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S1. Linear stability analysis

The proposed system of reaction-cross-diffusion equations (equation 9 and 10 in the main text)

describing the porous material behavior post yield are high-order nonlinear partial differential

equations, for which no analytical solutions can be obtained. To conduct the linear stability

analysis, we first consider a set of solutions described by a small perturbation (denoted with *)

around the steady state (p̃s0, p̃f0)=(0, 0):

p̃s(x̃, t̃) = p̃s0(x̃, t̃) + p̃∗s(x̃, t̃), (1)

p̃f (x̃, t̃) = p̃f0(x̃, t̃) + p̃∗f (x̃, t̃), (2)

The perturbation satisfies the following linearized version of the cross-diffusion equations given

by:

∂p̃∗s
∂t̃

= D̃M
∂2p̃∗s
∂x̃2

+ d̃H
∂2p̃∗s
∂x̃2

+ ã11p̃
∗
s + ã12p̃

∗
f (3)
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∂p̃∗f
∂t̃

= d̃M
∂2p̃∗s
∂x̃2

+ D̃H
∂2p̃∗s
∂x̃2

+ ã21p̃
∗
s + ã22p̃

∗
f (4)

where ã11 = ∂R̃1

∂p̃s

∣∣∣
p̃s=p̃s0

, ã12 = ∂R̃1

∂p̃f

∣∣∣
p̃f=p̃f0

, ã21 = ∂R̃2

∂p̃s

∣∣∣
p̃s=p̃s0

, ã22 = ∂R̃2

∂p̃f

∣∣∣
p̃f=p̃f0

are the first order

derivatives of the normalized reaction terms.

By applying a space Fourier transform to the above equations, the perturbation can be ex-

pressed as:

p̃∗s(x̃, t̃) = p̃?s exp(ikx̃ + sk t̃) (5)

p̃∗f (x̃, t̃) = p̃?f exp(ikx̃ + sk t̃) (6)

where k denotes the wavenumber in space while sk is the growth rate of the perturbation. By

substituting Eq. (5) and Eq. (6) into Eq. (3) and Eq. (4), the applied perturbation translates

into:

[
sk + k2D̃M − ã11 k2d̃H − ã12

k2d̃M − ã21 sk + k2D̃H − ã22

] [
p̃?s
p̃?f

]
=

[
0
0

]
(7)

which leads to the following condition:

det

[
sk + k2D̃M − ã11 k2d̃H − ã12

k2d̃M − ã21 sk + k2D̃H − ã22

]
= 0 (8)

From Eq. (8), we derive a characteristic equation of sk:

sk
2 − trksk + ∆k = 0 (9)

where trk = (ã11 + ã22) − k2(D̃M + D̃H) and ∆k = ã11ã22 − ã12ã21 + k4(D̃MD̃H − d̃M d̃H) −

k2(ã11D̃H + ã22D̃M − ã21d̃H − ã12d̃M). Thus, the solution of Eq. (8) is expressed as

sk =
trk ±

√
trk

2 − 4∆k

2
(10)

Based on material stability theory, the system becomes unstable in the Lyapunov sense if there

exists Re(sk) > 0 since the perturbation would increase with time in this case. Moreover, if skc is
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a real number upon the occurrence of an instability (i.e. skc ≥ 0 for the critical wavenumber kc),

the system undergoes a saddle-node bifurcation or the so-called Turing bifurcation, along with

the previous stable nodes in the phase space changing to the unstable saddle. However, if skc is a

pure complex number upon the occurrence of instability, the system undergoes a Hopf bifurcation

as the previous stable focus in the phase space changes to an unstable one. Based on the above

derivation, we present in the main manuscript a detailed discussion of these typical types of

instabilities as well as a newly discovered quasisoliton wave type in relation to reaction-diffusion

waves in the context of poromechanics.
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