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Abstract: The Orbiting Carbon Observatories-2 and 3 make space-based measurements in the
oxygen A-band and the weak and strong carbon dioxide (CO2) bands. A Bayesian optimal
estimation approach is employed to retrieve the column averaged CO2 dry air mole fraction
from these measurements. This retrieval requires a large number of polarized, multiple-scat-
tering radiative transfer (RT) calculations for each iteration. These RT calculations take up the
majority of the processing time for each retrieval, and slow down the algorithm to the
point that reprocessing data from the mission over multiple years becomes very expen-

sive. To accelerate the RT calculations and thereby ease this bottleneck, we have devel-

oped a novel approach that enables reproduction of the spectra for the three

0CO-2/3 instrument bands from radiances calculated at a small subset of mono-

chromatic wavelengths. This allows reduction of the number of monochromatic

RT calculations by a factor of 10 - 20 and can be achieved with radiance errors

of less than 0.1% with respect to the existing algorithm. The technique is

applicable to similar retrieval algorithms for other greenhouse gas

sensors with large data volumes, such as GeoCarb, GOSAT-3, and

CO2M.
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Figure 2: Informativity of each wavelength as determined by an autoencoder for the O2A-band.
The 100 most important wavelengths are highlighted with black diamonds. The most informative
wavelengths are shown in yellow, the least informative wavelengths in black.

Figure 3: Cumulative explained variance of the first 15 principal
components for the three 0CO-2/3 instrument bands. 02A-band
is shown in blue, WCO2-band in orange, and SCO2-band in green.



