References:
Anderson, K. A., & Milton, D. W. (1964), Balloon observations of X-rays
in the auroral zone: 3. High time resolution studies, Journal of
Geophysical Research , 69 (21), 4457–4479,
https://doi.org/10.1029/JZ069i021p04457.
Anderson, B. R., S. Shekhar, R. M. Millan, A. B. Crew, H. E. Spence, D.
M. Klumpar, J. B. Blake, T. P. O’Brien, and D. L. Turner (2017), Spatial
scale and duration of one microburst region on 13 August 2015 J.
Geophys. Res. Space Physics , 122, doi:10.1002/2016JA023752.
Blake, J. B., Looper, M. D., Baker, D. N., Nakamura, R., Klecker, B., &
Hovestadt, D. (1996). New high temporal and spatial resolution
measurements by SAMPEX of the precipitation of relativistic electrons.
Advances in Space Research, 18(8), 171–186. https://doi.org/
10.1016/0273‐1177(95)00969‐8.
Blake, J., Carranza, P., Claudepierre, S., Clemmons, J., Crain, W.,
Dotan, Y., Fennell, J., Fuentes, F., Galvan, R., George, J., et al.
(2013), The magnetic electron ion spectrometer (MagEIS) instruments
aboard the radiation belt storm probes (RBSP) spacecraft, Space
Science Reviews , 179(1-4):383–421.
Blum, L., Li, X., and Denton, M. (2015), Rapid MeV electron
precipitation as observed by SAMPEX/HILT during high-speed stream-driven
storms, Journal of Geophysical Research: Space Physics ,
120(5):3783–3794. 2014JA020633.
Blum, L. W, and Breneman, A. W. (2020), Chapter 3 – Observations of
radiation belt losses due to cyclotron wave-particle interactions,The Dynamic Loss of Earth’s Radiation Belts , Elsevier,
https://doi.org/10.1016/B978-0-12-813371-2.00003-2
Breneman, A. W., et al. (2017), Observations directly linking
relativistic electron microbursts to whistler mode chorus: Van Allen
Probes and FIREBIRD II, Geophys. Res. Lett. , 44,
https://doi.org/10.1002/2017GL075001.
Capannolo, L., Li, W., Spence, H., Johnson, A. T., Shumko, M., Sample,
J., & Klumpar, D. (2021), Energetic electron precipitation observed by
FIREBIRD-II potentially driven by EMIC waves: Location, extent, and
energy range from a multievent analysis, Geophysical Research
Letters , 48, e2020GL091564, https://doi.org/10.1029/2020GL091564.
Chen, L., Breneman, A. W., Xia, Z., & Zhang, X.-J. (2020). Modeling of
bouncing electron microbursts induced by ducted chorus waves.
Geophysical Research Letters, 47, e2020GL089400. https://doi.org/10.
1029/2020GL089400.
Chen L, Zhang X-J Artemyev A, Zheng L, Xia Z, Breneman AW and Horne RB
(2021) Electron Microbursts Induced by Nonducted Chorus Waves. Front.
Astron. Space Sci. 8:745927. doi: 10.3389/fspas.2021.745927
Colpitts, C., Miyoshi, Y., Kasahara, Y., Delzanno, G. L., Wygant, J. R.,
Cattell, C. A., Breneman, A., Kletzing, C., Cunningham, G., Hikishima,
M., Matsuda, S., Katoh, Y., Ripoll, J. F., Shinohara, I., & Matsuoka,
A. (2020), First Direct Observations of Propagation of Discrete Chorus
Elements From the Equatorial Source to Higher Latitudes, Using the Van
Allen Probes and Arase Satellites, Journal of Geophysical
Research: Space Physics , 125 (10),
https://doi.org/10.1029/2020JA028315.
Crew, A. B., et al. (2016), First multipoint in situ observations of
electron microbursts: Initial results from the NSF FIREBIRD II mission,J. Geophys. Res. Space Physics , 121, 5272–5283,
doi:10.1002/2016JA022485.
Cully, C. M., Chaddock, D., Daniel, C., Davis, E., Galts, D., McGuffin,
N., Quinn, C., Sheldon, 432 A. & Wilson, C., (2014), Early Results on
Energetic Particle Precipitation Observed by 433 the ABOVE Instrument
Array, Abstract SA13B-3997 presented at 2014 Fall Meeting, 434 AGU, San
Francisco, Calif., 15-19 Dec.
Douma, E., Rodger, C., Blum, L., O’Brien, T., Clilverd, M., and Blake,
J. (2019), Characteristics of relativistic microburst intensity from
sampex observations, Journal of Geophysical Research: Space
Physics , 124, 5627– 5640. https://doi.org/10.1029/2019JA026757.
Evans, D. S., and Greer, M. S. (2004), Polar orbiting environmental
satellite space environment monitor-2: Instrument descriptions and
archive data documentation, NOAA Tech. Mem. , version 1.4, Space
Weather Prediction Center.
Imhof, W. L., & Nightingale, R. W. (1992), Relativistic electron
enhancements observed over a range of L shells trapped at high altitudes
and precipitating at low altitudes into the atmosphere, Journal of
Geophysical Research , 97, 6397–6403, https://doi.org/10.1029/92JA0022.
Johnson, A.T.
et al. (2020), The FIREBIRD-II CubeSat mission: Focused investigations
of relativistic electron burst intensity, range, and dynamics, Review of
Scientific Instruments 91, 034503 (2020)
https://doi.org/10.1063/1.5137905
Kasaba, Y., Ishisaka, K., Kasahara, Y., Imachi, T., Yagitani, S.,
Kojima, H., et al. (2017), Wire Probe Antenna (WPT) and Electric Field
Detector (EFD) of Plasma Wave Experiment (PWE) aboard the Arase
satellite: specifications and initial evaluation results, Earth,
Planets and Space , 69, 174, https://doi.org/10.1186/s40623-017-0760-x.
Kasahara, Y., Kasaba, Y., Kojima, H., Yagitani, S., Ishisaka, K.,
Kumamoto, A., et al. (2018), The plasma wave experiment (PWE) on board
the Arase (ERG) satellite, Earth Planets and Space , 70(1), 86,
https://doi.org/10.1186/s40623-018-0842-4.
Kawamura, M. T. Sakanoi, M. Fukizawa, Y. Miyoshi, K. Hosokawa, F.
Tsuchiya, Y. Katoh, Y. Ogawa, K. Asamura, S. Saito, H. Spence, A.
Johnson, S. Oyama and U. Brandstrom (2021), Simultaneous pulsating
aurora and microburst observatiosns with ground-based fast auroral
imagers and Cubesat Firebird-II, Geophys. Res. Lett ., 48,
e2021GL094494, doi:10.1029/2021GL094494, 2021.
Kazama, Y., Miyoshi, Y., Kojima, H., Kasahara, Y., Kasahara, S., Usui,
H., et al. (2021), Arase observation of simultaneous electron
scatterings by upper-band and lower-band chorus emissions,Geophysical Research Letters , 48, e2021GL093708. https://doi.
org/10.1029/2021GL093708.
Kersten, K., Cattell, C. A., Breneman, A., Goetz, K., Kellogg, P. J.,
Wygant, J. R., et al. (2011). Observation of relativistic electron
microbursts in conjunction with intense radiation belt whistler‐mode
waves. Geophysical Research Letters, 38, L08107.
https://doi.org/10.1029/ 2011GL046810.
Kletzing, C., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B.,
Averkamp, T., et al. (2013). The Electric and Magnetic Field Instrument
Suite and Integrated Science (EMFISIS) on RBSP. Space Science Reviews,
179(1–4), 127–181. https://doi.org/10.1007/s11214‐013‐9993‐6.
Klumpar, D., et al. (2015), Flight system technologies enabling the
twin-CubeSat FIREBIRD-II scientific mission, Proceedings of the 29th
Annual AIAA/USU Conference on Small Satellites.
Lorentzen, K. R., Blake, J. B., Inan, U. S., & Bortnik, J. (2001a).
Observations of relativistic electron microbursts in association with
VLF chorus. Journal of Geophysical Research, 106(A4), 6017–6027.
https://doi.org/10.1029/2000JA003018
Lorentzen, K. R., Looper, M. D., & Blake, J. B. (2001b). Relativistic
electron microbursts during the GEM storms. Geophysical Research
Letters, 28(13), 2573–2576. https://doi.org/10.1029/2001GL012926.
Martinez-Calderon C., Katoh, Y., Manninen, J., Kasahara, Y., Matsuda,
S., Kumamoto, A., et al. (2020), Conjugate observations of dayside and
nightside VLF chorus and QP emissions between Arase (ERG) and
Kannuslehto, Finland, Journal of Geophysical Research: Physics ,
125, e2019JA026663,
https://doi.org/10.
1029/2019JA026663.
Matsuda, S., Kasahara, Y., Kojima, H., Kasaba, Y., Yagitani, S., Ozaki,
M., et al. (2018), Onboard software of plasma wave experiment aboard
Arase: Instrument management and signal processing of waveform
capture/onboard frequency analyzer, Earth Planets and Space ,
70(1), 75, https://doi.org/10.1186/s40623-018-0838-0.
Mauk, B.H., Fox, N.J., Kanekal, S.G. et al. (2013), Science
Objectives and Rationale for the Radiation Belt Storm Probes
Mission, Space Sci Rev 179, 3–27,
https://doi.org/10.1007/s11214-012-9908-y.
Millan, R. M., Lin R. P., Smith D. M., Lorentzen K. R., and McCarthy M.
P. (2002), X‐ray observations of MeV electron precipitation with a
balloon‐borne germanium spectrometer, Geophys Res. Lett. , 29(24),
47–1, doi:10.1029/2002GL015922.
Millan, R. M., and Thorne, R. M. (2007), Review of radiation belt
relativistic electron losses, Journal of Atmospheric and
Solar-Terrestrial Physics , 69, 362-377,
https://doi.org/10.1016/j.jastp.2006.06.019.
Mitani, T., Takashima, T., Kasahara, S. et al. (2018),
High-energy electron experiments (HEP) aboard the ERG (Arase) satellite,Earth Planets Space 70, 77,
https://doi.org/10.1186/s40623-018-0853-1.
Miyoshi, Y., Shinohara, I., Takashima, T., Asamura, K., Higashio, N.,
Mitani, T., et al. (2018a), Geospace exploration project ERG,Earth, Planets and Space , 70(1),
https://doi.org/10.1186/s40623-018-0862-0.
Miyoshi, Y., T. Hori, M. Shoji, M. Teramoto, T-F. Chang, T. Segawa, N.
Umemura, S. Matsuda, S. Kurita, K. Keika, Y. Miyashita, K. Seki, Y.
Tanaka, N. Nishitani, S. Kasahara, S. Yokota, A. Matsuoka, Y. Kasahara,
K. Asamura, T. Takashima, and I. Shinohara (2018b), The ERG Science
Center, Earth, Planets, Space., 70:96, doi:10.1186/s40623-018-0867-8.
Miyoshi, Y., S. Saito, S. Kurita, K. Asamura, K. Hosokawa, T. Sakanoi,
T. Mitani, Y. Ogawa, S. Oyama, F. Tsuchiya, S. L. Jones, A. N. Jaynes,
and J. B. Blake (2020), Relativistic Electron Microbursts as High Energy
Tail of Pulsating Aurora Electrons, Geophys. Res. Lett ., 47
doi:10.1029/2020GL090360,2020.
Moldwin, M. B., Downward, L., Rassoul, H. K., Amin, R., and Anderson, R.
R. (2002), A new model of the location of the plasmapause: CRRES
results, J. Geophys. Res. , 107( A11), 1339,
doi:10.1029/2001JA009211.
Nakamura, R., Isowa, M., Kamide, Y., Baker, D. N., Blake, J. B., &
Looper, M. (2000). SAMPEX observations of precipitation bursts in the
outer radiation belt. Journal of Geophysical Research, 105(A7),
15,875–15,885. https://doi.org/10.1029/2000JA900018.
O’Brien, T. P., Lorentzen, K. R., Mann, I. R., Meredith, N. P., Blake,
J. B., Fennell, J. F., & Anderson, R. R.(2003), Energization of
relativistic electrons in the presence of ULF power and MeV microbursts:
Evidence for dual ULF and VLF acceleration, Journal of Geophysical
Research: Space Physics , 108(A8), 1329,
https://doi.org/10.1029/2002JA009784.
Ozaki, M., Shiokawa, K., Miyoshi, Y., Hosokawa, K., Oyama, S., Yagitani,
S., et al. (2018a), Microscopic observations of pulsating aurora
associated with chorus element structures: Coordinated Arase
satellite-PWING observations, Geophysical Research Letters , 45,
12,125– 12,134, https://doi.org/10.1029/2018GL079812.
Ozaki, M., Yagitani, S., Kasahara, Y., Kojima, H., Kasaba, Y., Kumamoto,
A., et al. (2018b), Magnetic search coil (MSC) of plasma wave experiment
(PWE) aboard the Arase (ERG) satellite, Earth, Planets and Space ,
70(1), https://doi.org/10.1186/s40623-018-0837-1.
Ozaki, M., Miyoshi, Y., Shiokawa, K. et al. (2019), Visualization of
rapid electron precipitation via chorus element wave–particle
interactions, Nat. Commun ., 10, 257,
https://doi.org/10.1038/s41467-018-07996-z.
Ozaki, M., Inoue, T., Tanaka, Y., Yagitani, S., Kasahara, Y., Shiokawa,
K., et al. (2021), Spatial evolution of wave-particle interaction region
deduced from flash-type auroras and chorus-ray tracing, Journal of
Geophysical Research: Space Physics , 126, e2021JA029254,
https://doi.org/10.1029/2021JA029254.
Pettit, J. M., Randall, C. E., Peck, E. D., & Harvey, V. L, (2021), A
new MEPED-based precipitating electron data set, Journal of
Geophysical Research: Space Physics , 126, e2021JA029667,
https://doi.org/10.1029/2021JA029667.
Rodger, C. J., M. A. Cliverd, J. C. Green, and M. M. Lam (2010), Use of
POES SEM-2 observations to examine radiation belt dynamics and energetic
electron precipitation into the atmosphere, J. Geophys. Res. ,
115, A04202, https://doi.org/10.1029/2008JA014023.
Santolík, O. and D. A. Gurnett (2003), Transverse dimensions of chorus
in the source region, Geophys. Res. Lett. , 30, 1031,
https://doi.org/10.1029/2002GL016178.
Shiokawa, K., Katoh, Y., Hamaguchi, Y., Yamamoto, Y., Adachi, T., Ozaki,
M., et al. (2017), Ground-based instruments of the PWING project to
investigate dynamics of the inner magnetosphere at subauroral latitudes
as a part of the ERG-ground coordinated observation network,Earth, Planets and Space , 69(1),
https://doi.org/10.1186/s40623-017-0745-9.
Shprits, Y. Y., Li, W., and Thorne, R. M. (2006), Controlling effect of
the pitch angle scattering rates near the edge of the loss cone on
electron lifetimes, J. Geophys. Res. , 111, A12206,
doi:10.1029/2006JA011758.
Shumko, M., et al. (2020), Electron microburst size distribution derived
with AeroCube-6, J. Geophys. Res. Space Phys. , 125(3),
doi:10.1029/2019JA027651.
Shumko, M., Gallardo-Lacourt, B., Halford, A. J., Liang, J., Blum, L.
W., Donovan, E., et al. (2021), A strong correlation between
relativistic electron microbursts and patchy aurora, Geophysical
Research Letters , 48, e2021GL094696,
https://doi.org/10.1029/2021GL094696.
Spence, H. E., et al. (2012), Focusing on size and energy dependence of
electron microbursts from the Van Allen radiation belts, Space Weather,
10, S11004, doi:10.1029/2012SW000869.
Thorne, R. M., O’Brien, T. P., Shprits, Y. Y., Summers, D., and Horne,
R. B. (2005), Timescale for MeV electron microburst loss during
geomagnetic storms, Journal of Geophysical Research , 110, A09202,
https://doi.org/10.1029/2004JA010882.
Thorne, R. M., Radiation belt dynamics: The importance of wave particle
interactions (2010), Geophys. Res. Lett. , 37, L22107,
doi:10.1029/2010GL044990.
Winckler, J. R., P. D. Bhavsar, and K. A. Anderson (1962), A study of
the precipitation of energetic electrons from the geomagnetic field
during magnetic storms, J. Geophys. Res ., 67, 3717.
Wygant, J. R., Bonnell, J. W., Goetz, K., Ergun, R. E., Mozer, F. S.,
Bale, S. D., et al. (2013). The Electric Field and Waves Instruments on
the Radiation Belt Storm Probes mission. Space Science Reviews,
179(1–4), 183–220. https://doi.org/10.1007/s11214‐013‐0013‐7.
Yando, K., Millan, R. M., Green, J. C., & D. S. Evans (2011), A Monte
Carlo simulation of the NOAA POES Medium Energy Proton and Electron
Detector instrument, Journal of Geophysical Research , 116 ,
A10231, https://doi.org/10.1029/2011JA016671.
Zhang, X.-J., Angelopoulos, V., Mourenas, D., Artemyev, A., Tsai, E., &
Wilkins, C. (2022), Characteristics of electron microburst precipitation
based on high-resolution ELFIN measurements, Journal of
Geophysical Research: Space Physics , 127, e2022JA030509,
https://doi.org/10.1029/2022JA030509.