References
Aoki, S., Vandaele, A. C., Daerden, F., Villanueva, G. L., Liuzzi, G., Thomas, I. R., et al. (2019). Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD. Journal of Geophysical Research: Planets,124(12), 3482–3497. https://doi.org/10.1029/2019je006109
Belyaev, D. A., Fedorova, A. A., Trokhimovskiy, A., Alday, J., Montmessin, F., Korablev, O. I., et al. (2021). Revealing a High Water Abundance in the Upper Mesosphere of Mars With ACS Onboard TGO. \grl,48(10), e93411. https://doi.org/10.1029/2021GL093411
Chaffin, M. S., Deighan, J., Schneider, N. M., & Stewart, A. I. F. (2017). Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water. Nature Geosci,10(3), 174–178. https://doi.org/10.1038/ngeo2887
Chaffin, M. S., Kass, D. M., Aoki, S., Fedorova, A. A., Deighan, J., Connour, K., et al. (2021). Martian water loss to space enhanced by regional dust storms.Nature Astronomy, 5(10), 1036–1042. https://doi.org/10.1038/s41550-021-01425-w
Chaffin, Michael S., Chaufray, J.-Y., Stewart, I., Montmessin, F., Schneider, N. M., & Bertaux, J.-L. (2014). Unexpected variability of Martian hydrogen escape. Geophysical Research Letters, 41(2), 314–320. https://doi.org/10.1002/2013GL058578
Clancy, R. T. (2017). Vertical profiles of Mars 1.27 μm O2 dayglow from MRO CRISM limb spectra: seasonal/global behaviors, comparisons to LMD GCM simulations, and a global definition for Mars water vapor profiles. Icarus,293. https://doi.org/10.1016/j.icarus.2017.04.011
Clancy, R. T., Grossman, A. W., Wolff, M. J., James, P. B., Rudy, D. J., Billawala, Y. N., et al. (1996). Water Vapor Saturation at Low Altitudes around Mars Aphelion: A Key to Mars Climate? Icarus, 122(1), 36–62. http://dx.doi.org/10.1006/icar.1996.0108
Clarke, J. T. (2014). A rapid decrease of the hydrogen corona of Mars. Geophys. Res. Lett., 41. https://doi.org/10.1002/2014GL061803
Connour, K., Schneider, N. M., Milby, Z., Forget, F., Alhosani, M., Spiga, A., et al. (2020). Mars’s twilight cloud band: A new cloud feature seen during the Mars Year 34 global dust storm.Geophysical Research Letters , 47, e2019GL084997. https://doi.org/10.1029/2019GL084997
Fedorova, A. A., Korablev, O. I., Bertaux, J. L., Rodin, A. V., Montmessin, F., Belyaev, D. A., & Reberac, A. (2009). Solar infrared occultation observations by SPICAM experiment on Mars-Express: Simultaneous measurements of the vertical distributions of H2O, CO2 and aerosol. Icarus, 200 (1), 96-117. doi: http://dx.doi.org/10.1016/j.icarus.2008.11.006
Fedorova, A. A., Montmessin, F., Rodin, A. V., Korablev, O. I., Määttänen, A., Maltagliati, L., & Bertaux, J. L. (2014). Evidence for a bimodal size distribution for the suspended aerosol particles on Mars. Icarus,231(0), 239–260. http://dx.doi.org/10.1016/j.icarus.2013.12.015
Fedorova, A., Bertaux, J. L., Betsis, D., Montmessin, F., Korablev, O., Maltagliati, L., & Clarke, J. (2018). Water vapor in the middle atmosphere of Mars during the 2007 global dust storm. Icarus, 300, 440–457. https://doi.org/10.1016/j.icarus.2017.09.025
Fedorova, Anna A., Montmessin, F., Korablev, O., Luginin, M., Trokhimovskiy, A., Belyaev, D. A., et al. (2020). Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season. Science,367(6475), 297–300. https://doi.org/10.1126/science.aay9522
Fedorova, Anna, Montmessin, F., Korablev, O., Lefèvre, F., Trokhimovskiy, A., & Bertaux, J.-L. (2021). Multi-Annual Monitoring of the Water Vapor Vertical Distribution on Mars by SPICAM on Mars Express. Journal of Geophysical Research: Planets, 126(1), e2020JE006616. https://doi.org/10.1029/2020JE006616
Forbes, J. M., Zhang, X., Forget, F., Millour, E., & Kleinböhl, A. (2020). Solar tides in the middle and upper atmosphere of Mars.Journal of Geophysical Research: Space Physics , 125, e2020JA028140. https://doi.org/10.1029/2020JA028140
Gamache, R. R., et al. (1995). ”CO2-Broadening of Water-Vapor Lines.” Journal of Molecular Spectroscopy 170(1): 131-151.
Giuranna, M., Wolkenberg, P., Grassi, D., Aronica, A., Aoki, S., Scaccabarozzi, D., et al. (2021). The current weather and climate of Mars: 12 years of atmospheric monitoring by the Planetary Fourier Spectrometer on Mars Express. From Mars Express to Exomars, 353, 113406. https://doi.org/10.1016/j.icarus.2019.113406
Goff J. A., and S. Gratch, Low-pressure properties of water from −160 to 212 F, Transactions of the American Society of Heating and Ventilating Engineers, 25–164, New York (1946).
Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y., Bernath, P. F., et al. (2017). The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer , 203 , 3–69. https://doi.org/10.1016/j.jqsrt.2017.06.038
Guerlet S., N. Ignatiev, F. Forget, T. Fouchet, P. Vlasov, G. Bergeron, et al., (2022) Thermal Structure and Aerosols in Mars’ Atmosphere From TIRVIM/ACS Onboard the ExoMars Trace Gas Orbiter: Validation of the Retrieval Algorithm, Journal of Geophysical Research: Planets, 10.1029/2021JE007062, 127, 2.
Heavens, N. G., Kleinböhl, A., Chaffin, M. S., Halekas, J. S., Kass, D. M., Hayne, P. O., et al. (2018). Hydrogen escape from Mars enhanced by deep convection in dust storms. Nature Astronomy, 2(2), 126–132. https://doi.org/10.1038/s41550-017-0353-4
Heavens, N. G., McCleese, D. J., Richardson, M. I., Kass, D. M., Kleinböhl, A., and Schofield, J. T. (2011), Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: 2. Implications of the thermal structure and aerosol distributions for the mean meridional circulation, J. Geophys. Res. , 116, E01010, doi:10.1029/2010JE003713.
Holmes, J., Lewis, S., Patel, M., Aoki, S., Liuzzi, G., Villanueva, G., Crismani, M., Fedorova, A., Alday, J., Kass, D., Vandaele, A. C., and Korablev, O. (2021a). Global variations in the vertical distribution of water during Mars Year 34 from multiple spacecraft observations, European Planetary Science Congress 2021, online, 13–24 Sep 2021, EPSC2021-368, https://doi.org/10.5194/epsc2021-368, 2021.
Holmes J.A., S.R. Lewis, M.R. Patel, M.S. Chaffin, E.M. Cangi, J. Deighan, N.M. Schneider, S. Aoki, A.A. Fedorova, D.M. Kass, A.C. Vandaele, (2021b). Enhanced water loss from the martian atmosphere during a regional-scale dust storm and implications for long-term water loss, Earth and Planetary Science Letters 571, 117109, https://doi.org/10.1016/j.epsl.2021.117109.
Houben, H., Haberle, R.M., Young, R.E., Zent, A.P., 1997. Modeling the Martian seasonal water cycle. JGRP 102, 9069–9083.
Kass, D. M., Kleinböhl, A., McCleese, D. J., Schofield, J. T., & Smith, M. D. (2016). Interannual similarity in the Martian atmosphere during the dust storm season. Geophys. Res. Lett., 43 . doi: 10.1002/2016GL068978.
Kleinböhl, A., John Wilson, R., Kass, D., Schofield, J. T., & McCleese, D. J. (2013). The semidiurnal tide in the middle atmosphere of Mars. Geophysical Research Letters, 40(10), 1952–1959. https://doi.org/10.1002/grl.50497
Kleinböhl, A., Spiga, A., Kass, D. M., Shirley, J. H., Millour, E., Montabone, L., & Forget, F. (2020). Diurnal Variations of Dust During the 2018 Global Dust Storm Observed by the Mars Climate Sounder. Journal of Geophysical Research: Planets, 125(1), e2019JE006115. https://doi.org/10.1029/2019JE006115
Korablev, O., Montmessin, F., Trokhimovskiy, A., Fedorova, A. A., Shakun, A. V., Grigoriev, A. V., et al. (2018). The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter.Space Science Reviews, 214(1). https://doi.org/10.1007/s11214-017-0437-6
Krasnopolsky V.A. (2019), Photochemistry of water in the martian thermosphere and its effect on hydrogen escape, Icarus, 321, 62-70, https://doi.org/10.1016/j.icarus.2018.10.033.
List R. J., Smithsonian Institution, Smithsonian meteorological tables . (Smithsonian Institution Press, Washington, 1984).
Luginin M., A. Fedorova, N. Ignatiev, A. Trokhimovskiy, A. Shakun, A. Grigoriev, et al. (2020). Properties of water ice and dust particles in the atmosphere of Mars during the 2018 global dust storm as inferred from the Atmospheric Chemistry Suite. Journal of Geophysical Research: Planets, 125( 11), 1–22.https://doi.org/10.1029/2020JE006419
Madeleine, J.-B., Forget, F., Millour, E., Navarro, T., and Spiga, A. (2012), The influence of radiatively active water ice clouds on the Martian climate, Geophys. Res. Lett. , 39, L23202, doi:10.1029/2012GL053564.
Maltagliati, L., Montmessin, F., Fedorova, A., Korablev, O., Forget, F., & Bertaux, J.-L. (2011). Evidence of Water Vapor in Excess of Saturation in the Atmosphere of Mars. Science, 333 , 1868-.
Maltagliati, L., Montmessin, F., Korablev, O., Fedorova, A., Forget, F., Määttänen, A., . . . Bertaux, J. L. (2013). Annual survey of water vapor vertical distribution and water–aerosol coupling in the Martian atmosphere observed by SPICAM/MEx solar occultations. Icarus, 223 (2), 942-962. doi: http://dx.doi.org/10.1016/j.icarus.2012.12.012.
Montmessin, F., Forget, F., Rannou, P., Cabane, M., & Haberle, R. M. (2004). Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model. Journal of Geophysical Research: Planets, 109(E10), E10004. https://doi.org/10.1029/2004je002284
Montmessin, F., Haberle, R.M., Forget, F., Langevin, Y., Clancy, R.T., Bibring, J.-P., 2007. On the origin of perennial water ice at the south pole of Mars: A precession-controlled mechanism? Journal of Geophysical Research (Planets) 112, 8. https://doi.org/10.1029/2007JE002902
Navarro, T., Madeleine, J.-B, Forget, F., Spiga, A., Millour, E., Montmessin, F., and Määttänen, A. (2014), Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds, J. Geophys. Res. Planets , 119, 1479– 1495, doi:10.1002/2013JE004550.
Neary, L., Daerden, F., Aoki, S., Whiteway, J., Clancy, R. T., Smith, M., et al. (2020). Explanation for the Increase in High-Altitude Water on Mars Observed by NOMAD During the 2018 Global Dust Storm. Geophysical Research Letters, 47(7), e2019GL084354. https://doi.org/10.1029/2019gl084354
Poncin L., Kleinböhl A., Kass D.M., Clancy R.T., Aoki S., Vandaele A.C. (2022), Water vapor saturation and ice cloud occurrence in the atmosphere of Mars, Planetary and Space Science, 212, 105390, https://doi.org/10.1016/j.pss.2021.105390.
Richardson, M.I., Wilson, R.J., 2002. A topographically forced asymmetry in the martian circulation and climate. Nature 416, 298–301.
Richardson, M.I., Wilson, R.J., 2002. Investigation of the nature and stability of the Martian seasonal water cycle with a general circulation model. JGR 107. https://doi.org/10.1029/2001JE001536
Rodgers, C. D. (2000). Inverse methods for atmospheric sounding: Theory and practice. River Edge, NJ: World Scientific.
Shaposhnikov, D. S., Medvedev, A. S., Rodin, A. V. V., & Hartogh, P. (2019). Seasonal water “pump” in the atmosphere of mars: Vertical transport to the thermosphere. Geophysical Research Letters , 46, 4161– 4169. https://doi.org/10.1029/2019GL082839
Shaposhnikov, D. S., Medvedev, A. S., Rodin, A. V., Yiğit, E., & Hartogh, P. (2022). Martian dust storms and gravity waves: Disentangling water transport to the upper atmosphere. Journal of Geophysical Research: Planets , 127, e2021JE007102. https://doi.org/10.1029/2021JE007102
Stcherbinine, A., Vincendon, M., Montmessin, F., Wolff, M. J., Korablev, O., Fedorova, A., et al. (2020). Martian water ice clouds during the 2018 global dust storm as observed by the ACS mid-infrared channel onboard the Trace Gas Orbiter. Journal of Geophysical Research: Planets , 125, e2019JE006300. https://doi.org/10.1029/2019JE006300
Stone S. W., R. V. Yelle, M. Benna, D. Y. Lo, M. K. Elrod, P. R. Mahaffy, Hydrogen escape from Mars is driven by seasonal and dust storm transport of water. Science 370, 824–831 (2020).
Trokhimovskiy, A., Fedorova, A., Korablev, O., Montmessin, F., Bertaux, J.-L., Rodin, A., & Smith, M. D. (2015). Mars’ water vapor mapping by the SPICAM IR spectrometer: Five Martian years of observations.Icarus, 251 , 50-64. doi: http://dx.doi.org/10.1016/j.icarus.2014.10.007.
Trokhimovskiy, A., Korablev, O., Kalinnikov, Y. K., Fedorova, A., Stepanov, A. V., Titov, A. Y., et al. (2015b). Near-infrared echelle-AOTF spectrometer ACS-NIR for the ExoMars Trace Gas Orbiter. InInfrared Remote Sensing and Instrumentation XXIII (Vol. 9608, pp. 62–70). SPIE. https://doi.org/10.1117/12.2190369
Wilson, R. J. (2000). Evidence for diurnal period Kelvin waves in the Martian atmosphere from Mars Global Surveyor TES data. Geophysical Research Letters , 27(23), 3889– 3892. https://doi.org/10.1029/2000GL012028
Wolkenberg, P., & Giuranna, M. (2021). Daily dust variation from the PFS MEx observations.From Mars Express to Exomars, 353, 113823. https://doi.org/10.1016/j.icarus.2020.113823