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Methodology

Reynolds number, Rey. , is found around 7, 000. The star signs represent

e TKE prOdUCtiOn dependence on mean flows: expected turning points (Rey = 200, Rey = 7, 000) for each case based on the

0.2

« Experiments are conducted on a recirculating race- 0
track flume, using dense and sparse (ah = 0.5 & 0.1) (d)h/H=0.5, ah=0.5 (e h/H=0.5, ah=0.1

staggered arrays of cylinders to mimic aqguatic 15 . ‘ |
vegetation (Fig. 2). £ 1
2D-P1V is used to characterize the flow field (PIV - 5W & | | v hH=0.25,ah=0.1 / | consider any specific information of turbulence generated

CW Laser, SMP 60fps camera). (f) h/H=0.25, ah=0.5 () h/H = 0.25, ah = 0.1 oy vegetation, the new modified SR model using TKE

» Flow conditions vary from emergent to fully submerged 4 | K 1 R2=076 | ‘ecoze [/ production as an indicator allows us to more accurately

model fitting result.

_ 3 _ 3
> Pb — Cemeub J Pmax = LgupUp ™.

Emergent case . Submerged case Conclusions

® 3h=05 Exp data A h/H=0.5, ah=0.5 A I’
ah=0.5 fitting A  h/H=0.5, ah=0.1

O ah=0.1 Exp. dat -e=tpio5fung | « Compared to the original SR model which doesn’t

.8 - — —ah=0.1 fitting 2 " ¥ h/H=0.25,ah=0.5 !

5 - - - - h/H=0.25 fitting
R“=0.89 !

!

3 C_,,=0.0093 / ,=0.004 ' '
arrays, h/H = {1,0.5,0.25}. | ! Coup=0.008, oredict surface gas transfer rates Iin vegetated flows

> v /)

under different submergence conditions.

A frequency controlled (10-40 Hz) disk pump drives the : .
flow for a velocity range U = {1 —22}cm/s, vyielding om_ﬁ s N 8% SN~ S Stem- or canopy-scale turbulence plays an important role

x/d <u>lu <u>/u, X/ <u>/ug <u>/u, g A - .
Re, = {60 — 660}, Re,, = {600 — 13,000}, ’ s / v on enhancing surface gas transfer when the plant canopy

Figure 3. The normalized velocity field, mean velocity profiles, and evolution ' é ' A ' IS emergent or Submerged respective|y_
profiles with different roughness density, ah, and submergence ratio, h/H, under u_ (cm/s) u_ (cm/s) |
b b

° By using Sodium  Sulfite (NaZSOS) as an oxygen inverter frequency f = 30 Hz. Velocity is normalized by the time-averaged bulk e A critical Reynolds number can be found based on

depletion agent, surface gas transfer rates can be fitted velocity u, . The corresponding u, and mean flow Reynolds number, Rey , for Figure 5. The relation between bulk TKE production, Py, and uy in emergent _ . o _ -
by DO re-aeration curves in water cases (a) - (g) are u, = {12.1, 3.4, 5.2, 9.9, 11.6, 14.8, 15.8} cm/s, and Re, = {4.9, canopies (left). The relation between maximum TKE production, 2,,, , and u, in different submergence conditions, indicating a transition

1.8,3.2,5.6, 7.1, 9.4, 10.4} x103, respectively. submerged canopies (right). of the exchange mechanism at the interface.




