Figure S2: Compositional buoyancy as defined in section 6.2,
equation 7. Boundaries as in Figure S1.
References:
Abers, G.A., Hacker, B.R., 2016. A MATLAB toolbox and Excel workbook for
calculating the densities, seismic wave speeds, and major element
composition of minerals and rocks at pressure and temperature.
Geochemistry, Geophys. Geosystems. https://doi.org/10.1002/2015GC006171
Aizawa, Y., Barnhoorn, A., Faul, U.H., Fitz Gerald, J.D., Jackson, I.,
Kovács, I., 2008. Seismic properties of Anita Bay dunite: An exploratory
study of the influence of water. J. Petrol. 49, 841–855.
https://doi.org/10.1093/petrology/egn007
Baker, M.B., Grove, T.L., Price, R., 1994. Primitive basalts and
andesites from the Mt. Shasta region, N. California: products of varying
melt fraction and water content. Contrib. to Mineral. Petrol. 118,
111–129. https://doi.org/10.1007/BF01052863
Behn, M.D., Hirth, G., Elsenbeck, J.R., 2009. Implications of grain size
evolution on the seismic structure of the oceanic upper mantle. Earth
Planet. Sci. Lett. 282, 178–189.
https://doi.org/10.1016/j.epsl.2009.03.014
Bucholz, C.E., Gaetani, G.A., Behn, M.D., Shimizu, N., 2013.
Post-entrapment modification of volatiles and oxygen fugacity in
olivine-hosted melt inclusions. Earth Planet. Sci. Lett. 374, 145–155.
https://doi.org/10.1016/j.epsl.2013.05.033
Cline, C.J., Faul, U.H., David, E.C., Berry, A.J., Jackson, I., 2018.
Redox-influenced seismic properties of uppermantle olivine. Nature 555,
355–358. https://doi.org/10.1038/nature25764
Dawson, J.B., Smith, J. V., 1982. Upper-mantle amphiboles: a review.
Mineral. Mag. 45, 35–46. https://doi.org/10.1180/minmag.1982.045.337.04
Faul, U., Jackson, I., 2015. Transient creep and strain energy
dissipation: An experimental perspective. Annu. Rev. Earth Planet. Sci.
43, 541–569. https://doi.org/10.1146/annurev-earth-060313-054732
Faul, U., Jackson, I., 2005. The seismological signature of temperature
and grain size variations in the upper mantle. Earth Planet. Sci. Lett.
234, 119–134. https://doi.org/10.1016/j.epsl.2005.02.008
Feineman, M.D., DePaolo, D.J., 2003. Steady-state
226Ra/230Th disequilibrium in mantle minerals:
Implications for melt transport rates in island arcs. Earth Planet. Sci.
Lett. 215, 339–355. https://doi.org/10.1016/S0012-821X(03)00454-0
Gaetani, G.A., O’Leary, J.A., Shimizu, N., Bucholz, C.E., Newville, M.,
2012. Rapid reequilibration of H 2O and oxygen fugacity in
olivine-hosted melt inclusions. Geology 40, 915–918.
https://doi.org/10.1130/G32992.1
Golos, E.M., Fang, H., van der Hilst, R.D., 2020. Variations in Seismic
Wave Speed and VP/VS Ratio in the North American Lithosphere. J.
Geophys. Res. Solid Earth 125. https://doi.org/10.1029/2020JB020574
Golos, E.M., Fischer, K.M., 2022. New Insights Into Lithospheric
Structure and Melting Beneath the Colorado Plateau. Geochemistry,
Geophys. Geosystems 23. https://doi.org/10.1029/2021gc010252
Grove, T., Parman, S., Bowring, S., Price, R., Baker, M., 2002. The role
of an H2O-rich fluid component in the generation of primitive basaltic
andesites and andesites from the Mt. Shasta region, N California.
Contrib. to Mineral. Petrol. 142, 375–396.
https://doi.org/10.1007/s004100100299
Hammond, W.C., Humphreys, E.D., 2000. Upper mantle seismic wave
attenuation: Effects of realistic partial melt distribution. J. Geophys.
Res. Solid Earth 105, 10987–10999. https://doi.org/10.1029/2000jb900042
Harry, D.L., Leeman, P., 1995. Partial melting of melt metasomatized
subcontinental mantle and the magma source potential of the lower
lithosphere. J. Geophys. Res. 100, 10255–10269.
Hirschmann, M.M., 2000. Mantle solidus: Experimental constraints and the
effects of peridotite composition. Geochemistry, Geophys. Geosystems 1.
https://doi.org/10.1029/2000GC000070
Jackson, I., Faul, U.H., 2010. Grainsize-sensitive viscoelastic
relaxation in olivine: Towards a robust laboratory-based model for
seismological application. Phys. Earth Planet. Inter. 183, 151–163.
https://doi.org/10.1016/j.pepi.2010.09.005
Karato, S.I., Park, J., 2018. On the origin of the upper mantle seismic
discontinuities, Lithospheric Discontinuities.
https://doi.org/10.1002/9781119249740.ch1
Kelemen, P.B., Dick, H.J.B., 1995. Focused melt flow and localized
deformation in the upper mantle: juxtaposition of replacive dunite and
ductile shear zones in the Josephine peridotite, SW Oregon. J. Geophys.
Res. 100, 423–438. https://doi.org/10.1029/94JB02063
Kelley, K.A., Cottrell, E., 2012. The influence of magmatic
differentiation on the oxidation state of Fe in a basaltic arc magma.
Earth Planet. Sci. Lett. 329–330, 109–121.
https://doi.org/10.1016/j.epsl.2012.02.010
Leeman, W.P., Lewis, J.F., Evarts, R.C., Conrey, R.M., Streck, M.J.,
2005. Petrologic constraints on the thermal structure of the Cascades
arc. J. Volcanol. Geotherm. Res. 140, 67–105.
https://doi.org/10.1016/j.jvolgeores.2004.07.016
Ma, Z., Dalton, C.A., Russell, J.B., Gaherty, J.B., Hirth, G., Forsyth,
D.W., 2020. Shear attenuation and anelastic mechanisms in the central
Pacific upper mantle. Earth Planet. Sci. Lett. 536, 116148.
https://doi.org/10.1016/j.epsl.2020.116148
Mitchell, A.L., Grove, T.L., 2015. Melting the hydrous, subarc mantle:
the origin of primitive andesites. Contrib. to Mineral. Petrol. 170,
1–23. https://doi.org/10.1007/s00410-015-1161-4
Pilet, S., Baker, M.B., Müntener, O., Stolper, E.M., 2011. Monte Carlo
simulations of metasomatic enrichment in the lithosphere and
implications for the source of alkaline basalts. J. Petrol. 52,
1415–1442. https://doi.org/10.1093/petrology/egr007
Plank, T., Forsyth, D.W., 2016. Thermal structure and melting conditions
in the mantle beneath the Basin and Range province from seismology and
petrology. Geochemistry Geophys. Geosystems 17, 1312–1338.
https://doi.org/10.1002/2015GC006205.Received
Ruscitto, D.M., Wallace, P.J., Johnson, E.R., Kent, A.J.R., Bindeman,
I.N., 2010. Volatile contents of mafic magmas from cinder cones in the
Central Oregon High Cascades: Implications for magma formation and
mantle conditions in a hot arc. Earth Planet. Sci. Lett. 298, 153–161.
https://doi.org/10.1016/j.epsl.2010.07.037
Till, C.B., 2017. A review and update of mantle thermobarometry for
primitive arc magmas. Am. Mineral. 102, 931–947.
https://doi.org/10.2138/am-2017-5783
Till, C.B., Grove, T.L., Carlson, R.W., Donnelly-Nolan, J.M., Fouch,
M.J., Wagner, L.S., Hart, W.K., 2013. Depths and temperatures of
<10.5 Ma mantle melting and the lithosphere-asthenosphere
boundary below southern Oregon and northern California. Geochemistry,
Geophys. Geosystems 14, 864–879. https://doi.org/10.1002/ggge.20070
Venzke, E. (ed), 2013. Global Volcanism Program, 2013. Volcanoes of the
World, v. 4.10.0.
https://doi.org/https://doi.org/10.5479/si.GVP.VOTW4-2013
Wooley, A., 1987. Alkaline rocks and carbonatites of the world, part 1:
North and South America. University of Texas Press.
Zhu, W., Gaetani, G.A., Fusseis, F., Montesi, L.G.J., De Carlo, F.,
2011. Microtomography of Partially Molten Rocks: Three-Dimensional Melt
Distribution in Mantle Peridotite. Science (80-. ). 332, 88–91.
https://doi.org/10.1126/science.1202221