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Key Points: 24 

A general algorithm for the linear and quadratic gradients based on 10 or more 25 

spacecraft measurements is presented for the first time 26 

 27 

The characteristic matrix of the constellation affecting the determination of the 28 

quadratic gradient has been found and its features shown 29 

 30 

The algorithm has been tested on the magnetic field, indicating the obtained linear 31 

magnetic gradient is of second order accuracy  32 

 33 
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Abstract 46 

In this study, a novel algorithm for jointly estimating the linear and quadratic 47 

gradients of physical quantities with multiple spacecraft observations based on the least 48 

square method has been put forward for the first time. With 10 or more spacecraft 49 

constellation measurements as the input, this new algorithm can yield both the linear 50 

and quadratic gradients at the barycenter of the constellation. Iterations have been used 51 

in the algorithm. The tests on cylindrical flux ropes, dipole magnetic field and modeled 52 

geo-magnetospheric field have been carried out. The tests indicate that the linear 53 

gradient gained has the second order accuracy, while the quadratic gradient is of the 54 

first order accuracy. The test on the modeled geo-magnetospheric field shows that, the 55 

more the number of the spacecraft in the constellation, the high the accuracy of the 56 

quadratic gradient calculated. However, the accuracy of the linear gradient yielded is 57 

independent of the number of the spacecraft. The feasibility, reliability and accuracy of 58 

this algorithm have been verified successfully. This algorithm can find wide 59 

applications in the design of the future multiple S/C missions as well as in the analysis 60 

of multiple point measurement data. 61 
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 67 

Plain Language Summary 68 

With the development of space explorations, the constellations with 10 or more 69 

spacecraft may become true in the near future. However, there is still no general 70 

algorithm available for calculating the quadratic gradient of various physical quantities 71 

with 10 or more point measurements. In this article, we present a universal approach 72 

that can estimate both the linear and quadratic gradients of physical quantities based on 73 

10 or more point measurements. This algorithm has been tested and its reliability has 74 

been verified. The tests show that the linear gradient obtained is of the second order 75 

accuracy, while the quadratic gradient the first order accuracy. This algorithm 76 

developed will be beneficial for the design of the future multiple S/C constellation 77 

missions and have wide applications in analyzing multiple point measurement data. 78 

 79 
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1. Introduction 90 

 91 

The gradients of physical quantities play important roles in the dynamic evolution 92 

of space plasmas. For example, the first-order gradient of electromagnetic fields 93 

balance their temporal variations as well as the sources (charge density and current 94 

density); the linear gradient of physical quantities (magnetic field, thermal pressure, 95 

etc.) can also drive the drift motions of the charged particles in electromagnetic fields. 96 

The linear gradient of physical quantities can be estimated from the 4 points in situ 97 

measurements with a first-order accuracy, and a lot of estimators have been developed 98 

already (Dunlop et al., 1988; Harvey, 1998; Chanteur, 1998; De Keyser, et al., 2007; 99 

Vogt et al., 2008; Vogt et al., 2009).     100 

On the other hand, the quadratic gradient of physical quantities can lead to the 101 

diffusion and dissipation processes in plasmas. The quadratic gradients of 102 

electromagnetic potentials can balance the sources as shown by the Poisson equation. 103 

The geometry of the magnetic field depends on both the first order and the second-order 104 

magnetic gradients (Shen et al., 2020).   105 

Recently some investigations have been made to fit the magnetic field to the 106 

second order based on the four spacecraft magnetic and current density observations 107 

(Torbert et al., 2020). Shen et al. (2020) have put forward an explicit algorithm to 108 

calculate the quadratic magnetic gradient as well as the complete geometry of magnetic 109 

field lines with 4 point magnetic field and particle/current density measurements under 110 



 

the constraints of electromagnetic laws. This approach, however, can not be applied to 111 

estimate the quadratic gradient of other physical fields, such as those of the density, 112 

temperature, and electric potential, etc. Generally, at least 10 point measurements of a 113 

physical quantity are required to calculate its second-order gradient (Chanteur, 1998).  114 

With the development of space exploration, the constellation mission with 10 or 115 

more spacecraft has become possible (e.g., Cross-Scale mission). However, we still 116 

have no applicable universal algorithm for estimating the quadratic gradient of physical 117 

quantities with 10 and more point measurements.  118 

In this paper, we present a universal algorithm that can estimate both the linear and 119 

quadratic gradients of physical quantities based on 10 or more point measurements. 120 

This algorithm has been tested and its reliability has been verified. The accuracy of this 121 

algorithm has been investigated. The algorithm is presented in the Section 2, the tests 122 

on the method have been made in Section 3, and the summary and discussions are given 123 

in Section 4. 124 

 125 

2. Algorithm 126 

 127 

Consider that a constellation, which is composed of N 10  spacecraft, performs 128 

in situ observations on a certain physical field f (density, magnetic field, or electric 129 

potential, etc.). In the Earth center frame of reference (or other inertial frames of the 130 

investigator), the Cartesian coordinates are (
1 2 3, ,x x x  )  (corresponding to ( , ,x y z  ), 131 

respectively) with their bases ( 1 2 3
ˆ ˆ ˆ, ,x x x  ). The position of the th   spacecraft is at132 



 

( ) ( )( )1 2 3

( ) ( ) ( ), , 1,2, ,ix x x x N  
= =  , and its velocity in the Earth center reference 133 

frame is ( )u . The coordinates 
i

cx  of the barycenter of the constellation satisfy 134 

 ( ) ( )( )
N N

i i i

c

1 1

0x x x
 

 = =

 = − =  . (1) 135 

So that 136 

                   ( )

N
i i

c

1

1

N
x x


=

=  .                        (2) 137 

The physical quantity observed is ( ) ( )

if x f 
 =  in the spacecraft reference frame 138 

and ( ) ( )

if x f =  in the Earth center reference frame (a static frame of reference), 139 

respectively. There is a certain transformation relationship between ( )f 
   and ( )f   . 140 

For the magnetic field, ( ) ( )= 
B B . For the electric field, ( ) ( ) ( ) ( )   

 E = E + u B . For 141 

the electric and magnetic potentials, ( ) ( ) 
A = A ， ( ) ( ) ( ) ( ) =     − u A . For the 142 

charge density and current density, ( ) ( )=    and ( ) ( ) ( ) ( )    −j = j u .  143 

In the Earth center reference frame, the linear gradient of the physical quantity f is 144 

ii

f
f

x


= 


, and its quadratic gradient is 

2

i ji j

f
f

x x


=  

 
. Based on Taylor expansion, 145 

the physical quantity observed, ( )f  , can be expressed as 146 

 
( ) ( ) ( ) ( )

1
+

2

i i j

c i c i j cf f x f x x f   =   +     ,  (3) 147 

where all the gradients with orders higher than 2 are neglected under the assumption 148 

that ( )
ix


   are much less than the characteristic scale of the magnetic structures 149 

investigated. So that there are 10 parameters ( c , ( ) , ( )i c i j cf f f  ) to be determined. 150 

The formula (3) can also be written as 151 

 
( ) c ( ) ( ) ( )

1
+ g G

2

i i j

i ijf f x x x   =  +   ,  (3’) 152 

where, the linear and quadratic gradients of the physical quantity at the barycenter are 153 



 

g ( )i i cf=    and G ( )ij i j cf=   , respectively. It is noted that G Gij ji=  . 154 

Therefore, to obtain the 10 parameters ( cf  , g i  , G ij  ), observations by the 155 

constellation with at least 10 spacecraft are required.  156 

 157 

In order to obtain the estimator for the 10 parameters ( cf , g i , G ij ) with the 158 

desired accuracy from the N 10  spacecraft in situ observations, we make use of 159 

the least square method (Harvey, 1998; Shen et al., 2003). Assume the action to be 160 

 
( ) ( ) ( ) ( )

2

c

1 1
g G

N 2

i i j

i ijS f x x x f
   



 
= +  +   − 

 
 .  (4) 161 

Minimize it by 162 

 0 =S ,   (5) 163 

so as to find the formulas for 
cf , g ( )i i cf=   and G ( )ij i j cf=  . 164 

Equation (5) leads to 165 

 166 

Due to 167 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

N

=1c

N N N

=1 =1 1

1 1
2 g G

N 2

1 1 1
      =2 2 g G 0

N N N

i i j

c i ij

i i j

c i ij

S
f x x x f

f

f f x x x

   


   
  =

  
= +  +   −   

  − +   +   =
 



  
, (7) 168 

we get  169 

            ( ) ( ) ( )

N
i j

c ij

1 1
x x

N
f f G

2N
  

 

= −    , (8) 170 

where the equation (1) is used. The above equation can also be written as 171 

            ( )
ij

ij

1 1
R

N
cf f G

2




= − .                                   (8’) 172 



 

Here ijR  is the volumetric tensor (or 3 3  matrix) (Harvey, 1998; Shen et al., 2003), 173 

which is defined as 174 

 ( ) ( ) ( )( ) ( )( )
N N

ij i j i i j j

c c

1 1

1 1
R

N N
x x = x x x x
   

 = =

   − −  .  (9) 175 

Therefore, the physical quantity at the barycenter is the average of all the measurements 176 

plus the correction term by the quadratic gradient.  177 

From / 0iS g  = , we get 178 

( ) ( ) ( ) ( )

N
k k m i

c ( ) k km

1i

S 1 1
2 g G

g N 2
f f x x x x    





 =

 
= − + +    

 
   179 

( ) ( )

N
i ik ikm

k km

1

1
2 2R g R G 0

N
= f x

 
=

−   + + = , (10) 180 

where the 3 order tensor is defined as 181 

 ( ) ( ) ( )

N
ikm i k m

1

1
R

N
x x x
  

=

    .  (11) 182 

ikmR  is symmetrical, i.e., ikm kim imkR R R= = . Eq. (10) reduces to 183 

 ( )( )
N

ik i i ikm

k km

1 1
R R

N 2
cg x x f G



= − − .  (12) 184 

Let 1R -   be the inverse of the volumetric tensor, which satisfies 185 

( ) ( )1 kj jk 1 j

iik ki
R R R R- - = = . Hence the linear gradient at the barycenter is obtained 186 

from Eq. (12) as follows 187 

 ( ) ( )( ) ( )
N

1 j j 1 jkm

i c kmij ij

1 1
g R R R G

N 2

- -= x x f


 − − . (13) 188 

The second term at the right-hand side of the above formula is the correction arising 189 

from the quadratic gradient.  190 

From ijS / G 0  = , we get 191 



 

 
( ) ( ) ( ) ( ) ( )

N
k k m i j

c ( ) k km

1ij

S 1 1
g G 0

G N 2
f f x x x x x     

=

  
= − + +     =   

 . (14) 192 

Thus 193 

( ) ( ) ( )

N
ij i j ijk ijkm

c k km

1

1 1
R R g R G 0

N 2
  f f x x

  
=

−   + + = ,   (15) 194 

where the 4-order tensor 195 

 ( ) ( ) ( ) ( )

N
ijkm i j k m

1

1
R

N
x x x x
   

=

     .  (16) 196 

Note that ijkmR   is symmetric with ijkm jikm ijmk kmijR R R R= = =  . Obviously, 
cf  , 197 

g ( )i i cf=   and G ( )ij i j cf=   can be obtained by solving the equations (8’) ，198 

(12) and (15). 199 

 200 

In order to ensure the calculation accuracy, we perform iterations to solve these 201 

equations, which can be conveniently realized by computation. At first, the linear 202 

approximation is made with G 0ij = . Therefore, from the formulas (8’) and (13)，we 203 

obtain the physical quantity and its linear gradient at the barycenter as 204 

               ( )c

1

N
f f




=  ,                                      (17) 205 

and 206 

( ) ( )( )
N

1 k k

i i ik

1
G ( ) R

N

-

c cf = x x f


=   − ,    (18) 207 

respectively. Secondly, by substituting the above two equations into (15)，we can get 208 

   ( ) ( ) ( )

N
ijkm i j ij ijk

km c k

1

1 1
R G R R g

2 N
  f x x f

  
=

=   − − ,    (19) 209 

with which the quadratic gradient Gkm
 at the zero-order can be attained. the zero-210 



 

order quadratic gradient Gkm
 into (8’) and (13) to yield the physical quantity 

cf at 211 

the second order and its linear gradient g ( )i i cf=   at the first order；and again by 212 

using Eq. (19) to get the corrected quadratic gradient Gkm
at the first order. Repeat 213 

the above processes, so as to yield the solutions of Eqs. (8’), (12) and (15), i.e., the 214 

estimations of the 10 parameters (
cf , g ( )i i cf=  ,  G ( )ij i j cf=  )  of the 215 

plasma structure investigated. 216 

Equation (19) is a tensor equation, which concrete solution we need to find. 217 

Rewrite it as the following expression 218 

 
3 3

1 1

, , 1,2,3.ijkl ij

kl

l k

R G c i j
= =

= =  (20) 219 

The tensor at the right-hand side of the above equation is defined as 220 

( ) ( ) ( )

N
ij i j ij ijk

c k

1

2
c 2 R 2R G

N
f x x f
  

=

   − − .            (21) 221 

We will transform the tensor equation (20) into a matrix equation so as to obtain 222 

its solution concisely. The second-order tensor
ijc  is symmetric, i.e., ij jic c= . 

ijc  223 

contains 6 independent components, which can be expressed as 224 

( )( ) 11 12 13 22 23 33, , , , ,ijc c c c c c c=  . Similarly,  the symmetric underdetermined tensor 225 

ijG   also contains 6 independent components, which can be written as  226 

( )( ) 11 12 13 22 23 33, , , , ,ijG G G G G G G=  . The fouth-order tensor ijklR   is symmetric, and 227 

( )( )
=

ij klijklR R , where both ij  and kl  have six independent compositions.  Therefore, 228 

the tensor equation (20) can be rewritten as 229 

 
3 3

1

(2 ) , ( 1,2,3, , ,3)ijkl ij

kl kl

l k k

R G c i j i
= =

− = = =  (22) 230 

 231 



 

To facilitate the calculation, the coefficient at the left-hand side of the above equation 232 

should be index symmetric. Multiplying the two side of Eq. (22) by (2 )ij−  to yield 233 

 
3 3

1

(2 )(2 ) (2 ) , ( 1,2,3, , ,3.)ijkl ij

ij kl kl ij

l k k

R G c i j i  
= =

− − = − = =  (23) 234 

Note that in the above formula the sum over the indices i and j are not made even if i 235 

and j are repeated. The formula (23) can be regarded as a matrix equation in a 6-236 

dimensional space. The bases of this 6-dimensional space are 237 

( 1 1 1 2 1 3 2 2 2 3 3 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,x x x x x x x x x x x x ), which can also be marked as ( )1 2 6

ˆ ˆ ˆ, , ,k k k , or ˆ
Mk ，238 

M=1, 2, … , 6, satisfying ˆ ˆ
M N MN =k k  . The underdetermined tensor 

ijG  , which is 239 

composed of 6 independent components, can be treated as a vector in the 6-dimensional 240 

space and written as ( )1 2 6, , ,X X XG =  with its components 241 

( )

M

klX G= .                    (24) 242 

It can be expressed in vector format as  243 

                           

6

1

ˆ = M

M

M

X
=

G k       (24’) 244 

The term (2 ) ij

ij c−  at the right-hand side of equation (23) is composed of 6 245 

components, can also be regarded as a vector in the 6-dimensional space and expressed 246 

as ( )1 2 6, , ,C C C  C = , with the components  247 

( )
(2 )

ijM

ijC c= − .                                  (25) 248 

Thus the vector C  in the 6-dimensional space is written as  249 

 

6

1

ˆ = M

M

M

C
=

C k .  (26) 250 

At the same time, the coefficient tensor (2 )(2 ) ijkl

ij kl R − −  can be treated as a 6 6  251 

matrix： 252 



 

 
( )( )

(2 )(2 )
ij klMN

ij kl R   − −   (27) 253 

The index M corresponds to ( )ij ，and N to ( )kl . The matrix MN  is symmetric and 254 

=MN NM  . It can be expressed in vector format as  255 

ˆ ˆMN

M N= k k .  (28) 256 

Just like the 3 3  volumetric matrix ijR  , the 6 6  matrix MN   respects the 257 

characteristic geometric features of the constellation.  258 

Therefore, the tensor equation (20) has been transformed into a matrix equation  as 259 

follows:  260 

 
MN N MX C  = ,  (29) 261 

which vector form is  262 

 =G C .  (29’) 263 

The symmetric matrix MN   can be diagonalized. Suppose that its eigenvectors are 264 

( )1 2 6
ˆ ˆ ˆ, , ,e e e   with ˆ ˆ

M N MN =e e  , and its eigenvalues ( )1 2 6, , ,      with 265 

1 2 6 0         . The relationship between the eigenvectors 266 

( )1 2 6
ˆ ˆ ˆ, , ,e e e  and the bases ( )1 2 6

ˆ ˆ ˆ, , ,k k k  is 267 

 ˆˆ
M MN N=e k .  (30) 268 

Then   can be written as 269 

 

6

1

ˆ ˆ
M M M

M =

 =  e e .  (31) 270 

In the eigenspace ( )1 2 6
ˆ ˆ ˆ, , ,e e e  of MN , G and C can be expressed as 271 

 

6

1

ˆM

M

M

= X
=

G e ,  (32) 272 

and  273 



 

 

6

1

ˆ M

M

M

= C
=

C e ,  (33) 274 

Respectively. 275 

Substituting (31), (32) and (33) into (29’), we get 276 

 ˆ ˆM M

M M MX C =e e .  (34) 277 

Then 278 

  = M M

M X C .  (35) 279 

Thus 280 

 
1

=M M

M

X C


.  (36) 281 

In the above formula, it is required that 0L  . If the eigenvalue 0L = , LX  282 

can not be determined. 283 

Therefore, 284 

 
6 6 6

1 1 , 1

1 1 ˆˆ ˆ= =M M M

M M MN N

M M M NM M

= X C C 
= = = 
  G e e k   (37) 285 

Comparing (32) and (37) leads to 286 

 
6

, 1

1N M

MN

M N M

X C 
=

=


 .  (38) 287 

From (26), (30) and (33), we can get 288 

 

6

=M L

ML

L

C C . (39) 289 

Finally, the formula (38) becomes 290 

 
6

, ,

1N L

MN ML

M N L M

X C =


 , (40) 291 

which is the solution for the 6 independent components of the quadratic gradient at the 292 



 

barycenter of the constellation in the Earth center reference frame.  293 

 294 

In order to obtain a more accurate quadratic gradient, an iterative method is used. 295 

Correct the physical quantity 
cf  and its linear gradient g ( )i i cf=   at the barycenter 296 

by substituting the quadratic gradient G ij
 attained from (40) into (8’) and (13);  297 

Calculate the corrected tensor 
ijc   by the expression (21);  Further calculate the 298 

components of the 6-dimensional vector C  , 
( )

(2 )
ijM

ijC c= −  ; Then get the 299 

components of the quadratic gradient at the barycenter, ( )

N

klX G=   from the 300 

formula (40), which have been corrected by the first iteration. Repeating the above 301 

cycle till satisfactory accuracy is achieved. This iteration method will be tested and its 302 

reliability verified in the next section. 303 

 304 

The estimation of the quadratic gradient of a physical quantity relies on the 305 

configuration of the constellation.  We can get the complete quadratic gradient if all 306 

the 6 eigenvalues of the characteristic matrix MN  are non-zero. However, as shown 307 

in the expression (40), the quadratic gradient can not be completely determined if one 308 

or more eigenvalues of the characteristic matrix MN  are zero.  For example, if the 309 

constellation is linearly distributed, it can be seen from the definitions (16) and (27) 310 

that only the eigenvalue of the characteristic matrix MN  along the spacecraft array is 311 

larger than zero, while all the other 5 eigenvalues of the characteristic matrix MN  are 312 

equal to zero. Therefore, only the quadratic gradient along the spacecraft array can be 313 

attained in this situation. For the situation when the constellation is planar, the 3 314 



 

eigenvalues of the characteristic matrix MN   along the directions in the spacecraft 315 

plane are larger than zero, while all the other 3 eigenvalues are zero. So that only the 316 

three components of the quadratic gradient in the constellation plane can be found.  317 

 318 

    319 

For example, we can obtain the linear and quadratic gradients of the electric 320 

potential with this approach based on the 10N   spacecraft potential measurements, 321 

and further get the electric field and charge density at the barycenter of the constellation. 322 

Suppose the electric potential observed at the position r   of the spacecraft    is 323 

( ) ( ), 1,2, , N   = = r  . By using the above algorithm, we can yield the electric 324 

potential c   and its linear and quadratic gradients, ( )
c

   and  ( )2

c
   , at the 325 

barycenter of the constellation. Therefore, the electric field at the barycenter is  326 

             ( )
c

-E =  .                                        (40) 327 

With Gauss’ law, we get the charge density at the barycenter as follows.  328 

( ) ( )2

0 0 c
-     

c
= E = .                           (41) 329 

 330 

   As for the multiple spacecraft magnetic field measurements, thereby we can 331 

obtain the magnetic linear and quadratic gradients at the barycenter of the 332 

constellation, and further attain the complete geometry of the magnetic field lines 333 

(MFLs), including the Frenet frame, the curvature and torsion of the MFLs. Suppose 334 

that the magnetic field at the position r  of the spacecraft   is335 

 ( ) , 1,  2,  ,  N  = =B B r . Utilizing the above algorithm, the magnetic field 336 



 

and its linear gradient ( )c c( ) =B B r  and quadratic gradient 337 

( )c c( ) =B B r  at the barycenter of the constellation can be calculated. The 338 

tangential vector or the unit magnetic vector of the MFLs is ˆ / B=b B . The curvature 339 

of the MFLs at the barycenter of the constellation can be estimated by the following 340 

formula [Shen et al., 2003；2020] 341 

 ( ) ( )1 1

cj c ci i j c ci cj cm i m cc
B b B B b b b B − −=  −  .  (42) 342 

The principal normal vector of the MFLs is ˆ =K κ κ , and the binormal vector of 343 

the MFLs is ˆ ˆ= N b K . From its definition, 

2

2

ˆ1 d ˆ
ds




 
b

N , we can get the torsion of 344 

the MFLs at the barycenter of the constellation as the expression [Shen et al., 2020] 345 

( ) ( ) ( )1 3 1 3

c c c cj ci i k k j c c cj ck ci k i jc c c
= B N B B B B N B B B  − − − −  +   .      (43) 346 

 347 

3. Tests 348 

 349 

In this section, we will investigate the applicability of the algorithm to the vector 350 

field, and check its ability to yield the linear and quadratic magnetic gradients and the 351 

complete geometry of the magnetic field lines (MFLs) based on the multiple-points 352 

magnetic measurements. 353 

The algorithm has been tested for the cylindrical force-free flux rope, dipole 354 

magnetic field and modeled geo-magnetospheric field, so as to evaluate its capability. 355 

15-points measurements have been assumed. The tests are focused on how well the 356 

algorithm behaves as iterations are performed and how the truncation errors vary with 357 

the increase of relative measurement scale. Assuming 𝐿 is the size of the constellation 358 



 

and 𝐷 the local characteristic scale of the magnetic structure, the relative measurement 359 

scale is L/D. The influence of the number of spacecraft of the constellation on the 360 

truncation errors has also been analyzed.  361 

 362 

3.1   Configuration of the constellation 363 

The positions of the 15 spacecraft of the constellation in the barycenter coordinates are 364 

generated randomly, which are demonstrated in Figure 1. The three characteristic 365 

lengths of the constellation (Harvey, 1998) are 𝑎 = 0.75𝑅𝐸 , 𝑏 =  0.61𝑅𝐸 , 𝑐 =366 

0.24𝑅𝐸  , respectively, and hence the size of the constellation is 𝐿 ≡ 2𝑎 = 1.5𝑅𝐸 . 367 

The elements of the 6 6 characteristic matrix MN  can be calculated by the 368 

definition (27), and its six eigenvalues are shown in Table 1. All of them are non-zero, 369 

thus the algorithm can be applied to calculate the linear and quadratic gradients with 370 

the measurements by this constellation. In the following tests, the configuration of the 371 

constellation will be kept unchanged, while its size adjusted by scaling up and down 372 

the distances between the spacecraft. 373 

 374 

3.2 Flux ropes 375 

 376 

The axially symmetric force-free flux rope will be used to test the algorethm 377 

developed in Section 2, the magnetic field in which in cylindrical coordinates can be 378 

expressed as (Lundquist, 1950)  379 

 𝑩 = 𝐵0[0, 𝐽1(𝛼𝑟), 𝐽0(𝛼𝑟)],  (44) 380 



 

where 𝑟 is the axial-centric distance, 1/𝛼 the characteristic scale of the flux rope, 𝐽𝑛 381 

the first kind Bessel function of order 𝑛, and 𝐵0 is the characteristic magnetic strength 382 

in the flux rope. We can set that 1/ ER =   and 𝐵0 = 60𝑛𝑇 . The overall spatial 383 

chracteristic scale of the flux rope is 1 1 ED R= =/ . However, when 1/ 1 Er R = , 384 

it is proper to set the local characteristic scale as the axial-centric distance 𝑟 , i.e., 385 

D r=  . The helix angle    of the MFLs in the cylindrical flux rope obeys 386 

0 1( ) / ( )tan J r J r = . The curvature and torsion of the MFLs are expressed as   387 

1 2r cos −=                                  (45) 388 

and  389 

tan  = ,                                     (46) 390 

respectively [Shen, et al., 2020]. 391 

The linear and quadratic gradients ofthe magnetic field, i kB  and i j kB , are usually 392 

composed of 3*3=9 and 6*3=18 independent components, respectively. Axially 393 

symmetric flux rope has two symmetries: the three components of the magnetic field in 394 

the cylindrical coordinates are invariants along both the axial and azimuthal directions. 395 

So that some components of the quadratic magnetic gradient are zero. It is easy to find 396 

that, the 13 independent components of i j kB  in Cartesian coordinates at one point 397 

of the x-axis are zero, i.e., 0z i jB  = , and 0x x y yx y zx x y x yB B B B      == = = ; 398 

while the remaining 5 independent components, x y xB  , x x yB  , y y yB  , x x zB   399 

and y y zB   are non-zero. Similarly, for the linear magnetic gradient, i jB , its three 400 

components, xyB  , yxB   and zxB  , are non-vanishing, and all the other 6 401 

components are zero analytically. Without loss of generality, putting the barycenter of 402 



 

the constellation composed of 15 spacecraft at the x-axis, we can focus on checking the 403 

calculations of the algorithm on the 5 non-zero independent components of the 404 

quadratic magnetic gradient and 3 non-vanishing components of the linear magnetic 405 

gradient.  406 

We first investigate the resultant’s behavior during iterations. Assume that the 407 

barycenter of the constellation is at [1,0,0]𝑅𝐸, and reduce the separations between the 408 

spacecraft of the constellation proportionally so that the relative measurement scale 409 

L/D= 0.013. We have performed the iterative calculation and tracked the errors of the 410 

linear and quadratic gradients of the magnetic field, which are plotted in Fig. 2. The 411 

relative error (vertical axis), 𝑋𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚/𝑋𝑟𝑒𝑎𝑙 − 1, before the first iteration is 1 since we 412 

assume these quantities vanished at the beginning (not shown in Fig.2). After the first 413 

iteration (horizontal axis), some of the relative errors have dropped under 0.3 while 414 

others remain high. With more iterations, the errors are decreasing and finally converge 415 

to certain fixed values as given by the exact solutions of the original equations. The 416 

number of iterations for the solutions to converge is varying and mostly less than 100. 417 

This has confirmed the convergence of the iteration method. 418 

   419 

Secondly, we investigate the dependence of the truncation errors of the non-zero 420 

components of the linear and quadratic magnetic gradients on the relative measurement 421 

scale 𝐿/𝐷.  422 

We have tested three situations when the barycenter of the 15 spacecraft 423 

constellation are located at three representative points, [1,0,0]  𝑅𝐸 , [0.5,0,0]  𝑅𝐸  and 424 



 

[0.1,0,0] 𝑅𝐸 in Cartesian coordinates, respectively. We scale up and down the original 425 

15-S/C constellation to adjust its characteristic size L. It is shown that, the algorithm 426 

yields reliable results for most relative measurement scale 𝐿/𝐷. 427 

The evaluation of calculations on the linear magnetic gradient and also the 428 

curvature of the magnetic field lines are made, which are illustrated in Figure 3(a),(c), 429 

and (e). The calculated linear magnetic gradient and curvature of the MFLs have sound 430 

accuracies and their relative errors are all less than 5%. As shown in Figure 3(a),(c), 431 

and (e), the relative errors of the three non-vanishing components of the linear magnetic 432 

gradient and the curvature of the magnetic field lines are varying at the second-order of 433 

L/D.  434 

As shown in Figure 3(b),(d), and (f), the relative error (vertical axis) of the 435 

quadratic gradients (solid lines) increases about linearly with 𝐿/𝐷  (horizontal axis) 436 

and are generally less than 5 percent, so do that of the resultant torsion of the magnetic 437 

field lines (dashed and dotted lines) with slightly greater errors. Note that all errors 438 

shown in Fig.3 are converged. Such small errors imply that the algorithm runs well for 439 

the flux rope 15-point measurements. 440 

 441 

  442 

 443 

Due to the magnetic field in the flux rope is generally varying rather slowly in 444 

space, the application of the algorithm on it is very effective and good accuracies can 445 

be reached as illustrated above. However, the magnetic field in space can have severe 446 



 

spatial variations, e.g., the dipole magnetic field. The strength of the dipolar magnetic 447 

field is decreasing by the third power of the distance from the dipole, and the magnetic 448 

gradients at every order are comparable. The actual calculations on the linear magnetic 449 

gradient and current density of the near-Earth magnetic field based on multiple 450 

spacecraft measurements are occasionally not accurate [Yang et al., 2016]. Here, we 451 

would like to apply the new algorithm to estimate the linear and quadratic magnetic 452 

gradients and check its accuracy and capability.     453 

 454 

3.3 Dipole magnetic field 455 

 456 

In this subsection, we will analyze the capability of the algorithm for the dipole 457 

magnetic field. The dipole field in Cartesian coordinates is assumed as  458 

 𝑩 =
𝑀𝑧

𝑟5 [3𝑥𝑦, 3𝑦𝑧, 3𝑧2 − 𝑟2], (47) 459 

 where 𝑀𝑧 is the magnetic dipole moment and 𝑟 = √𝑥2 + 𝑦2 + 𝑧2. It is supposed 460 

that the magnetic dipole moment points to the positive z-direction. the magnetic dipole 461 

moment  is set as 𝑀𝑧 = −30438𝑛𝑇 ⋅ 𝑅𝐸
3, which is approximately that of the Earth. It 462 

is easy to obtain the analytical expression of the curvature of the MFLs as  463 

( )

( )

2

3
2 2

1 cos sin3

r 1 3cos

 




+
=

+

,                            (48) 464 

where   is the polar angle. The MFLs in the dipole magnetic field are plane curves, 465 

whose torsion is zero, i.e., 0 = .   466 

The local characteristic scale D of the magnetic field measured can be chosen to be the 467 

distance of the constellation from the dipole, i.e., D r= . 468 



 

The configuration of the constellation is the same as that in Subsection 3.1, which 469 

is shown in Figure 1. We scale up and down the original 15-S/C constellation to alter 470 

the characteristic size L of the constellation. 471 

Firstly, we investigate the convergence behavior of the components of the linear 472 

and quadratic magnetic gradients calculated with the algorithm by iterations. The 473 

constellation is put at the equatorial plane of the dipole with its coordinates being 474 

[3,0,0] 𝑅𝐸 , where only 5 independent components of the magnetic quadratic gradient 475 

are non-zero. The separations between the spacecraft of the constellation are reduced 476 

proportionally so that the relative measurement scale 𝐿/𝐷 = 0.013. The convergence 477 

behaviors of the non-vanishing independent components of the linear and quadratic 478 

magnetic gradients estimated by the algorithm are illustrated in Figure 4 (a) and (b), 479 

respectively, which indicates that the linear and quadratic magnetic gradients attain 480 

convergence within about 50 iterations. 481 

Then the algorithm has been utilized to calculate the magnetic linear and 482 

quadratic gradients as well as the curvature and torsion of the MFLs in the dipole field 483 

as expressed by equation (47) for various characteristic scales of the constellation. The 484 

constellation is located at [3,0,0], [2,0,3], [0,0,3]
ER  , respectively, which are 485 

corresponding to low, middle and high latitudes, respectively. Figure 5 (a,c,e) presents 486 

the relative errors of the calculated linear magnetic gradient and curvature of the 487 

magnetic field lines by the characteristic scale of the constellation. As shown in Figure 488 

5 (a,c,e), the relative errors of the non-vanishing components of the linear magnetic 489 

gradient and the curvature of the magnetic field lines are of the second order of L/D. 490 



 

As L/D< 0.01 , the relative errors of the linear magnetic gradient are less than 5%. 491 

Therefore the linear magnetic gradient calculated has higher accuracy than the quadratic 492 

magnetic gradient. The variations of the relative errors of the magnetic quadratic 493 

gradient calculated with the algorithm by 𝐿/𝐷 are shown in Figure 5 (b,d,f). It can be 494 

seen that the relative errors of the magnetic quadratic gradient are at the first order in 495 

L/D. However, the errors in estimating the magnetic gradients are higher than those in 496 

the case of flux ropes. This is because that the dipolar magnetic strength is decreasing 497 

rather rapidly with the distance from the dipole. It is also shown in Figure 4 (b,d,f) that, 498 

as 𝐿/𝐷 < 0.01, the relative errors of the quadratic magnetic gradient are less than 10%.  499 

 500 

3.4 Modeled Geomagnetosphere 501 

By including one more dipole, the mirrored dipole, in the Earth’s dipole field, 502 

 𝑩 =
𝑀𝑧1

𝑟1
5 [3𝑥𝑦, 3𝑦𝑧, 3𝑧2 − r1

2] +
𝑀𝑧2

𝑟2
5 [3(𝑥 − 40𝑅𝐸)𝑦, 3𝑦𝑧, 3𝑧2 − r2

2],  (49) 503 

the modeled geo-magnetospheric field is strongly inhomogeneous and continuously 504 

asymmetric, therefore serves as a scenario whereby the algorithm is tested more 505 

strictly and realistically. In Eq. (49), 𝑀𝑧1 is the Earth’s dipole moment, and 𝑟1 =506 

√𝑥2 + 𝑦2 + 𝑧2 the distance of the measurement point from the Earth’s dipole. The 507 

mirror magnetic dipole, 𝑀𝑧2 = 28𝑀𝑧1, is located at 𝑥 = 40𝑅𝐸, and 𝑟2 =508 

√(𝑥 − 40𝑅𝐸)2 + 𝑦2 + 𝑧2 is the distance from the mirror dipole. In general, the 509 

modeled magnetospheric field is approximately equal to the Earth’s dipole field in the 510 

inner region, 1r 6 ER . Since the dipole field has been tested in the last subsection, 511 

we would focus on the outer region, 1r 6 ER . Three points, [5, 15, 5] 𝑅𝐸, [5, 10, 512 



 

10] 𝑅𝐸 and [-5, 15, 10] 𝑅𝐸  , corresponding to the far flank and high latitude at 513 

dayside and high latitude far flank at nightside, respectively, are chosen as the 514 

locations of the barycenter. Here we define the relative errors of the components j iB  515 

and k j iB   as 516 

 
( ) ( )

,
j i algorithm j i real

ij

B B
e

B

 − 
=

 
                         (50) 517 

and 518 

 
( ) ( )

,
k j i algorithm k j i real

ijk

B B
e

B

  −  
=

 
                         (51) 519 

respectively, where
3

,

| | /9j i

i j

B B  =    and 
3

, ,

| | /27k j i

i j k

B B  =     are the average 520 

values of the components of linear and quadratic magnetic gradients, respectively. 521 

Figure 6 shows the convergent trend of the linear and quadratic gradients within 50 522 

iterations when the separation between the spacecraft in the constellation is adjusted to 523 

make 𝐿/𝐷 = 0.026. Again the algorithm is confirmed to be reliable and suitable for 524 

analyzing fields severely varying in space. 525 

 Figure 7 illustrates the relative errors of all components of the linear and quadratic 526 

gradient calculated at different S/C scales. Due to the inhomogeneity and asymmetry 527 

of the geo-magnetospheric field, all components are non-vanishing. It is found that the 528 

linear gradients increase quadratically with 𝐿/𝐷 and quadratic gradients linearly with 529 

𝐿/𝐷. As 𝐿/𝐷 < 0.01, the relative errors of the quadratic gradient are below 10% , and 530 

those of the linear gradient below 5%. The accuracy of the algorithm for the modeled 531 

magnetospheric field is close to that for the dipole field. 532 

The global geometry of the magnetospheric magnetic field can also serve as an 533 



 

elaborate scenario for testing. The geometrical features of the MFLs can be depicted by 534 

the curvature    and torsion    commonly. On the other hand, they can also be 535 

represented by another set of parameters, the radius of curvature and spiral angle, ( cR , 536 

 ) [Apendix E in Shen, et al., 2020]. We have compared the analytical distributions 537 

of the radius of curvature and spiral angle of MFLs in 𝑥 = 0  plane and those 538 

calculated based on the algorithm, and the results are as shown in figure 8 . Note that 539 

we have only modeled the region with ( 𝑦 > 0, 𝑧 > 0 ), one quarter of the 540 

magnetosphere, on considering the north-south and dawn-dusk symmetries of the 541 

modeled magnetosphere. Analytically, the modeled geomagnetic field has mirror 542 

symmetry about the z=0 coordinate plane ( or the equatorial plane), so that the torsion 543 

of the MFLs is negated through the mirror and will be zero at the equatorial plane with 544 

z=0, as indicated in the panel (c) of Figure 8. The separation between the spacecraft is 545 

fixed to 𝐿 = 28𝑘𝑚 . With the ever-changing 𝐷  when we move the constellation 546 

around, the largest relative scale is𝐿/𝐷 = 0.0545 at left-bottom corner (near the Earth), 547 

while the least scale  𝐿/𝐷 = 0.00400  at right-top corner. The raduis of curvature 548 

given by the algorithm is almost identical to its real value, as shown in the top panels 549 

of Figure (8).The MFLs tend to be more straight at the polar region and more bending 550 

at the low latitude region. The distribution of the spiral angle of the MFLs as attained 551 

by the algorithm is shown in Panel (d) of Figure (8), which is in good consistency with 552 

that analytically calculated as demonstrated in Panel (c). Both of them show the strong 553 

twist of the MFLs in the duskside cusp region. It is noted that at the low attitude polar 554 

region, the algorithm yields negative spiral angles of the MFLs, as shown in the deep 555 



 

blue area in Panel (d). This abnormal deviation from the accurate calculation mainly 556 

results from the extremely small curvature of the MFLs in this region. 557 

 558 

In this test, 15 points measurements are applied and have verified the feasibility 559 

and accuracy of the algorithm. The algorithm needs at least 10 point measurements as 560 

input to estimate the quadratic gradient reliably. The more points the algorithm builds 561 

on, the more accurate the estimated quadratic gradients are.  562 

To investigate this relationship, we need to exclude the effect of the spatial 563 

distribution of the constellation. For n points modeling, we have generated 1000 564 

constellations spontanously, each of which consisting of n S/C, and then choose one 565 

constellation with minimum error of the calculation as the representative one. Figure 9 566 

shows the mean relative errors of the linear and quadratic magnetic gradients at 567 

[1,1,2]𝑅𝐸 in the modeled magnetospheric field derived from virtual measurements by 568 

constellations with different numbers of spacecraft, 𝑛 , and two fixed characteristic 569 

spatial scales, 𝐿 . As indicated by the dashed magenta lines, the mean error of the 570 

quadratic gradient is nearly proportional to 1/𝑛. The mean error of the linear-gradient, 571 

however, appears to be a constant plus a weak variation by the S/C number of the 572 

constellation. The averaged mean error of the linear magnetic gradient is about 573 

2.07 × 10−1  as 𝐿/𝐷 = 0.05  and 8.28 × 10−3  as 𝐿/𝐷 = 0.01 . As indicated from 574 

Figure 9, the results obtained here also confirm the previous arguments that the errors 575 

of the linear-gradient components decrease quadratically with 𝐿/𝐷 , and that of 576 

quadratic-gradient components linearly with 𝐿/𝐷 (see Fig. 9). 577 

 578 



 

4 Summary and Conclusion 579 

 580 

The algorithms for calculating the linear gradients of physical quantities based on the 581 

measurements by constellations composed of ≥4 spacecraft have been well established 582 

and found wide applications in Cluster, THEMIS and MMS data analyses. Recently a 583 

special algorithm for estimating the quadratic magnetic gradient utilizing the 4-point 584 

magnetic and particle observations has been developed and successfully applied in 585 

MMS data analysis [Shen et al. 2020]. With the evolution of space explorations, 10 or 586 

more S/C constellations can possibly be realized in the near future. Therefore it is 587 

meaningful to develop the method to draw the high order gradients of the physical 588 

quantities based on ≥10 point measurements so as to make well preparations for the 589 

future multiple point data analysis.  590 

In this investigation, we have established the joint algorithm to deduce the linear 591 

and quadratic gradients of an arbitrary physical quantity by using the least square 592 

method. This approach can yield the linear and quadratic gradients at the barycenter of 593 

the constellation with the input of ≥10 point measurements. With the least square 594 

method, the equations for determining the physical quantity and its linear and quadratic 595 

gradients at the barycenter have been found. To solve these equations, iterations are 596 

made to find the approximation solutions. Firstly, under the linear approximation, the 597 

linear gradient is obtained from the multiple point measurements. Secondly, the 598 

quadratic gradient is calculated on these bases. Thirdly, the first iteration is made and 599 

the quantity and its linear gradient at the barycenter are modified with the obtained 600 



 

quadratic gradient. Then, the quadratic gradient is recalculated with the corrected values 601 

of the physical quantity and its linear gradient. The iterations are performed until the 602 

linear and quadratic gradients with satisfactory accuracies have been attained. 603 

Generally, the determination of the 3 components of a physical quantity is dependent 604 

of the 3 3   volume matrix that reflects the configuration of the constellation. This 605 

exploration indicates that the calculations of the 6 independent components of the 606 

quadratic gradient rely on the 6 6   symmetric characteristic matrix MN   of the 607 

constellation. If the 6 eigenvalues of the characteristic matrix MN  are all nonzero, the 608 

6 components of the quadratic gradient can be determined completely. 609 

With the 10 point electric potential observations, the linear and quadratic gradients at 610 

the barycenter can be found, as well as the electric field and charge density. With the 611 

10 point magnetic field measurements, the linear and quadratic magnetic gradients at 612 

the barycenter can be obtained, as well as the complete geometry of the magnetic field 613 

lines.  614 

The tests on the algorithm have been made with the cylindrical flux ropes, dipole 615 

magnetic field and modeled geo-magnetospheric field, and the reliability and accuracy 616 

have been confirmed. In the test, the spatial distribution of the geometrical parameters 617 

(radius of the curvature and spiral angle) of the MFLs in the modeled geo-618 

magnetospheric field has also been yielded, which are in well consistence with the 619 

analytic results. All the three tests show that, the calculations converge within 50 620 

iterations. The attained linear gradient is at the second order accuracy, while the 621 

quadratic gradient at the first order accuracy. The test on the modeled geo-622 



 

magnetospheric field indicates that increasing the number of the spacecraft in the 623 

constellation can enhance the accuracy of the quadratic gradient calculated and its 624 

relative errors are anti-proportional to the number of the S/C. However, the accuracy of 625 

the linear gradient yielded can not be further improved by increasing the number of the 626 

S/C, and its relative errors are almost independent of the number of the S/C. So that it 627 

is a very effective, reliable and accurate algorithm for jointly calculating the linear and 628 

quadratic gradients of various physical quantities with ≥10 point constellation 629 

measurements.  630 

This approach can be used to calculate the complete geometrical parameters of the 631 

magnetic field (e.g., the curvature and torsion of the MFLs) in the magnetosphere (e.g., 632 

with T models) numerically. This algorithm is also very meaningful for the design of 633 

the future multiple S/C missions. For a constellation with 10 or more spacecraft, its 634 

characteristic matrix MN  needs to have six non-zero eigenvalues thus to make the 635 

complete determination of the quadratic gradients of the physical quantities possible. 636 

This algorithm will obviously find wide applications in the analysis of multiple point 637 

observation data. 638 
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 712 

Table 1: Eigenvalues (in 𝑅𝐸
4) of the characteristic matrix MN  713 

1  2  3  4  5  6  

0.03512 0.02385 0.002728 0.008468 0.01130 0.01080 
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Figure Captions 733 

 734 

Figure 1: Schematic view of the distribution of the constellation. 735 

 736 

Figure 2: The relative errors of the non-vanishing components of the linear (a) and 737 

quadratic (b) magnetic gradients in the flux rope calculated by different numbers of 738 

iterations. It is noted that , /i k i kB B x=   , 
2

, , /i j k ji kB B x x=    , where a comma 739 

denotes partial differentiation.  740 

 741 

Figure 3: Left panels (a),(c), and (e) show the relative errors of three non-vanishing 742 

components of the linear magnetic gradient and curvature ( ) of the magnetic field 743 

lines in flux rope by 𝐿/𝐷 calculated for three different locations of the constellation, 744 

[1,0,0] 𝑅𝐸, [0.5,0,0] 𝑅𝐸 and [0.1,0,0] 𝑅𝐸  in Cartesian coordinates, respectively. Right 745 

panels (b),(d), and (f) illustrate the relative errors of non-vanishing components of the 746 

quadratic magnetic gradient and torsion ( ) of the magnetic field lines in flux rope 747 

by 𝐿/𝐷 calculated for the three different locations of the constellation, [1,0,0] 𝑅𝐸, 748 

[0.5,0,0] 𝑅𝐸 and [0.1,0,0] 𝑅𝐸  in Cartesian coordinates, respectively. 749 

 750 

Figure 4: The relative errors of the non-vanishing components of the linear (left panel 751 

(a)) and quadratic (right panel (b)) magnetic gradient in the dipole field at the 752 

equatorial plane as calculated by different numbers of iterations. 753 



 

 754 

Figure 5: Left panels (a), (c) and (e) show the relative errors of the three non-755 

vanishing components of the linear magnetic gradient and curvature ( ) of the MFLs 756 

in the dipole field by 𝐿/𝐷 calculated for three different locations of the constellation, 757 

[3, 0, 0] 𝑅𝐸, [2, 0, 3] 𝑅𝐸 and [0, 0, 3] 𝑅𝐸 in Cartesian coordinates, respectively. Right 758 

panels (b),(d), and (f) illustrate the relative errors of the non-vanishing components of 759 

the quadratic magnetic gradient in dipole field by 𝐿/𝐷 calculated for the three 760 

different locations of the constellation, [3, 0, 0] 𝑅𝐸, [2, 0, 3] 𝑅𝐸 and [0, 0, 3] 𝑅𝐸 in 761 

Cartesian coordinates, respectively. 762 

 763 

Figure 6: The relative errors of the components of the linear (left panel (a)) and 764 

quadratic (right panel (b)) magnetic gradients in the modeled geomagnetic field at the 765 

position [-5, 15, 10] 𝑅𝐸 as calculated by different numbers of iterations, the scale of 766 

the constellation is set as 𝐿/𝐷 = 0.026. In panel (b), dashed, dotted and solid lines 767 

with colors are for derivatives of 
1B ,

2B  and 
3B  , respectively.    768 

 769 

Figure 7: Left panels (a), (c) and (e) demonstrate the relative errors of the components 770 

of the linear magnetic gradient and curvature ( ) of the MFLs in the geomagnetic 771 

field by 𝐿/𝐷 calculated for three different locations of the constellation, [-5, 15, 10] 772 

𝑅𝐸, [5, 10, 10] 𝑅𝐸 and [5, 15, 5] 𝑅𝐸 in Cartesian coordinates, respectively. The black 773 

dash-dotted line is for the curvature. Right panels (b), (d) and (f) illustrate the relative 774 

errors of the components of the quadratic magnetic gradient and torsion ( ) of the 775 



 

MFLs in dipole field by 𝐿/𝐷 calculated for the three different locations of the 776 

constellation, [-5, 15, 10] 𝑅𝐸, [5, 10, 10] 𝑅𝐸 and [5, 15, 5] 𝑅𝐸 in Cartesian 777 

coordinates, respectively. The black dotted line is for the torsion. 778 

 779 

Figure 8: Distributions of the radius of curvature (top) and helix angle (bottom) of 780 

MFLs in the coordinate plane x=0 in modeled magnetosphere based on theoretical (left) 781 

and new algorithm (right) calculations. The dashed line indicates the magnetopause 782 

when 𝐵𝑧 = 27𝑛𝑇, 𝐷𝑝 = 3𝑛𝑃𝑎 [Shue et al., 1998]. 783 

 784 

Figure 9: Mean truncation errors of linear (red) and quadratic (blue) gradients for 785 

different numbers of measurement points. The modeling is for 𝐿/𝐷 = 0.05 (left) and 786 

𝐿/𝐷 = 0.01 (right) at [1,1,2] ER  in the modeled magnetosphere. The dashed magenta 787 

line is a fitted curve. 788 
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Figure 1: Schematic view of the distribution of the constellation. 805 
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 819 

Figure 2: The relative errors of the non-vanishing components of the linear (a) and quadratic (b) 820 

magnetic gradients in the flux rope calculated by different numbers of iterations. It is noted that 821 

, /i k i kB B x=   , 
2

, , /i j k ji kB B x x=    , where a comma denotes partial differentiation.  822 
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 833 



 

 834 

Figure 3: Left panels (a),(c), and (e) show the relative errors of three non-vanishing 835 

components of the linear magnetic gradient and curvature ( ) of the magnetic field lines in flux 836 

rope by 𝐿/𝐷 calculated for three different locations of the constellation, [1,0,0] 𝑅𝐸 , [0.5,0,0] 𝑅𝐸  837 

and [0.1,0,0] 𝑅𝐸 in Cartesian coordinates, respectively. Right panels (b),(d), and (f) illustrate 838 

the relative errors of non-vanishing components of the quadratic magnetic gradient and torsion 839 

( ) of the magnetic field lines in flux rope by 𝐿/𝐷 calculated for the three different locations of 840 

the constellation, [1,0,0] 𝑅𝐸 , [0.5,0,0] 𝑅𝐸  and [0.1,0,0] 𝑅𝐸 in Cartesian coordinates, respectively. 841 
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 846 

 847 

Figure 4: The relative errors of the non-vanishing components of the linear (left panel (a)) and 848 

quadratic (right panel (b)) magnetic gradient in the dipole field at the equatorial plane as 849 

calculated by different numbers of iterations. 850 
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 855 

Figure 5: Left panels (a), (c) and (e) show the relative errors of the three non-vanishing 856 

components of the linear magnetic gradient and curvature ( ) of the MFLs in the dipole field by 857 

𝐿/𝐷 calculated for three different locations of the constellation, [3, 0, 0] 𝑅𝐸 , [2, 0, 3] 𝑅𝐸 and [0, 858 

0, 3] 𝑅𝐸 in Cartesian coordinates, respectively. Right panels (b),(d), and (f) illustrate the relative 859 

errors of the non-vanishing components of the quadratic magnetic gradient in dipole field by 𝐿/𝐷 860 

calculated for the three different locations of the constellation, [3, 0, 0] 𝑅𝐸 , [2, 0, 3] 𝑅𝐸  and [0, 0, 861 

3] 𝑅𝐸  in Cartesian coordinates, respectively. 862 
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 869 

Figure 6: The relative errors of the components of the linear (left panel (a)) and quadratic (right 870 

panel (b)) magnetic gradients in the modeled geomagnetic field at the position [-5, 15, 10] 𝑅𝐸  as 871 

calculated by different numbers of iterations, the scale of the constellation is set as 𝐿/𝐷 = 0.026. 872 

In panel (b), dashed, dotted and solid lines with colors are for derivatives of 
1B  ,

2B   and 
3B   , 873 

respectively.    874 
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 878 

Figure 7: Left panels (a), (c) and (e) demonstrate the relative errors of the components of the linear 879 

magnetic gradient and curvature ( ) of the MFLs in the geomagnetic field by 𝐿/𝐷 calculated 880 

for three different locations of the constellation, [-5, 15, 10] 𝑅𝐸, [5, 10, 10] 𝑅𝐸 and [5, 15, 5] 𝑅𝐸  881 

in Cartesian coordinates, respectively. The black dash-dotted line is for the curvature. Right panels 882 

(b), (d) and (f) illustrate the relative errors of the components of the quadratic magnetic gradient 883 

and torsion ( ) of the MFLs in dipole field by 𝐿/𝐷 calculated for the three different locations 884 

of the constellation, [-5, 15, 10] 𝑅𝐸, [5, 10, 10] 𝑅𝐸 and [5, 15, 5] 𝑅𝐸  in Cartesian coordinates, 885 

respectively. The black dotted line is for the torsion. 886 
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 890 

Figure 8: Distributions of the radius of curvature (top) and helix angle (bottom) of MFLs in the coordinate 891 

plane x=0 in modeled magnetosphere based on theoretical (left) and new algorithm (right) calculations. 892 

The dashed line indicates the magnetopause when 𝐵𝑧 = 27𝑛𝑇, 𝐷𝑝 = 3𝑛𝑃𝑎 [Shue et al., 1998]. 893 
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 902 

Figure 9: Mean truncation errors of linear (red) and quadratic (blue) gradients for different numbers of 903 

measurement points. The modeling is for 𝐿/𝐷 = 0.05 (left) and 𝐿/𝐷 = 0.01 (right) at [1,1,2] ER  in 904 

the modeled magnetosphere. The dashed magenta line is a fitted curve. 905 
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