PCA), also known as empirical161

orthogonal functions (EOF), proper orthogonal decomposition (POD) or162

Karhunen–Loève decomposition, among other names, has long been used163

in many fields. In the context of fluid mechanics, weather prediction [27, 28],164

and oceanography, PCA extracts features or trends from large empirical data165

sets to accurately reconstruct the dynamics of the system using a small num-166

ber of EOFs and corresponding coe�cients. Significant work has been done167

on the use of EOFs to reconstruct spatio-temporal SST for which empirical168

measurements from sensors are available [29, 30, 31, 32]. In some cases, the169
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FVCOM reanalysis 
(not real-time)

input output

surface
temperature

PCA
coefficients

Step 1. Build neural network 
with simulation data 
(Section 4.1-4.2).

MWRA station 
(scarce)

MODIS satellite 
(cloud coverage)

multi-fidelity estimate for
real-time 2D surface temperature

Gaussian process regression
(GPR)

Step 2. Fill gaps in sensor measurements (Section 4.3). 

real-time 3D
temperature predictionreal-time 2D

surface temperature
neural network 
parametrization

Step 3. Predict 3D
temperature from
2D measurements
(Section 5). neural network (TCN) 

parametrization

Figure 3: Framework. Flow chart describing the developed framework for real-time es-

timation of the 3D ocean temperature field. Reanalysis data are employed to estimate a

reduced-order model. Ocean surface information, obtained from satellite and buoy mea-

surements, are used as input.

basis is used to fill gappy data [33]. Here, we use PCA to represent the170

vertical structure of existing reanalysis data with just a few modes at each171

location of the ocean surface. We are interested in the vertical structure of172

the temperature field because most of the energy of the system is coming173

from solar radiative flux which is normal to the surface of the ocean, and the174

vertical modes capture vertical mixing and di↵usion. Because we are only175

considering a regional coastal section of the ocean for which the dynamics are176

primarily driven by surface forcing, it is a reasonable assumption to only use177

a few modes. Furthermore, it can be proven that PCA results in an optimal178
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orthogonal transformation that captures maximum variance.179

At each horizontal location i, (xi, yi), the temperature field is discretized180

into n depths and m time steps.181

Ti =

2

664

T (z1, t1) ... T (z1, tm)
T (z2, t1) ... T (z2, tm)

...
T (zn, t1) ... T (zn, tm)

3

775 (1)

Using this data matrix, we evaluate the eigenvectors.182

TiT
T
i �ij = ��ij, j = 1, ..., n (2)

Finally, for each location i, the subsurface structure of the temperature is183

represented using 2 vertical modes and a mean temperature mode.184

Ti,proj(t) =
2X

j=1

qij(t)�ij + T̄i(t) (3)

The eigenvalues obtained from the decomposition confirm that we have a low185

rank problem as the first two modes capture more than 85% of the data’s186

energy and are su�cient for reconstructing the temperature field (Figure187

4 (b)). The spatial modes �ij represent the vertical structure of the field188

and vary with respect to the horizontal location. The first mode roughly189

corresponds to the thermocline (Figure 4 (d)). The coe�cients qij(t) and190

mean temperature T̄i(t) are functions of time and are extracted from the191

reanalysis data set via projection. The vertical temperature profiles of three192

(xi, yi) locations in Figure 5 suggest that there is good agreement between193

the original reanalysis and the reduced-order PCA projection. The error194

between the PCA projection and the original reanalysis field is also shown195

in Figure 6 for di↵erent sigma levels. For the case where there is no full 3D196

information, a functional relationship between surface information and these197

coe�cients needs to be determined. This is the scope of the next section.198

4.2. Machine Learning Functional Relationships Between PCA Coe�cients199

and Surface Temperature200

Next, we machine learn a functional relationship between the surface201

temperature and the temperature over depth at each horizontal location i,202

(xi, yi). We choose surface temperature as the input of the neural network203
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Figure 4: Vertical Order-reduction at (42.41N, 70.86W). Time series of surface

temperature (a), energy distribution of the vertical modes (b), time series of PCA coe�-

cients obtained by projection of the reanalysis temperature field (c), and first two vertical

modes (d) at one (xi, yi) location.

because it is readily accessible from sensor measurements. We also build204

a second neural network to predict the associated standard deviation and205

estimate the uncertainty of our predictions. These uncertainties exclusively206

model the error made by the neural network in modeling the vertical PCA207

coe�cients.208

Recent developments in machine learning have increased the popularity209

of using neural networks to model geophysical processes [34, 10, 12, 11].210
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Figure 5: PCA Vertical Profiles. The vertical profiles of the reanalysis data and the

PCA projection are shown for September 13th, 2012 at three di↵erent (xi, yi) locations.

Corresponding locations are shown on the map in Figure 8.

Figure 6: PCA Projection Error. The reanalysis data (b) and the di↵erence between

the PCA projection and the reanalysis (c) are plotted for September 13th, 2012 at three

di↵erent sigma layers.
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We specifically build a neural network that predicts the mean and standard211

deviation of the PCA coe�cients qij(t) and mean temperature T̄i(t) obtained212

in the previous section. Many studies have focused on the use of neural213

networks to predict such time-varying PCA coe�cients [35, 36, 37, 38, 39].214

In this project, we build a temporal convolutional network (TCN), a type215

of convolutional neural network (CNN) that performs convolutions on one216

dimensional time series data. Unlike a traditional CNN, a TCN is causal217

which is useful for modeling dynamic systems [40]. TCNs have also been218

shown to outperform other recurrent neural networks for sequence modeling219

[41, 42, 43]. As such, they are increasingly being used in geophysical applica-220

tions [44, 45, 46]. We adapt the Stochastic Machine Learning (SMaL) code221

from Wan et al. and retain the same residual block architecture (Figure 7)222

[40]. The data are standardized before training for improved results. The

Figure 7: Architecture of TCN. The TCN is built with residual blocks that consist of

a sequence of two convolutional layers with ReLU activation and a dropout. The dilation

factor of each residual block is doubled at each depth.

223

batch size of the neural network, which is the number of samples that are224

used in a training set during one pass, is set to 5 because a smaller batch size225

is better for model generalizability and a larger number did not improve the226

results. The filter width is set to 2. In a standard CNN, a small filter width227

results in a small receptive field (receptive field refers to the amount of data228

that contributes to a feature of the neural network). In a TCN, the dilation229

factor is doubled at each depth to cover many di↵erent time scales, so the230

receptive field becomes larger. The small filter width thus reduces compu-231
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tational costs and improve generalizability. The dropout layer of the neural232

network is set to have a probability of 0.5 for regularization. This means233

that each weight has a probability of 0.5 of being ignored in the network, so234

the weights become decorrelated. The depth of the network determines how235

many nonlinear activations are performed. From the results of numerical ex-236

periments, a depth of 6 layers resulted in the lowest test error to adequately237

represent the underlying physical phenomena.238

4.2.1. Loss functions for neural network training239

Typically, the weights of a neural network are obtained by minimizing a240

loss function that quantifies the error between the true data and the model241

predictions.242

J(✓) =
1

T

X
L(ŷ(✓)� y). (4)

Here, we build two neural networks at each location i, (xi, yi), one for the243

mean and one for standard deviation. We emphasize that each horizontal244

location is treated separately to account for spatial inhomogeneities. We245

train each network sequentially because we require the mean prediction to246

train the second neural network for the standard deviation. Furthermore, we247

optimize di↵erent loss functions for each network. To predict the mean of the248

PCA coe�cients, we minimize the mean absolute error (MAE), a standard249

loss function for neural networks.250

JMAE =
1

m

X
|ŷ � y|. (5)

To predict the standard deviation of the PCA coe�cients, we minimize251

the mean negative anomaly correlation coe�cient (MNACC) [40]. It is a252

correlation-based loss function, so it does not scale with magnitude, there-253

fore more e↵ectively penalizing anomalies.254

JMNACC =
1

m

X P
(ẑ � [ẑ])(z � [z])pP

(ẑ � [ẑ])2
pP

(z � [z])2
(6)

255

z = y � yref (7)

Here, the reference yref is the cyclic mean, and for ocean temperature it256

corresponds to the annual variation due to seasons. Without a reference,257

this loss reduces to the Pearson correlation coe�cient, another standard loss258

function in many machine learning applications.259
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4.2.2. Choice of number and location of input points260

While the weights and biases can be found by optimizing a loss func-261

tion, other parameters of the neural network need to be fine-tuned through262

discrete numerical experiments. For example, the choice of input points af-263

fects the output of the neural network. Many ocean models treat the ocean264

as being stratified, so these models do not include interactions in the hor-265

izontal direction. However, the governing physical equations of the system266

imply that the temperature gradients in the x and y direction have the po-267

tential to contribute to the vertical temperature profile. As such, we include268

neighboring points in the input of the neural network to produce a non-local269

parametrization. To select the neighboring points, we first choose a radius �270

and then compute the points (x+�, y), (x��, y), (x, y+�), and (x, y��).271

Then we find the points that are closest to these points and assign those to272

be the neighbors of the point of interest. We perform numerical experiments273

to find the number and location of input points that are best suited for gen-274

eralizability. We first test the neural network with one, two, three, and five275

neighborhood input points. Then, we experiment with the distance between276

the input points and the point of interest. After completing the experiments,277

we choose the number of points and distance between points that result in278

the lowest testing error. We perform these experiments on three (xi, yi) pairs279

in the neighborhood domain, denoted A, B, and C in Figure 8, and we adopt280

the same parameters for the models of all other (xi, yi) pairs. From the re-

Figure 8: Input Points. The input of the neural network consists of the surface temper-

ature at four nearby points in addition to the surface temperature at the corresponding

point of interest. Di↵erent radii, shown here, are tested through numerical experiments.

281

sults of the numerical experiments, we build the inputs of the TCN with the282

surface temperature of four additional nearby points for which the distance283

is between nine and ten kilometers.284
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4.2.3. Choice of memory for the neural network285

The temporal convolutional network also has parameters associated with286

the dynamics in time, i.e. how much memory from the input should be287

retained in order to achieve the best prediction. Starting with time series288

arrays of surface temperature, TS, PCA coe�cients, q1 and q1, and mean289

temperature, T̄ ,290

x =
⇥
TS(t0) TS(t1) TS(t2) ... TS(tn)

⇤
(8)

291

y =

2

4
q1(t0) q1(t1) q1(t2) ... q1(tn)
q2(t0) q2(t1) q2(t2) ... q2(tn)
T̄ (t0) T̄ (t1) T̄ (t2) ... T̄ (tn)

3

5 (9)

we build matrices of smaller sequences on which we apply the convolutional292

filter.293

xTCN =

2

664

TS(t0) TS(t1) ... TS(tm)
TS(ts) TS(ts+1) ... TS(ts+m)

...
TS(tn�m) ... TS(tn)

3

775 (10)

294

yTCN =

2

664

q1(t0) q1(t1) ... q1(tm)
q1(ts) q2(ts+1) ... q1(ts+m)

...
q1(tn�m) ... q1(tn)

3

775 (11)

When building these smaller sequences, we have the ability to choose how295

much data to use which a↵ects the performance of the neural network. The296

sampling rate determines how many time steps to skip within an input time297

series, the stride, s, determines how many time steps to skip between each298

successive time series, and the memory length scale, m, determines how299

many points back in time to consider in one time series. Again, we perform300

numerical experiments to find the values for these parameters that result in301

the lowest testing error. The memory length scale is set to be 20 days, and302

the sampling rate and stride are both set to 1 day. In our final model, each303

PCA coe�cient is predicted using the surface temperature from all of the304

data from the 20 previous days, a choice that is consistent with ocean time305

scales [47].306

4.2.4. Surface temperature constraint307

The output of the neural network is used to reconstruct the full 3D tem-308

perature field, but we want to ensure that the prediction at the surface of309
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the ocean matches exactly the input surface temperature:310

q1�1(z = 0) + q2�2(z = 0) + T̄ = T (z = 0) (12)

This requirement can be written as a constraint function311

f(ŷ(✓)) = q1�1(z = 0) + q2�2(z = 0) + T̄ � T (z = 0) (13)

We embed the soft constraint �|f(ŷ(✓))| into the loss function312

J(✓) =
1

T

X
L(ŷ(✓)� y) + �|f(ŷ(✓))| (14)

From numerical experiments, we find that the neural network is able to match313

the surface temperature without the soft constraint. Nevertheless the inclu-314

sion of the constraint guarantees that there will be no significant deviations.315

4.2.5. Results of the neural network training316

By using additional nearby points and previous time steps, we create a317

non-local parametrization in both space and time. To train a neural network,318

the inputs are typically split into training, validation, and testing sets. The319

training inputs are used to optimize the weights of the model, the valida-320

tion inputs are used to select the best hyperparameters, and the test inputs321

are used to evaluate the model on unseen data. The neural network for this322

model is built using four years of data for training (mid 2005 - mid 2009), one323

and a half years for validation (mid 2009 - 2011), and two and a half years324

for testing (2011 until mid-2013) (Figure 9). The error associated with the325

neural network predictions are calculated relative to both the original reanal-326

ysis data and the PCA reconstruction (Table 1). The predicted time series327

for a representative horizontal location, as well as the predicted standard328

deviation, are shown in Figure 9. The raw outputs of the neural network are329

simply the PCA coe�cients and mean temperature, as well as their standard330

deviations. However, these raw outputs can be combined with the PCA331

modes to reconstruct the full 3D temperature field. The vertical profile at332

three (xi, yi) locations is shown in Figure 10 and the spatial fields for three333

sigma layers are shown in Figure 11. The agreement between the original334

reanalysis data and the TCN prediction is worse at the surface, but the as-335

sociated uncertainty is also higher. The model does not perform equally for336

all (xi, yi) locations, but the total root mean squared error for the test data337

is 0.55 �C.338
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Figure 9: TCN Predictions at (42.41N, 70.86W). The first (a) and second (b) PCA

coe�cients and the mean temperature (c), as well as their standard deviation, are predicted

for the reanalysis data. The black lines delineate the training, validation, and test sets,

respectively.
16



Table 1: Neural Network Model Evaluation

MAE (�C) RMSE (�C)
y (target) ŷ (output) train val. test train val. test
FVCOM TCN 0.2088 0.2999 0.3185 0.3552 0.4961 0.5470
PCA TCN 0.1942 0.2846 0.3078 0.3359 0.4777 0.5364

Figure 10: TCN Vertical Profiles. The vertical profiles of the reanalysis data and

the TCN reconstruction are shown for September 13th, 2012 at three di↵erent (xi, yi)
locations. The red shading corresponds two standard deviations predicted by the TCN.

For each (xi, yi) pair, it takes one minute to train a neural network on a339

standard CPU. Once the neural network is fully optimized, it only takes a340

few seconds to make a prediction.341

4.3. Filling Gaps in the Surface Sensor Data342

The next step in the framework is to estimate the full 2D surface temper-343

ature field. Satellites provide useful information about surface temperature,344

but they are significantly a↵ected by cloud coverage. Work has been done to345

improve measurements from satellites and to blend data from multiple satel-346

lites [48, 49]. In many projects, in-situ buoy measurements are used to either347

validate or improve the accuracy of models [50, 51, 52, 53, 54, 55, 25]. One348

recent approach that has been shown to obtain quick, accurate, and useful349

results is Gaussian process regression (GPR) [26, 56]. GPR is a Bayesian350

approach which can estimate smooth nonlinear functions and provide an un-351

certainty measurement for a given prediction. Unlike optimal interpolation or352

objective mapping, GPR does not require background information to create353

the data correlation matrix. One downside of using GPR is that the matrix354
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Figure 11: TCN 3D Reconstruction of the Temperature Field. From top to bottom,

the reanalysis data (a), TCN prediction (b), and TCN standard deviation prediction (c)

are plotted for September 13th, 2012 at three di↵erent sigma levels.

inversion can become slow for large numbers of input points. However, GPR355

is very successful for problems with a low number of input points. Further-356

more, unlike with other machine learning techniques, the hyperparameters of357

the model, specifically those of the kernel, have an intuitive physical meaning358

and can be set according to properties of the system. Here, we use GPR to359

extrapolate the available surface data. Note that we use the term extrapola-360

tion (as opposed to interpolation) since in many cases the available surface361

data are so sparse that interpolation is not meaningful. The features (inputs)362

of the model are the longitude, latitude, and time, and the value that is be-363

ing predicted is the surface temperature. For points at which sensor data364

are available, we keep the original data, but for points at which there are no365

18



measurements, we predict the temperature using nearby points both in time366

and space.367

4.3.1. Gaussian process regression368

The mean and variance are predicted using the kernel, K, which relates369

all of the available data points [57]. Specifically, the mean prediction is370

f̄⇤ = m(X⇤) +K(X⇤, X)[K(X,X) + �2
nI]

�1(y �m(X)) (15)

and the variance is371

cov(f⇤) = K(X⇤, X⇤)�K(X⇤, X)[K(X,X) + �2
nI]

�1K(X,X⇤) (16)

For our application, the mean function m(X⇤) is explicitly set to be the372

spatial mean (Figure 12) of the available satellite data. To avoid inverting

Figure 12: Spatial Mean of the Satellite Data. The mean over the whole spatial

domain is plotted for each day.

373

large matrices, we keep the size of the kernel small by building a new GPR374

model for each time step. The input data consists of the available data on375

the day of interest, data from one day before and one day after. In other376

words, we only use data from three days to predict the surface temperature377
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for one day, and we repeat this process for all time steps. The features for378

each time step k are379

2

4
xi yi tk�1

xi yi tk
xi yi tk+1

3

5 =

2

4
xi yi �1
xi yi 0
xi yi 1

3

5 (17)

where (xi, yi) are all of the available spatial points at each time step k.380

4.3.2. Hyperparameter selection381

For the kernel, we use the radial basis function (RBF) with automatic382

relevance determination as the covariance function.383

cov(f(xp), f(xq)) = k(xp,xq) = �2
f ⇤ exp(�

1

2
(xq � xp)

T ✓(xq � xp)) (18)

The signal variance �f and characteristic lengthscales ⇥ are hyperparame-384

ters of the model. The characteristic lengthscale represents how far apart385

two points need to be for their function values to become uncorrelated. The386

inverse of the lengthscale represents how relevant a given feature is. The au-387

tomatic relevance determination chooses di↵erent characteristic lengthscales388

for each input to determine the relevant inputs. As such, there are three389

characteristic lengthscales: one for the input longitude, one for the input lat-390

itude, and one for the input time. The noise variance, �n, is not a parameter391

of the kernel, but it can also be considered one of the hyperparameters of the392

whole system. This parameter assumes that we know the uncertainty of the393

sensors.394

Typically, the hyperparameters are found by optimizing the following loss395

function.396

log p(y|X) = �1

2
y
T (K + �2

nI)
�1
y � 1

2
log |K + �2

nI|�
n

2
log 2⇡ (19)

However, to avoid overfitting and to generalize the models, we manually set397

the same hyperparameters for all days, changing only the training data for398

each day. For days with no available training data, we take the average over399

10 days (5 previous and 5 following days). For the spatial lengthscales, we400

choose a value of 0.25 degrees or 25 kilometers, which is equivalent to six401

“gridpoints” or “pixels,” where one gridpoint is the spatial granularity. This402

choice assigns more weight to spatial points that are within 25 kilometers403

of the point of interest; it corresponds to the mesoscales of the ocean [47].404
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For the time lengthscale, we set the hyperparameter to one day. Finally, we405

choose to set the noise variance to �n = 0.1, and we set the signal variance406

to �f = 0.3 by taking the average of minimizing the objective function over407

all submodels.408

4.3.3. Multi-fidelity Gaussian process regression409

We improve the model by incorporating the buoy data, which has lower410

uncertainty than the satellite data, through a recursive multi-fidelity Gaus-411

sian process regression scheme described in Babaee et al [26]. Given s levels412

of fidelity, the model with the lowest fidelity is denoted with x1, y1, f̄⇤1, and413

the model with the highest fidelity is denoted with xs, ys, f̄⇤s [58]. The pre-414

diction for the model with the lowest fidelity follows the Gaussian process415

regression steps from equations (15) and (16)416

f̄1(x⇤) = K(X⇤, X1)[K(X1, X1) + �n1I]
�1
y1, (20)

with covariance417

cov(̄f1) = K(X⇤, X⇤)�K(X⇤, X1)[K(X1, X1) + �n1I]
�1K(X1, X⇤). (21)

Each following model has the form418

f̄t(x⇤) = ⇢t�1f̄t�1 + �t t = 2, ..., s (22)

In this project, there are only two levels of fidelity, so the prediction for the419

highest level of fidelity, s = 2, can be computed with the following equation420

f̄2(x⇤) = ⇢f̄1(x⇤)+µd+K(X⇤, X2)[K(X2, X2)+�n2I]
�1(y�⇢f̄1(x2)�µd). (23)

Its corresponding covariance is421

cov(̄f2) = ⇢2cov(̄f1)+K(X⇤, X⇤)�K(X⇤, X2)[K(X2, X2)+�n2I]
�1K(X2, X⇤),

(24)
where, ⇢ and µd are hyperparameters that are di↵erent for each level of422

fidelity. Like �f and ✓ of the covariance function, ⇢ and µd can be chosen423

through maximum likelihood estimation or other optimization techniques.424

We use the Emukit [59] Python package, which builds on the GPy Python425

package, to build the multi-fidelity model. Such techniques have already been426

used to predict surface temperature, but our model di↵ers with respect to427

the choice of input points [26]. Babaee et al. used all of the available data to428
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build a model while we only use spatial points from three time steps. Because429

we use less data at each time step, our model is faster at making predictions,430

and therefore more practical for real-time modeling. For consistency, we set431

⇢ and µd to be the same as those from the optimized model in Babaee et al.432

[26].433

4.3.4. Results of surface temperature extrapolation434

Figure 13: Results of Extrapolation for Two Di↵erent Days. The available satel-

lite and buoy data are extrapolated to obtain a surface temperature field over the full

domain. Each row represents a di↵erent day with high cloud coverage (March 8th 2016

(a)) and low cloud coverage (September 13th 2016 (b))

The results of the extrapolation are shown in Figure 13 both for a day435

with high cloud coverage (March 8th, 2016) and for a day with minimal436

cloud coverage (September 13th, 2016). As expected, the uncertainty of the437

extrapolation is higher in regions with significant cloud coverage. The root438

mean squared error between our new multi-fidelity model and the old multi-439

fidelity from Babaee et al. is 0.46� C across the three stations that are held440

out for validation. Overall, the results from using just three days compare441

favorably with those from Babaee et al., while the new model is significantly442

faster.443
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5. Results and Evaluation of the Full 3D Temperature Field444

Finally, we utilize the real-time estimate for surface temperature obtained445

from GPR as input to the TCN to obtain the PCA coe�cients and the446

mean temperature, as well as their uncertainty, at each horizontal location447

for the day of interest. To achieve this, we build a time series of surface448

temperature at each point for which satellite measurements are available,449

and we individually predict the PCA coe�cients for each of these surface450

temperature time series. The spatial resolution of the model over longitude451

and latitude can be chosen during the GPR step, but here we choose to use452

the spatial resolution of the satellite data. The neural network predictions453

from the real-time sensor measurements are plotted in Figure 14 for 2015 and454

2016. The neural network provides an estimate for the mean and standard455

deviation (red shading) of the quantities of interest.456

The predicted PCA coe�cients are then projected onto the determinis-457

tic PCA modes and summed with the predicted PCA mean to reconstruct458

the full 3D temperature and uncertainty fields. When estimating surface459

temperature, we left out measurements from three stations (N04, F13, F29460

from Figure 2). We evaluate the results of our full model by comparing the461

predictions from the neural network to these withheld in-situ measurements462

that were never seen during the training phase. These stations also collect463

measurements for temperature over multiple depths, which we divide into464

shallow (0-25m), medium (25-45m), and deep (>45m).465

The vertical profiles for stations N04 and F13 are shown in Figure 15, and466

the results of the full 3D reconstruction are plotted in Figure 18 for March467

8th, 2016 and September 16th, 2016 at three sigma layers. We compare the468

accuracy of our model to the climatological mean, and we find that the model469

performs well for most points (e.g. station N04), but the predictions are470

worse for points that are near estuaries or other unusual geographic or human471

features (e.g. station F13). The mean absolute error of our predictions is472

1.37�C, the median absolute error is 0.97�C, the root mean squared error is473

1.73�C, and 79% of predictions fall withing two degrees of the truth. This root474

mean squared error is lower than the 2.28 �C found by Li et al. for FVCOM475

[18]. The model produces more outliers than the climatological mean, but476

eliminates the bias that is present in the estimates from the climatological477

mean (Figure 15 (a)).478

We observe in Figure 16, which includes data from all MWRA stations479

(not just the withheld stations), that the model performs best for days with480
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Figure 14: TCN Predictions from Satellite Measurements at (42.41N, 70.86W).

The first (a) and second (b) PCA coe�cients, the mean temperature (c), as well as their

uncertainties (red shading) are predicted for the available satellite surface temperature.

the most amount of available satellite data (80-100%). We also show the481

mean temperature and mean standard deviation (averaged over space), com-482

pared to the amount of available satellite data, as a function of time in483

Figure 17. It is possible that with additional and possibly targeted in-situ484

stations, the model could reduce the numbers of outliers. We also find that485

there are no significant improvements from including the buoy measurements486

when modeling the surface temperature. However, the framework allows us487

to seamlessly incorporate data from multiple sources which could be useful488

in applications where fewer measurements are available. Furthermore, the489

framework provides an estimate for uncertainty given the level of accuracy490

of each sensor.491

24



Figure 15: Vertical Profiles of Error Di↵erence between MWRA buoy measurements

and climatological mean compared to the di↵erence between the MWRA buoy measure-

ments and the neural network predictions for all stations (a) station N04 (c) and station

F13 (d). The color of the markers indicates the season, and the histogram of the absolute

error is shown in (b).
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Figure 16: Comparison Between MWRA Measurements and TCN Predictions

Comparison between buoy measurements and predictions from the neural network at dif-

ferent depths for days with di↵erent amounts of satellite coverage. Points along the line

x = y correspond to predictions with the lowest error. The red shading corresponds to

the standard deviation of the absolute error.

6. Conclusions492

We introduced a fast and accurate framework, based on recently devel-493

oped machine learning techniques and reanalysis data obtained from com-494

prehensive ocean models, to reconstruct 3D ocean temperature fields from495

real-time sensor measurements of surface temperature. We compared the496

results from our framework to in-situ measurements, and we found that the497

error associated with our predictions is comparable to that of other state498

of the art models that are significantly more expensive. In the future, we499

plan to use our model’s estimates of uncertainty to make decisions about the500

system, a process often referred to as active sampling or optimal sampling.501

For example, we can define and optimize an acquisition function to decide502

where to place additional sensors or plan the trajectory of an ocean drifter.503

In some cases, properly formulated acquisition functions can be leveraged to504

identify extreme values [60]. Overall, the developed model is important for505

monitoring general ocean health, and the techniques described can be used506

for other geophysical systems.507

26



Figure 17: Mean Temperature and Standard Deviation at Three Sigma Layers.

The mean temperature (b) and standard deviation (c) are plotted for sigma layers -0.01,

-0.5, and -0.99, and the percent of satellite coverage (a) is shown for each corresponding

day.

Appendix A. Open Research508

The Finite Volume Community Ocean Model (FVCOM) data are avail-509

able from the The Northeast Coastal Ocean Forecast System (NECOFS):510

http://fvcom.smast.umassd.edu/necofs/. The Moderate-resolution Imaging511

Spectroradiometer (MODIS) SST data come from the NASA EOSDIS Phys-512

ical Oceanography Distributed Active Archive Center (PO.DAAC) at the Jet513

Propulsion Laboratory, in Pasadena, CA (https://doi.org/10.5067/MODST-514

1D4N4). The MWRAmeasurements are accessible at https://www.mwra.com/515

harbor/html/ wq data.htm. The temporal convolutional network was built516

with Tensorflow, and the multi-fidelity Gaussian process regression was im-517

plemented with Emukit.518
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Figure 18: 3D Temperature Field Reconstruction From Real-time Measurements.

The predicted PCA coe�cients are projected onto the corresponding modes and summed

with the predicted mean temperature to reconstruct the full 3D temperature. The results

and associated uncertainty are plotted for March 8th, 2016 (a) and September 13th, 2016

(b) at three sigma layers.
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