References
Allen, D. J., Pickering, K. E., Lamsal, L., Mach, D. M., Quick, M. G.,
Lapierre, J., et al. (2021). Observations of lightning NOx production
from GOES-R post launch test field campaign flights. Journal of
Geophysical Research: Atmospheres, 126, e2020JD033769.
https://doi.org/10.1029/2020JD033769
AOS, cited 2022. Atmosphere Observing System. [Available online at
https://aos.gsfc.nasa.gov/.]
Avery, M., Winker, D., Heymsfield, A., Vaughan, M., Young, S., Hu, Y.,
and Trepte, C. (2012), Cloud ice water content retrieved from the CALIOP
space-based lidar, Geophys. Res. Lett., 39, L05808,
doi:10.1029/2011GL050545.
Blakeslee, R.J., Lang, T.J., Koshak, W.J., Buechler, D., Gatlin, P.,
Mach, D.M., Stano, G.T., Virts, K.S., Walker, T.D., Cecil, D.J., Ellett,
W., Goodman, S.J., Harrison, S., Hawkins, D.L., Heumesser, M., Lin, H.,
Maskey, M., Schultz, C.J., Stewart, M., Bateman, M., Chanrion, O. and
Christian, H. (2020), Three Years of the Lightning Imaging Sensor
Onboard the International Space Station: Expanded Global Coverage and
Enhanced Applications. J. Geophys. Res. Atmos., 125: e2020JD032918.
https://doi.org/10.1029/2020JD032918
Blakeslee, Richard J. (2020a). Quality Controlled Lightning Imaging
Sensor (LIS) on International Space Station (ISS) Science Data. Dataset
available online from the NASA Global Hydrometeorology Resource Center
DAAC, Huntsville, Alabama, U.S.A. DOI:
http://dx.doi.org/10.5067/LIS/ISSLIS/DATA108
Blakeslee, Richard J. (2020b). Quality Controlled Lightning Imaging
Sensor (LIS) on International Space Station (ISS) Backgrounds. Dataset
available online from the NASA Global Hydrometeorology Resource Center
DAAC, Huntsville, Alabama, U.S.A. DOI:
http://dx.doi.org/10.5067/LIS/ISSLIS/DATA208
Campbell, J. R., Sassen, K., McGill, M. J., & Hart, W. D. (2005,
January). Lidar depolarization ratios from CRYSTAL-FACE thunderstorm
anvils. In Preprints of 2nd Symp. Lidar Atmospheric Monitoring, P (Vol.
1).
Carey, L.D.; Schultz, E.V.; Schultz, C.J.; Deierling, W.; Petersen,
W.A.; Bain, A.L.; Pickering, K.E. An Evaluation of Relationships between
Radar-Inferred Kinematic and Microphysical Parameters and Lightning
Flash Rates in Alabama Storms. Atmosphere 2019, 10, 796.
https://doi.org/10.3390/atmos10120796
Ceolato, R., & Berg, M. J. (2021). Aerosol light extinction and
backscattering: A review with a lidar perspective. Journal of
Quantitative Spectroscopy and Radiative Transfer, 262, 107492.
Cui, Z., Pu, Z., Emmitt, G. D., & Greco, S. (2020). The Impact of
Airborne Doppler Aerosol Wind (DAWN) Lidar Wind Profiles on Numerical
Simulations of Tropical Convective Systems during the NASA Convective
Processes Experiment (CPEX), Journal of Atmospheric and Oceanic
Technology, 37(4), 705-722. https://doi.org/10.1175/JTECH-D-19-0123.1
Delanoë, J., and Hogan, R. J. (2010), Combined CloudSat-CALIPSO-MODIS
retrievals of the properties of ice clouds, J. Geophys. Res., 115,
D00H29, doi:10.1029/2009JD012346.
Ester, M., H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise”. In: Proceedings of the 2nd International Conference on
Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, pp.
226-231. 1996
Hagihara, Y., Okamoto, H., and Luo, Z. J. (2014), Joint analysis of
cloud top heights from CloudSat and CALIPSO: New insights into cloud top
microphysics, J. Geophys. Res. Atmos., 119, 4087– 4106,
doi:10.1002/2013JD020919.
Heymsfield, G. M., & Fulton, R. (1988). Comparison of High-Altitude
Remote Aircraft Measurements with the Radar Structure of an Oklahoma
Thunderstorm: Implications for Precipitation Estimation from Space,
Monthly Weather Review, 116(5), 1157-1174.
https://doi.org/10.1175/1520-0493(1988)116<1157:COHARA>2.0.CO;2
Holmlund, K., Grandell, J., Schmetz, J., Stuhlmann, R., Bojkov, B.,
Munro, R., Lekouara, M., Coppens, D., Viticchie, B., August, T.,
Theodore, B., Watts, P., Dobber, M., Fowler, G., Bojinski, S., Schmid,
A., Salonen, K., Tjemkes, S., Aminou, D., & Blythe, P. (2021). Meteosat
Third Generation (MTG): Continuation and Innovation of Observations from
Geostationary Orbit, Bulletin of the American Meteorological Society,
102(5), E990-E1015. https://doi.org/10.1175/BAMS-D-19-0304.1
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D.,
Kojima, M., Oki, R., Nakamura, K., & Iguchi, T. (2014). The Global
Precipitation Measurement Mission, Bulletin of the American
Meteorological Society, 95(5), 701-722.
Khain, A., Rosenfeld, D. and Pokrovsky, A. (2005), Aerosol impact on the
dynamics and microphysics of deep convective clouds. Q.J.R. Meteorol.
Soc., 131: 2639-2663. https://doi.org/10.1256/qj.04.62
Kumjian, M. R., & Ryzhkov, A. V. (2008). Polarimetric Signatures in
Supercell Thunderstorms, Journal of Applied Meteorology and Climatology,
47(7), 1940-1961. https://doi.org/10.1175/2007JAMC1874.1
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., & Simpson, J. (1998).
The Tropical Rainfall Measuring Mission (TRMM) Sensor Package, Journal
of Atmospheric and Oceanic Technology, 15(3), 809-817.
Lang, T. J. (2019). ISS Camera Geolocate Python module, doi:
10.5281/zenodo.2585824. [Available online at
https://github.com/nasa/ISS_Camera_Geolocate]
Liu, C. (2020). GPM Precipitation Feature Database Description, Version
2.0. Texas A&M University at Corpus Christi, Corpus Christi, TX.
http://atmos.tamucc.edu/trmm/
Liu, C., and Zipser, E. J. (2005), Global distribution of convection
penetrating the tropical tropopause, J. Geophys. Res., 110, D23104,
doi:10.1029/2005JD006063.
Liu, C., Zipser, E. J., Cecil, D. J., Nesbitt, S. W., & Sherwood, S.
(2008). A Cloud and Precipitation Feature Database from Nine Years of
TRMM Observations, Journal of Applied Meteorology and Climatology,
47(10), 2712-2728.
López, R. E., and Aubagnac, J.-P. (1997), The lightning activity of a
hailstorm as a function of changes in its microphysical characteristics
inferred from polarimetric radar observations, J. Geophys. Res., 102(
D14), 16799– 16813, doi:10.1029/97JD00645.
Mace, G. G., Zhang, Q., Vaughan, M., Marchand, R., Stephens, G., Trepte,
C., and Winker, D. (2009), A description of hydrometeor layer occurrence
statistics derived from the first year of merged Cloudsat and CALIPSO
data, J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.
MacGorman, D. R., M. S. Elliott, and E. DiGangi (2017), Electrical
discharges in the overshooting tops of thunderstorms, J. Geophys. Res.
Atmos., 122, 2929–2957, doi:10.1002/ 2016JD025933.
Mach, D., & Virts, K. (2021). A Technique for Determining
Three-Dimensional Storm Cloud-Top Locations Using Stereo Optical
Lightning Pulses Observed from Orbit, Journal of Atmospheric and Oceanic
Technology, 38(11), 1993-2001. https://doi.org/10.1175/JTECH-D-21-0078.1
Matthew McGill, Dennis Hlavka, William Hart, V. Stanley Scott, James
Spinhirne, and Beat Schmid, ”Cloud Physics Lidar: instrument description
and initial measurement results,” Appl. Opt. 41, 3725-3734 (2002)
McGill, M. J., Li, L., Hart, W. D., Heymsfield, G. M., Hlavka, D. L.,
Racette, P. E., Tian, L., Vaughan, M. A., and Winker, D. M. (2004),
Combined lidar-radar remote sensing: Initial results from CRYSTAL-FACE,
J. Geophys. Res., 109, D07203, doi:10.1029/2003JD004030.
McGill, M. J., Vaughan, M. A., Trepte, C. R., Hart, W. D., Hlavka, D.
L., Winker, D. M., and Kuehn, R. (2007), Airborne validation of spatial
properties measured by the CALIPSO lidar, J. Geophys. Res., 112, D20201,
doi:10.1029/2007JD008768.
Omar, A. H., Winker, D. M., Vaughan, M. A., Hu, Y., Trepte, C. R.,
Ferrare, R. A., Lee, K., Hostetler, C. A., Kittaka, C., Rogers, R. R.,
Kuehn, R. E., & Liu, Z. (2009). The CALIPSO Automated Aerosol
Classification and Lidar Ratio Selection Algorithm, Journal of
Atmospheric and Oceanic Technology, 26(10), 1994-2014.
https://doi.org/10.1175/2009JTECHA1231.1
Price, C., and Rind, D. (1992), A simple lightning parameterization for
calculating global lightning distributions, J. Geophys. Res., 97( D9),
9919– 9933, doi:10.1029/92JD00719.
Quick, M. G., Christian, H. J., Virts, K. S., & Blakeslee, R. J.
(2020). Airborne radiometric validation of the geostationary lightning
mapper using the Fly’s Eye GLM Simulator. Journal of Applied Remote
Sensing, 14(4), 044518.
Rudlosky, S. D., Goodman, S. J., Virts, K. S., & Bruning, E. C. (2019).
Initial geostationary lightning mapper observations. Geophysical
Research Letters, 46, 1097– 1104. https://doi.org/10.1029/2018GL081052
Rust, W., Doviak, R. Radar research on thunderstorms and lightning.
Nature 297, 461–468 (1982). https://doi.org/10.1038/297461a0
Rutledge, S. A., Hilburn, K. A., Clayton, A., Fuchs, B., & Miller, S.
D. (2020). Evaluating Geostationary Lightning Mapper flash rates within
intense convective storms. Journal of Geophysical Research: Atmospheres,
125, e2020JD032827. https://doi.org/10.1029/2020JD032827
Ryzhkov, A. V., Schuur, T. J., Burgess, D. W., Heinselman, P. L.,
Giangrande, S. E., & Zrnic, D. S. (2005). The Joint Polarization
Experiment: Polarimetric Rainfall Measurements and Hydrometeor
Classification, Bulletin of the American Meteorological Society, 86(6),
809-824. https://doi.org/10.1175/BAMS-86-6-809
Santer, B. D., et al., Behavior of tropopause height and atmospheric
temperature in models, reanalyses, and observations: Decadal changes, J.
Geophys. Res., 108( D1), 4002, doi:10.1029/2002JD002258, 2003.
Sassen, K. (1977). Lidar Observations of High Plains Thunderstorm
Precipitation, Journal of Atmospheric Sciences, 34(9), 1444-1457.
https://doi.org/10.1175/1520-0469(1977)034<1444:LOOHPT>2.0.CO;2
Sassen, K., Benson, R. P., & Spinhirne, J. D. (2000). Tropical cirrus
cloud properties derived from TOGA/COARE airborne polarization lidar.
Geophysical Research Letters, 27(5), 673-676.
https://doi.org/10.1029/1999GL010946
Schultz, C. J., Lang, T. J., Leake, S., Runco, M., & Stefanov, W.
(2021). A technique for automated detection of lightning in images and
video from the International Space Station for scientific understanding
and validation. Earth and Space Science, 8, e2020EA001085.
https://doi.org/10.1029/2020EA001085
Sherwood, S. C., Chae, J.-H., Minnis, P., and McGill, M. (2004),
Underestimation of deep convective cloud tops by thermal imagery,
Geophys. Res. Lett., 31, L11102, doi:10.1029/2004GL019699.
Tatsuo Shiina, Toshio Honda, and Tetsuo Fukuchi ”Examination of lidar
lightning measurement”, Proc. SPIE 6409, Lidar Remote Sensing for
Environmental Monitoring VII, 64090Y (12 December 2006);
https://doi.org/10.1117/12.693735
van Diedenhoven, B., A. M. Fridlind, B. Cairns, A. S. Ackerman, and
J. E. Yorks (2016), Vertical variation of ice particle size in
convective cloud tops, Geophys. Res. Lett., 43, 4586–4593,
doi:10.1002/2016GL068548.
Virts, K. S., Wallace, J. M., Hutchins, M. L., & Holzworth, R. H.
(2013). Highlights of a New Ground-Based, Hourly Global Lightning
Climatology, Bulletin of the American Meteorological Society, 94(9),
1381-1391.
Wang, L., Follette-Cook, M. B., Newchurch, M. J., Pickering, K. E.,
Pour-Biazar, A., Kuang, S., … & Peterson, H. (2015). Evaluation of
lightning-induced tropospheric ozone enhancements observed by ozone
lidar and simulated by WRF/Chem. Atmospheric Environment, 115, 185-191.
Wiens, K. C., Rutledge, S. A., & Tessendorf, S. A. (2005). The 29 June
2000 Supercell Observed during STEPS. Part II: Lightning and Charge
Structure, Journal of the Atmospheric Sciences, 62(12), 4151-4177.
https://doi.org/10.1175/JAS3615.1
Winker, D. M. (2022). The CALIPSO Lidar: Aerosol Observations for Air
Quality and Climate. In Handbook of Air Quality and Climate Change (pp.
1-13). Singapore: Springer Singapore.
Dave Winker, Mark Vaughan, Bill Hunt, ”The CALIPSO mission and initial
results from CALIOP,” Proc. SPIE 6409, Lidar Remote Sensing for
Environmental Monitoring VII, 640902 (12 December 2006);
https://doi.org/10.1117/12.698003
Yorks, J. E., M. J. McGill, S. P. Palm, D. L. Hlavka, P. A. Selmer, E.
P. Nowottnick, M. A. Vaughan, S. D. Rodier, and W. D. Hart (2016), An
overview of the CATS level 1 processing algorithms and data products,
Geophys. Res. Lett., 43, 4632–4639, doi:10.1002/2016GL068006.
Yoshida, R., Okamoto, H., Hagihara, Y., and Ishimoto, H. (2010), Global
analysis of cloud phase and ice crystal orientation from Cloud-Aerosol
Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using
attenuated backscattering and depolarization ratio, J. Geophys. Res.,
115, D00H32, doi:10.1029/2009JD012334.