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Fig. 4 : Zoom in of the total water content of a clay-rich sample 
saturated with seawater (modified after Conin et al., 2011 and Salles et al., 2008)

Geological context : the Northern Hikurangi Margin, New Zealand

↑ Fig. 2 : Seismic profile across North Hikurangi margin showing the location of Sites U1520 (~95 km from 
shore) and U1518 (~62 km from shore) drilled during IODP Expeditions 372-375 (Saffer et al., 2019).
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Method : Correcting total porosity from clay-bound water to draw compaction curves

↑ Fig. 3 : Zoom in of the frontal accretionary wedge where Site
U1518 is located (Fagereng et al., 2019).

Fig. 1 : Tectonic map of New Zealand (Barnes et al., 2019.). The red dot shows the location of Fig 2. ↑
↑
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Hikurangi (this study) :

↑ Fig. 5 : Bound water 
ratio versus CEC for
Expeditions 372/375 
samples allowing to 
determine the n = 15 
water molecules per 
CEC  trend  used  in 
this  study.  The  data
are  also  compared  to 
data from the litterature. 
The samples deviating 
from the n=15 H20/CEC
trend are samples from 
Site U1520 Units V and
VI  that are particularly 
rich   in  smectite,  but 
also  zeolite  and  opal. 

where :           is total porosity routinely measured onboard
                       is bound water content
                       is the number of molecule per CEC (n=15, Fig. 5)
                       is the water molar mass (0.018 kg/mol)
                       is the water density (1024 kg/m3)
                       is the Cation Exchange Capacity (mol/kg)
                       is the grain density (kg/m3)
                          

U1520
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In 2017-2018, IODP Expeditions 372 and 375 drilled several sites in the Northern Hikurangi margin, New Zealand, where tsunami 
earthquakes  occurred  in 1947 and shallow Slow Slip  Events (SSEs)  recur every  1 or 2  years,  providing  samples  and in situ 
measurements  to  characterize  the lithological,  physical,  thermal, chemical, hydrogeological  and  mechanical  properties  of  the
sediments in  the basin entering  the subduction zone and in the upper part of  the  accretionary  prism.  This extraordinary dataset 
allows  to investigate  the processes  triggering  spatial  and  temporal  transitions  between these different fault slip styles, 
including  excess pore pressure through its  control on  effective  normal stress. Excess pore pressure  typically results  from  the 
ineffectual dewatering of low-permeability undercompacted sediments that tends to prevent consolidation.  

We use porosity data to characterize sediment compaction state  and any implications for stress and pore pressure at 2 sites : 
 - Site  U1520,  drilled  through  the top  of  the  subducting  Hikurangi  Plateau and  the overlying  sedimentary cover composed 
by siliciclastic trench sediments above pelagic carbonate formations (Fig. 6);
 - Site  U1518, drilled through siliciclastic sediments equivalent  to siliclastic units at Site U1520 in the frontal wedge to penetrate 
the Papaku thrust fault, a splay-fault expected to host SSEs (Fig. 8).

↑ Fig. 6 : Summary of lithological (after Barnes et al., 2019) and porosity data at reference Site U1520.
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↑ Fig. 8 : Summary of lithological (after Saffer et al., 2019), structural (after Fagereng et al., 2019) and porosity data at reference Site U1518. 
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↑ Fig. 7 : Relations between porosity, clay mineralogy and CEC at Site U1520.
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Site U1518
Site U1520 (see Fig. 6 for key to lithology) :

Siliclastic Units I, II and III:
- Low and constant CEC       homogeneous clay mineralogy: kaolinite, illite 
- Normal consolidation:      =45.3 exp(-0.041*σ’) usable as reference trend at Site U1518

Pelagic carbonate Unit IV:
- Low to intermediate CEC      changes in clay mineralogy: kaolinite, illite, smectite  
- Evolution of interstitial porosity with depth controlled by variations in bulk and clay mineralogy

↑
↑

Hikurangi plateau volcaniclastics (Unit V) and mixed facies (Unit VI):
- Intermediate to very high CEC       elevated content in hydrous minerals (clays, zeolites, opal)
- Strong  variations  of porosity  mainly due  to local changes  in both  bulk and clay mineralogy 
(occurence of  magnesian calcite and zeolite cements, variations in  the distribution of hydrous
minerals like zeolite, opal, smectite) 

↑
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Fig. 9 : Comparison of  interstitial  porosity  data  at Site U1518 and 
reference  Site   U1520.  Interstitial  porosity  data  used   here  is  onboard 
total porosity data corrected from the average bound water content per unit.
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Fig. 10 : Cartoon explaining theoretical shift 
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How to explain U1518 
interstitial porosity profile ?

Fig. 11 : Example of model resulting in an interstitial porosity profile similar to that of U1518.↑
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