
Harnessing AOS Observations for Advanced Understanding of Cloud Radiative Fluxes

Ste�en Mauceri1, Howard Barker2, David Henderson3, K. Sebastian Schmidt4,5, Hong Chen5, Najda Villefranque6, Anthony Davis1, Graeme Stephens1
1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
2 Environment and Climate Change Canada, Victoria, ON, Canada
3 Space Science and Engineering Center, University of Wisconsin-Madison, Madison, USA
4 Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO, USA
5 Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
6 Centre National de Recherches Météorologiques, Météo France / CNRS, Toulouse, France

Introduction:
Understanding the complexities of cloud-sky radiative �uxes is crucial for 
improving numerical predictions of climate change. NASA's upcoming At-
mosphere Observing System (AOS) mission promises unprecedented ob-
servations that will present an opportunity to enhance our understanding 
of the role of clouds in modulating both Earth’s radiation budget and cli-
mate sensitivity.

AOS will utilize a series of active (Radar, Lidar) and passive (Imaging 
multi-angle polarimeter) instruments. The active instruments will provide 
vertically resolved cloud and aerosol information over a narrow 
ground-track (shown in red in the Figure below), while the passive instru-
ments will cover a much wider swath. The high spatial resolution of AOS 
(~1km) will allow us to study clouds at the process level. While this will give 
us the opportunity to gain new insights, it also provides an unprecedented 
challenge to deliver satellite products at such a high resolution at which 
horizontal photon transport cannot be neglected, leading to biases in tra-
ditional cloud retrieval algorithms. 

To estimate radiative �uxes over the whole swath, we propose to extrapo-
late the vertical information from the active instruments to the across-track 
passive observations using a scene construction algorithm. This algorithm 
is evaluated using data from Large-Eddy Simulations and synthetic imag-
ery computed by radiative transfer models (see Figure below).

Simulated radiances from a Large-Eddy Simulation (LES) at 670 nm, 1570 nm, 8.5 µm, and 16.6 µm. The left part 
of the scene is shown in the native resolution of the simulation. The right part of the scene has been coarsened 
to the AOS resolution of 1 and 2 km. The red line shows the ground-track where AOS will provide vertically re-
solved measurements.

Objective:
Construct 3D scenes from passive and active AOS sensors. Use vertical cloud pro�le 
information from radar + lidar available for a narrow ground-track and “extrapolate” 
information to across track pixels using the passive wide swath radiance measure-
ments.  

Generating the AOS observations:
Simulated AOS observations with 20 LES scenes that were generated in preparation 
for the INCUS and EarthCare mission and a RICO case study. Scenes varie in size from 
80 km x 80 km to 50 km x 400 km. 
Radiances were calculated using a 3D Radiative Transfer model (MCARATS/E3RT) for 
550 nm, 670 nm, 865 nm, 940 nm, 1380 nm, 1570 nm and 1D modl (libRadtran) for 
8.5 µm, 11.3 µm, 16.6 µm, 21.5 µm. The surface albedo was varied between 0.1 and 
0.4, solar zenith angle between 10° and 60°, and solar azimuth angle between 0° and 
360°.

Scene construction using Machine Learning: 
We evaluate various interpretable machine learning based approaches: 
• Nearest neighbor interpolation based on EarthCARE’s scene construction algo-

rithm [1] (see Figure below).  Building on this approach we experiment with various 
methodsto make it more robust (K-Nearest Neighbors interpolation, Dimensionali-
ty Reduction with PCA) and more �exible (Non-Linear Nearest Neighbor interpola-
tion, feature engineering with spatial patterns, consider physical proximity). 

• More advanced but still interpretable regression based algorithms that allow to 
quantify uncertainties: Random Forest Quantile Regression and Gaussian Process 
Regression.

All models are applied in a local sense (train over a �xed window size, e.g. ±30 km in 
along track dimension and then predict across track pixels in center of window).

Scene Construction algorithm employed by EarthCare based on Nearest Neigbor interpolation. Column informa-
tion is ‘copied’ to across-track pixels based on similarity in radiance space [1].

[1]: Qu, Z., Barker, H. W., Cole, J. N. S., & Shephard, M. W. (2023). Across-track extension of retrieved cloud and 
aerosol properties for the EarthCARE mission: the ACMB-3D product. Atmos. Meas. Tech., 16(9), 2319-2331. 
doi:10.5194/amt-16-2319-2023

Results:
For the local modelling approach we �nd the Random Forest to work best, closely 
followed by K-Nearest Neighbors, and Nearest Neighbor interpoloation. The follow-
ing table shows the regression coe�cients (R2) for various vertically resolved cloud 
microphysical properties 
on the test set. The 
�gure below shows the 
true, reconstructed, and 
error for integrated col-
umns (left) and layers 
(right) for Cloud Droplet Number Concentration (NC) (top) and Ice Cystal Number 
Concentration (NI) (bottom).

Future Work:
• Test if combining a global model (train and predict on all available LES scenes with-

out a window) with the local model leads to better results. Combination could be 
based on estimated uncertainties of each model. That might help to better repre-
sent extreme values in reconstruction.

• Explore the use of features that use spatial information.
• Add more realism to AOS simulations: surface BRDF, varying surface types, aerosols
• Gain physical insight with explainable AI 

methods. Understand which features con-
tribute to the prediction of physical prop-
erties. How does this change for di�erent 
cloud structures.

• Gain better insight when scene construc-
tion fails, what are the impacts, what are 
possible ways to �ag these instances.

• Translate scene construction errors into Ra-
diance, Fluxes, and Heating Rate errors.
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