References
Aich, V., R. Holzworth, S. J. Goodman, Y. Kuleshov, C. Price, and E. Williams, 2018: Lightning: A new essential climate variable, Eos, 99, https://doi.org/10.1029/2018EO104583.
Albrecht, R.I., S.J. Goodman, D.E. Buechler, R.J. Blakeslee, and H.J. Christian, 2016: Where Are the Lightning Hotspots on Earth?. Bull. Amer. Meteor. Soc., 97, 2051–2068, https://doi.org/10.1175/BAMS-D-14-00193.1
Bitzer, P. M. (2017), Global distribution and properties of continuing current in lightning, J. Geophys. Res. Atmos., 122, 1033– 1041, doi:10.1002/2016JD025532.
Bitzer, P.M., J.C. Burchfield, and H.J. Christian, 2016: A Bayesian Approach to Assess the Performance of Lightning Detection Systems. J. Atmos. Oceanic Technol., 33, 563–578, https://doi.org/10.1175/JTECH-D-15-0032.1
Bitzer, P.M. and H.J. Christian, 2015: Timing Uncertainty of the Lightning Imaging Sensor. J. Atmos. Oceanic Technol., 32, 453–460, https://doi.org/10.1175/JTECH-D-13-00177.1
Bitzer, P. M., Christian, H. J., Stewart, M., Burchfield, J., Podgorny, S., Corredor, D., Hall, J., Kuznetsov, E., and Franklin, V. (2013), Characterization and applications of VLF/LF source locations from lightning using the Huntsville Alabama Marx Meter Array, J. Geophys. Res. Atmos., 118, 3120– 3138, doi:10.1002/jgrd.50271.
Blakeslee, Richard J., 2019a. NRT Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data. Dataset available online from the NASA Global Hydrology Resource Center DAAC, Huntsville, Alabama, U.S.A. http://dx.doi.org/10.5067/LIS/ISSLIS/DATA106.
Blakeslee, Richard J., 2019b. NRT Lightning Imaging Sensor (LIS) on International Space Station (ISS) Backgrounds. Dataset available online from the NASA Global Hydrology Resource Center DAAC, Huntsville, Alabama, U.S.A. http://dx.doi.org/10.5067/LIS/ISSLIS/DATA206.
Blakeslee, Richard J., 2019c. Non-Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data. Dataset available online from the NASA Global Hydrology Resource Center DAAC, Huntsville, Alabama, U.S.A. http://dx.doi.org/10.5067/LIS/ISSLIS/DATA107.
Blakeslee, Richard J., 2019d. Non-Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) Backgrounds. Dataset available online from the NASA Global Hydrology Resource Center DAAC, Huntsville, Alabama, U.S.A. http://dx.doi.org/10.5067/LIS/ISSLIS/DATA207.
Blakeslee, R. J., Mach, D. M., Bateman, M. G., & Bailey, J. C. (2014). Seasonal variations in the lightning diurnal cycle and implications for the global electric circuit. Atmospheric research, 135, 228-243.
Boccippio, D. J., W. J. Koshak, R. J. Blakeslee, 2002: Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: predicted diurnal variability, J. Atmos. Oceanic Technol., 19, 1318-1332.
Bruning, E., Tillier, C. E., Edgington, S. F., Rudlosky, S. D., Zajic, J., Gravelle, C., et al. ( 2019). Meteorological imagery for the geostationary lightning mapper. Journal of Geophysical Research: Atmospheres, 2019; 124: 14285– 14309. https://doi.org/10.1029/2019JD030874
Buechler, D. E., Koshak, W. J., Christian, H. J., & Goodman, S. J. (2014). Assessing the performance of the Lightning Imaging Sensor (LIS) using deep convective clouds. Atmospheric research, 135, 397-403.
Cecil, D. J., Buechler, D. E., & Blakeslee, R. J. (2014). Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmospheric Research, 135, 404-414.
Chanrion, O., Neubert, T., Lundgaard Rasmussen, I. et al. The Modular Multispectral Imaging Array (MMIA) of the ASIM Payload on the International Space Station. Space Sci Rev 215, 28 (2019). https://doi.org/10.1007/s11214-019-0593-y
Christian, H. J., Blakeslee, R. J., and Goodman, S. J. (1989), The detection of lightning from geostationary orbit, J. Geophys. Res., 94( D11), 13329– 13337, doi:10.1029/JD094iD11p13329.
Christian, H. J., et al., Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., 108( D1), 4005, doi:10.1029/2002JD002347, 2003.
Christian, H. J., R. L. Frost, P. H. Gillaspy, S. J. Goodman, O. H. Vaughan, M. Brook, B. Vonnegut, and R. E. Orville (1983), Observations of optical lightning emissions from above thunderstorms using U‐2 aircraft, Bull. Am. Meteorol. Soc., 64, 120–123. doi: 0.1175/1520-0477(1983)064<0120:OOOLEF>2.0.CO;2.
Courrèges-Lacoste, G. B. M. Sallusti, G. Bulsa, G. Bagnasco, Ben Veihelmann, S. Riedl, D. J. Smith, R. Maurer, 2017: The Copernicus Sentinel 4 mission: a geostationary imaging UVN spectrometer for air quality monitoring, Proc. SPIE 10423, Sensors, Systems, and Next-Generation Satellites XXI, 1042307. doi: 10.1117/12.2282158
Darden, C.B., D.J. Nadler, B.C. Carcione, G.T. Stano, and D.E. Buechler, 2009: Utilizing total lightning information to diagnose convective trends. Bull. Amer. Meteor. Soc., 91, 167-175. doi: http://dx.doi.org/10.1175/2009BAMS2808.1
Earthdata, cited 2020. NASA Earthdata Search. [Available online at https://search.earthdata.nasa.gov/.]
Erdmann, F., Defer, E., Caumont, O., Blakeslee, R. J., Pédeboy, S., and Coquillat, S.: Concurrent satellite and ground-based lightning observations from the Optical Lightning Imaging Sensor (ISS-LIS), the low-frequency network Meteorage and the SAETTA Lightning Mapping Array (LMA) in the northwestern Mediterranean region, Atmos. Meas. Tech., 13, 853–875, doi: 10.5194/amt-13-853-2020, 2020.
Evans, C., S. Shrestha, E. Raphael, J. Luvall, R. Griffin, and P. Gatlin, 2018: Hindu-Kush Himalayan
Disasters. Integrating NASA Earth observations to monitor intense thunderstorms and assess lightning exposure and risk in the Hindu-Kush Himalayan region. NASA DEVELOP Technical Report., 19 pp.
Flittner, D., Thomason, L., Hill, C., Roell, M., Pitts, M., Damadeo, R., … & Stanley, R. (2018, April). Stratospheric Aerosol and Gas Experiment III installed on the International Space Station (SAGE III/ISS): Overview. In EGU General Assembly Conference Abstracts (Vol. 20, p. 5483).
Gatlin, P., L. Huescher, C. Liu, W. Petersen, D. J. Cecil, 2019: The evolution and extratropical transition of tropical cyclones from a GPM, ISS LIS and GLM perspective, AGU 2019 Fall Meeting, December 9-13, 2019, San Francisco, CA, American Geophysical Union, H13P-1976.
Global Hydrology Resource Center, cited 2020. ISS LIS Lightning Flash Location Quickview using Python 3.0 and GIS. [Available online at https://ghrc.nsstc.nasa.gov/home/data-recipes/iss-lis-lightning-flash-location-quickview-using-python-30-and-gis].
Goodman, S. J., R. J. Blakeslee, W. J. Koshak, D. Mach, J. Bailey, D. Buechler, L. Carey, C. Schultz,
M. Bateman, E. McCaul, G. Stano, The GOES-R Geostationary Lightning Mapper (GLM), Atmospheric Research, Volumes 125–126, 2013, Pages 34-49, ISSN 0169-8095, https://doi.org/10.1016/j.atmosres.2013.01.006.
Goodman, S. J., R. J. Blakeslee, B. P. Pettegrew, A. Terborg, S. N. Stevenson, M. J. Folmer, S. S. Lindstrom, G. T. Stano, S. G. Harrison, and K. S. Virts, 2020a: NWS Use of Near Real-Time Lightning Data from the Lightning Imaging Sensor (LIS) on the International Space Station (ISS), Poster 1478, Annual Meeting, Amer. Meteorol. Soc., Boston, MA.
S. J. Goodman, R. J. Blakeslee, B. P. Pettegrew, A. Terborg, M. J. Folmer, S. N. Stevenson, K. S. Virts, and J. W. Smith, 2020b: NWS Complementary Use of the Geostationary Lightning Mapper (GLM) and Lightning Imaging Sensor (LIS), JPSS/GOES-R Proving Ground/Risk Reduction Summit [Available online at
https://www.star.nesdis.noaa.gov/star/documents/meetings/2020JPSSGOES/Posters/B_2_JPSS-GOESR_PGRR_Summit_Poster_FINAL_sgoodman.pdf]
Hou, A.Y., Kakar, R.K., Neeck, S., Azarbarzin, A.A., Kummerow, C.D., Kojima, M., Oki, R., Nakamura, K. and Iguchi, T. (2014) The global precipitation measurement mission. Bulletin of the American Meteorological Society, 95, 701–722. doi:10.1175/BAMS‐D‐13‐00164.1.
Hui, W., F. Huang and R. Liu (2020) Characteristics of lightning signals over the Tibetan Plateau and the capability of FY-4A LMI lightning detection in the Plateau, International Journal of Remote Sensing, 41, 4605-4625, doi: 10.1080/01431161.2020.1723176.
Huntrieser, H., Schlager, H., Feigl, C., and Höller, H. ( 1998), Transport and production of NO X in electrified thunderstorms: Survey of previous studies and new observations at midlatitudes, J. Geophys. Res., 103( D21), 28247– 28264, doi:10.1029/98JD02353.
HyDRO, cited 2020. NASA Hydrology Data Search Tool. [Available online at https://ghrc.nsstc.nasa.gov/hydro.]
ISS LIS, cited 2020. ISS LIS Datasets. [Available online at https://ghrc.nsstc.nasa.gov/lightning/data/data_lis_iss.html.]
Jacobson, A. R., Light, T. E. L., Hamlin, T., and Nemzek, R.: Joint radio and optical observations of the most radio-powerful intracloud lightning discharges, Ann. Geophys., 31, 563–580, https://doi.org/10.5194/angeo-31-563-2013, 2013.
Jedlovec, G., 2013: Transitioning research satellite data to the operational weather community:
The SPoRT paradigm. IEEE Geoscience and Remote Sensing Magazine, 1, no. 1, 62–66, https://doi.org/10.1109/MGRS.2013.2244704.
Kim, J. and Coauthors, 2020: New era of air quality monitoring from space: Geostationary Environment Monitoring Spectrometer (GEMS). Bull. Amer. Meteor. Soc., E1-E22. doi: 10.1175/BAMS-D-18-0013.1.
P. Kokou et al., ”Algorithmic Chain for Lightning Detection and False Event Filtering Based on the MTG Lightning Imager,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 9, pp. 5115-5124, Sept. 2018, doi: 10.1109/TGRS.2018.2808965.
Koshak, W. (2017). Lightning-Related Indicators for National Climate Assessment (NCA) Studies. Fall Meeting 2017, American Geophysical Union, New Orleans, LA.
Koshak, W. J., K. L. Cummins, D. E. Buechler, B. Vant-Hull, R. J. Blakeslee, E. R. Williams, H. S. Peterson, 2015: Variability of CONUS Lightning in 2003-12 and Associated Impacts, J. Appl. Meteorol. Climatology, 54, No. 1, 15-41.
Koshak, W. J., B. Vant-Hull, E. W. McCaul, and H. S. Peterson, Variation of a lightning NOx indicator for national climate assessment, XV International Conference on Atmospheric Electricity, Norman, Oklahoma, June 15-20, 2014a.
Koshak, W. J., H. S. Peterson, A. P. Biazar, M. N. Khan, and L. Wang, 2014b: The NASA Lightning Nitrogen Oxides Model (LNOM): Application to air quality modeling, Atmos. Res., 135-136, 363-369, doi:10.1016/j.atmosres.2012.12.015.
Koshak, W. J., M. F. Stewart, H. J. Christian, J. W. Bergstrom, J. M. Hall, and R. J. Solakiewicz, 2000: Laboratory Calibration of the Optical Transient Detector and the Lightning Imaging Sensor, J. Atmos. Oceanic Technol., 17, 905-915.
Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) Sensor Package. J. Atmos. Oceanic Technol., 15, 809–817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2
Lavigne, T., Liu, C., & Liu, N. (2019). How does the trend in thunder days relate to the variation of lightning flash density? Journal of Geophysical Research: Atmospheres, 124, 4955-4974. https://doi.org/10.1029/2018JD029920
Lefeuvre, F., Blanc, E., Pinçon, J. et al. TARANIS—A Satellite Project Dedicated to the Physics of TLEs and TGFs. Space Sci Rev 137, 301–315 (2008). doi: 10.1007/s11214-008-9414-4.
Liu, C., Cecil, D. J., Zipser, E. J., Kronfeld, K., and Robertson, R. (2012), Relationships between lightning flash rates and radar reflectivity vertical structures in thunderstorms over the tropics and subtropics, J. Geophys. Res., 117, D06212, doi:10.1029/2011JD017123.
Liu, F., Zhu, B., Lu, G., Qin, Z., Lei, J., Peng, K.‐M., et al. (2018). Observations of blue discharges associated with negative narrow bipolar events in active deep convection. Geophysical Research Letters, 45, 2842– 2851. doi: 10.1002/2017GL076207.
Mach, D. M., Blakeslee, R. J., and Bateman, M. G. (2011), Global electric circuit implications of combined aircraft storm electric current measurements and satellite‐based diurnal lightning statistics, J. Geophys. Res., 116, D05201, doi:10.1029/2010JD014462.
Mach, D. M., R. J. Blakeslee, M. G. Bateman, and J. C. Bailey, Electric fields, conductivity, and estimated currents from aircraft overflights of electrified clouds, J. Geophys. Res., 114, D10204, DOI:10.1029/2008JD011495, 2009.
Mach, D. M., R. J. Blakeslee, M. G. Bateman, and J. C. Bailey, Comparisons of total currents based on storm location, polarity, and flash rates derived from high altitude aircraft overflights, J. Geophys. Res., 115, D03201, DOI:10.1029/2009JD012240, 2010.
Mach, D. M., Christian, H. J., Blakeslee, R. J., Boccipio, D. J., Goodman, S. J., and Boeck, W. L. (2007), Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor, J. Geophys. Res., 112, D09210, doi:10.1029/2006JD007787.
Marchand, M., Hilburn, K., & Miller, S. D. (2019). Geostationary lightning mapper and Earth networks lightning detection over the contiguous United States and dependence on flash characteristics. Journal of Geophysical Research: Atmospheres, 124, 11552– 11567. https://doi.org/10.1029/2019JD031039
Medici, G., K. L. Cummins, D. J. Cecil, W. J. Koshak, and S. D. Rudlosky, 2017: The intracloud lightning fraction in the contiguous United States. Mon. Wea. Rev., 145, 4481–4499, doi: 10.1175/MWR-D-16-0426.1.
Nag, A., and Cummins, K. L. (2017), Negative first stroke leader characteristics in cloud‐to‐ground lightning over land and ocean, Geophys. Res. Lett., 44, 1973– 1980, doi:10.1002/2016GL072270.
Neubert, T., Østgaard, N., Reglero, V. et al. The ASIM Mission on the International Space Station. Space Sci Rev 215, 26 (2019). doi: 10.1007/s11214-019-0592-z.
Noble, C. M. M., Beasley, W. H., Postawko, S. E., and Light, T. E. L. (2004), Coincident observations of lightning by the FORTE photodiode detector, the New Mexico Tech Lightning Mapping Array and the NLDN during STEPS, Geophys. Res. Lett., 31, doi: 10.1029/2003GL018989.
Østgaard, N., Gjesteland, T., Carlson, B. E., Collier, A. B., Cummer, S. A., Lu, G., and Christian, H. J. (2013), Simultaneous observations of optical lightning and terrestrial gamma ray flash from space, Geophys. Res. Lett., 40, 2423– 2426, doi:10.1002/grl.50466.
Peterson, M., & Rudlosky, S. (2019). The time evolution of optical lightning flashes. Journal of Geophysical Research: Atmospheres, 124, 333– 349. https://doi.org/10.1029/2018JD028741
Peterson, M., Rudlosky, S., & Deierling, W. (2017). The evolution and structure of extreme optical lightning flashes. Journal of Geophysical Research: Atmospheres, 122, 13,370– 13,386. https://doi.org/10.1002/2017JD026855
Petersen, W.A. and S.A. Rutledge, 2001: Regional Variability in Tropical Convection: Observations from TRMM. J. Climate, 14, 3566–3586, https://doi.org/10.1175/1520-0442(2001)014<3566:RVITCO>2.0.CO;2
Pickering, K. E., Bucsela, E., Allen, D., Ring, A., Holzworth, R., and Krotkov, N. (2016), Estimates of lightning NOx production based on OMI NO2 observations over the Gulf of Mexico, J. Geophys. Res. Atmos., 121, 8668– 8691, doi:10.1002/2015JD024179.
Rison, W., Krehbiel, P., Stock, M. et al. Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms. Nat Commun 7, 10721 (2016). doi: 10.1038/ncomms10721.
Rudlosky, S. D., Goodman, S. J., Virts, K. S., & Bruning, E. C. (2019). Initial geostationary lightning mapper observations. Geophysical Research Letters, 46, 1097–1104. https://doi.org/10.1029/2018GL081052
Rudlosky, S.D., M.J. Peterson, and D.T. Kahn, 2017: GLD360 Performance Relative to TRMM LIS. J. Atmos. Oceanic Technol., 34, 1307–1322, https://doi.org/10.1175/JTECH-D-16-0243.1
Saunders, C., 2008: Charge separation mechanisms in clouds, Space Sci. Rev., 137, 335-353, doi 10.1007/s11214-008-9345-0.
Skofronick‐Jackson, G, Kirschbaum, D, Petersen, W, et al. The Global Precipitation Measurement (GPM) mission’s scientific achievements and societal contributions: reviewing four years of advanced rain and snow observations. Q J R Meteorol Soc 2018; 144, 27–48. doi: 10.1002/qj.3313
Suszcynsky, D. M., Kirkland, M. W., Jacobson, A. R., Franz, R. C., Knox, S. O., Guillen, J. L. L., and Green, J. L. (2000), FORTE observations of simultaneous VHF and optical emissions from lightning: Basic phenomenology, J. Geophys. Res., 105, 2191–2201, doi:10.1029/1999JD900993.
Thomas, R. J., Krehbiel, P. R., Rison, W., Hamlin, T., Boccippio, D. J., Goodman, S. J., and Christian, H. J.: Comparison of ground-based 3-dimensional lightning mapping observations with satellite-based LIS observations in Oklahoma, Geophys. Res. Lett., 27, 1703–1706, doi: 10.1029/1999GL010845, 2000.
Ushio, T., S. Heckman, K. Driscoll, D. Boccippio, H. Christian, and Z. I. Kawasaki, 2002: Cross-sensor comparison of the Lightning Imaging Sensor (LIS), International Journal of Remote Sensing, 23, 2703-2712, doi: 10.1080/01431160110107789.
Veraverbeke, S., Rogers, B., Goulden, M. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nature Clim Change 7, 529–534 (2017). https://doi.org/10.1038/nclimate3329
Virts, K.S. and S.J. Goodman, 2020: Prolific Lightning and Thunderstorm Initiation over the Lake Victoria Basin in East Africa. Mon. Wea. Rev., https://doi.org/10.1175/MWR-D-19-0260.1
Virts, K.S., J.M. Wallace, M.L. Hutchins, and R.H. Holzworth, 2013: Highlights of a New Ground-Based, Hourly Global Lightning Climatology. Bull. Amer. Meteor. Soc., 94, 1381–1391, https://doi.org/10.1175/BAMS-D-12-00082.1
Williams, E.R., 1994: Global Circuit Response to Seasonal Variations in Global Surface Air Temperature. Mon. Wea. Rev., 122, 1917–1929, https://doi.org/10.1175/1520-0493(1994)122<1917:GCRTSV>2.0.CO;2
Williams, E. R. (2020). Lightning and climate change. Lightning interaction with power systems Volume 1: Fundamentals and modelling , A. Pantini, ed., The Institution of Engineering and Technology, 1-45.
Yoshida, S., T. Adachi, K. Kusunoki, S. Hayashi, T. Wu, T. Ushio, and E. Yoshikawa, 2017: Relationship between thunderstorm electrification and storm kinetics revealed by phased array weather radar, J. Geophys. Res. Atmos., 122, 3821–3836, doi:10.1002/ 2016JD025947.
Zhang, D., & Cummins, K. L. (2020). Time evolution of satellite‐based optical properties in lightning flashes, and its impact on GLM flash detection. Journal of Geophysical Research: Atmospheres, 125, e2019JD032024. doi: 10.1029/2019JD032024
Zhang, D., K.L. Cummins, P. Bitzer, and W.J. Koshak, 2019: Evaluation of the Performance Characteristics of the Lightning Imaging Sensor. J. Atmos. Oceanic Technol., 36, 1015–1031, https://doi.org/10.1175/JTECH-D-18-0173.1
Zhu, Y., Bitzer, P., Stewart, M., Podgorny, S., Corredor, D., Burchfield, J., et al. (2020). Huntsville Alabama Marx Meter Array 2: Upgrade and capability. Earth and Space Science, 7, e2020EA001111.https://doi.org/10.1029/2020EA001111
Zoogman, P. and Coauthors, 2017: Tropospheric Emissions: Monitoring of Pollution (TEMPO), J. Quant. Spectrosc. Ra., 186, 17-39. doi: 10.1016/j.jqsrt.2016.05.008.