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Abstract 27 

Biotic interactions drive multitrophic species community assembly. Yet, explicitly incorporating 28 

this process in species distribution models (SDMs) is particularly challenging, even when biotic 29 

interactions are known. Here, we propose a framework that combines knowledge of trophic 30 

interactions with Bayesian structural equation models to model each species as a function of its 31 

prey or predators and environmental conditions. We tested and validated our framework on 32 

realistic simulated communities spanning different theoretical models and ecological setups. We 33 

showed that our framework improves the inference of both species’ potential and realized niches 34 

compared to single SDMs (mean performances increased by 8% and 6% respectively), especially 35 

for species with strong biotic control, thus increasing model predictive performance. Our 36 

framework can easily integrate various SDM extensions (e.g., occupancy models) and algorithms, 37 

and stands out as a novel solution for modeling multitrophic community distributions when 38 

trophic interactions are known or assumed.  39 
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Introduction 40 

 41 

Environmental changes pose a significant threat to multi-trophic biodiversity, necessitating 42 

robust conservation strategies to uphold essential ecosystem functions and services (Rosa et al. 43 

2017; Pollock et al. 2020). Predicting biodiversity responses to global change has thus emerged 44 

as a vibrant research area, fueled by considerable expectations from scientific, conservation, and 45 

political communities (Potts et al. 2016). Given that accurate biodiversity predictions demand 46 

reliable and ecologically sound models, their development is now a critical endeavor (Urban et al. 47 

2016). 48 

Species distribution models (SDMs, Guisan & Thuiller 2005) have emerged as the tool of choice 49 

for biodiversity modeling, yielding significant advancements in understanding and predicting the 50 

impact of environmental conditions on species distributions (Guisan et al. 2017). However, 51 

despite their widespread applicability, SDMs are constrained by various limitations. These 52 

encompass their correlative nature, assumptions of species-environment equilibrium, or the 53 

omission of crucial ecological processes like dispersal. Notably, a crucial critique of SDMs is their 54 

disregard for biotic interactions. The potential influence of biotic interactions on species 55 

distributions has long been acknowledged, highlighted by Gause's Paramecium experiments, 56 

showing resource competition leading to exclusion (Gause 1934), or hare-lynx trophic 57 

interactions causing temporal cycles in species abundances (MacLulich 1936). This insight has 58 

been extensively recognized (Araújo & Luoto 2007; Kissling et al. 2012; Wisz et al. 2013; Freeman 59 

et al. 2022), yet the precise nature of biotic interaction effects and their dependence on scale and 60 

species characteristics remains an open inquiry (Thuiller et al. 2015). Consequently, over the past 61 
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two decades, ecological modeling has been significantly focused on the development of models 62 

able to elucidate the impact of biotic interactions on species distributions and incorporating them 63 

into predictions of species and biodiversity across space and time (Guisan & Rahbek 2011; Warton 64 

et al. 2015b). 65 

 66 

Emerging methodologies like joint species distribution models (JSDMs, Clark et al. 2014; Pollock 67 

et al. 2014; Warton et al. 2015a) and Bayesian networks (Larsen et al. 2012; Ramazi et al. 2021) 68 

use co-occurrence data to infer unknown species interactions. Although JSDMs hold statistical 69 

merits in modeling community data, they neither explicitly infer interactions (with residual 70 

correlations possibly arising from various factors) nor account for these interactions into 71 

predictions (Zurell et al. 2018; Poggiato et al. 2021). Bayesian networks alleviate some challenges 72 

(related to identifying signals in residuals), but still infer a species association network from co-73 

occurrence data. This inference approach is indirect at best and has been severely criticized 74 

regardless of the method (Blanchet et al. 2020).  75 

 76 

An alternative involves directly integrating known or assumed biotic interactions into SDMs. 77 

When biotic interactions are documented for a focal species, researchers have included the 78 

distribution of interacting species (e.g., presence of prey or competing species) as supplementary 79 

covariates in SDMs (Araújo & Luoto 2007; Thuiller et al. 2018). This practice has generally 80 

enhanced model performance, emphasizing the importance of incorporating biotic interactions 81 

into SDMs and showing that biotic interactions significantly shape species distributions even at 82 

broad spatial scales (Gotelli et al. 2010). Not only including biotic interactions can improve 83 
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predictions, but allows us to understand how and under which conditions they can constrain 84 

species distributions and abundances (i.e., how the realized niche may differ from the potential 85 

one, Boulangeat et al. 2012). In early works, the interaction direction was typically assumed, 86 

rendering the approach particularly suitable for trophic interactions, although it was also 87 

employed to model competitive exclusion (Leathwick & Austin 2001). Yet, this promising 88 

approach has not been extended to model complex multitrophic communities, primarily due to 89 

the scarcity of network data (i.e., the ‘Eltonian shortfall’, Hortal et al. 2015) and technical 90 

complexities linked to predicting interdependent species in multitrophic networks (Wisz et al. 91 

2013). 92 

 93 

Models accommodating biotic interactions gain relevance with advances in interaction 94 

measurement (e.g., camera traps, gut content), open databases (e.g., GLOBI), and tools to query 95 

the literature (Grenié et al. 2022; Le Guillarme & Thuiller 2022). These growing datasets have 96 

accelerated the availability of large species interaction networks, named metawebs (Dunne 97 

2006). These metawebs generalize the regional species pool concept of community ecology by 98 

incorporating potential interactions between species of different trophic levels (Albouy et al. 99 

2019; Maiorano et al. 2020; Calderón-Sanou et al. 2021; Potapov 2022). Remaining knowledge 100 

gaps can now be filled using models that relate observed (or known) interactions to trait 101 

differences (i.e., trait-matching, Pichler et al. 2020; Caron et al. 2022) or phylogenies (e.g., 102 

Strydom et al. 2021, 2022). As the Eltonian shortfall is being addressed, we now have the 103 

opportunity to directly leverage known trophic interactions to build realistic and ecological sound 104 

predictive models (Windsor et al. 2022). 105 
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Here, we introduce a flexible framework based on Bayesian structural equation models to 106 

explicitly integrate the known trophic interaction network (metaweb) into SDMs. Our framework 107 

models each species as a function of its prey (in case of bottom-up control) or predators (for top-108 

down control) and environmental conditions. It then sequentially predicts the entire species pool 109 

as a cascade of predictions. This allows the prediction of unobserved sites or environmental 110 

conditions where the distribution of prey is unobserved. Implemented in a fully Bayesian 111 

framework, multicollinearity issues and uncertainty propagation are specifically handled. This 112 

framework not only potentially improves predictions for species under strong biotic control but 113 

can also generate and test ecological hypotheses on the role of biotic interactions. It can show, 114 

for example, under which conditions and how biotic interactions modify species distributions and 115 

identifies the species that exert strong biotic control. 116 

 117 

In this manuscript, we first describe and present our multitrophic framework, its relationships to 118 

the existing literature, and its extensions. Then, to provide a robust and challenging test of the 119 

approach we test and validate it on simulated realistic ecological communities. The performances 120 

of the framework were studied under a large variety of ecological simulation setups, to highlight 121 

when to expect our model to perform better than single (i.e., independent, ‘single’ hereafter) 122 

SDMs, or not. To facilitate users' adoption of our framework and encourage future developments, 123 

we implemented it in the R package webSDM, available on CRAN. 124 

125 
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Model framework 126 

We propose to model the distributions of species as a function of the environment and the 127 

species with which they interact. In general, this method works by first fitting models for each 128 

species independently (Fig. 1a,b) and then by combining these models to sequentially generate 129 

predictions on the entire species pool even at unobserved sites where prey distribution is 130 

unknown (Fig.1c). 131 

To avoid the potential issue of circularity in the set of equations (i.e., simultaneity bias, 132 

(Pearl 2009), the metaweb needs to be a directed acyclic graph (DAG). Directed means that we 133 

choose whether we want to model predators according to their prey (i.e., bottom-up control) or 134 

reciprocally (i.e., top-down control). Hereafter, we present the framework assuming bottom-up 135 

control, although modeling species from top predators to basal species is equally possible, simply 136 

by reversing the direction of the metaweb links. ‘Acyclic’ means that the metaweb does not 137 

contain any loops. Our framework is thus built on the following hypothesis: i) the metaweb is fully 138 

known and contains no loop, ii) the metaweb is stable in space and time and iii) the model can 139 

only account for a single top-down or bottom-up control that needs to be specified up-front (even 140 

if the two processes likely occur in reality). 141 

 142 

Model fitting 143 

Let be the metaweb a directed acyclic graph, 𝐺, and 𝑌 the matrix containing the occurrence (e.g., 144 

presence-absence, count or biomass) of each species 𝑗 (where 𝑗 = 1, … , 𝑆) in each sampling unit 145 
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𝑖 (where 𝑖 = 1, … , 𝑛). The matrix 𝑋 contains the environmental covariates (indexed by 𝑘 =146 

1, … , 𝑝).  147 

We model the distribution of every species as a function of the environmental covariates and of 148 

its prey with a generalized linear model (GLM), so that, for each species j we have: 149 

𝑦𝑖𝑗 ∼ 𝑓(𝜇𝑖𝑗) 150 

                                                      𝑔(𝜇𝑖𝑗) =  𝛽𝑗0 +  ∑ 𝛽𝑗𝑘𝑥𝑖𝑘
𝑝
𝑘=1 + ∑ 𝛼𝑗′𝑗  𝑦𝑖𝑗′ j′:(j′,j)∈E                        (1) 151 

where 𝑓() is the probability distribution of the observed species (e.g., binomial or Poisson, 152 

depending on the data) with parameter 𝜇𝑖𝑗 (we omitted the eventual dispersion parameter in the 153 

equation for simplicity) and 𝑔() the corresponding link function. 𝛽𝑗𝑘 denotes the response of 154 

species 𝑗 to covariate 𝑘 (with 𝛽𝑗0the intercept of species 𝑗), 𝛼𝑗′𝑗  the response of species 𝑗 to its 155 

prey 𝑗′ and 𝐸 is the set of links of the metaweb 𝐺. Interestingly, given Eq. (1), the probabilistic 156 

dependence between species is such that given its prey, a species is conditionally independent 157 

from the preys of its preys. In other words, the joint likelihood factorizes, as every node of G is 158 

independent from its non-descendants, conditionally to its parents (see also ‘the causal Markov 159 

condition’, Pearl 2009): 160 

𝑝(𝒚 | 𝒙) =  ∏ 𝑝(𝒚𝑗| 𝒙, 𝑝𝑟𝑒𝑦(𝒚𝑗) )

𝑆

𝑗=1

 161 

This is not a model assumption, but a mathematical property of the model arising from Eq. (1). 162 

This implies that we can estimate an independent GLM for each species (Grace et al. 2012). 163 

Interestingly, modeling species as a function of their prey (or their predators) and the 164 

environmental covariates is equivalent to a structural equation model (Shipley 2000; Grace 2006) 165 

whose structure is given by 𝐺, plus a dependence of all species to the environment (see Box 1 and 166 
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Fig. 2 for a description of SDM, JSDM, Bayesian networks, and our trophic model through the lens 167 

of SEMs). The estimation of the parameters of a SEM (whose structure is a directed acyclic graph) 168 

as a set of independent GLMs is a common practice and takes the name of ‘local estimation’ or 169 

piecewise SEM (Shipley 2000; Lefcheck 2016). Therefore, model fitting simply requires fitting S 170 

local models, here GLMs, which can be computationally fast and can even be parallelized.  171 

If the model described in (1) can be fitted separately for each species, the ensemble of species 172 

distribution models has then to be combined to generate predictions on the whole species pool 173 

at unobserved sites, given the metaweb. 174 

 175 

Model predictions 176 

While technically possible (Grace et al. 2012), using SEMs to predict is not yet a common practice 177 

(but see Guerra et al. 2021). Indeed, to predict a predator, we need to know the prey distribution, 178 

which is unavailable at unobserved sites (or under future conditions). Intuitively, in a simple 179 

network of two trophic levels, we would need to predict the prey first and use these predictions 180 

to predict the predator. To generalize this idea to complex networks, we predict species following 181 

the topological order of the metaweb. This order, that exists for every DAG, guarantees that, for 182 

every link (𝑗′, 𝑗) (i.e., from prey 𝑗′ to predator 𝑗 in the bottom-up control scenario), 𝑗′ comes before 183 

𝑗 in the ordering (Fig. 1c). 184 

 185 

We then can predict the whole set of species in that specific order, thus conditioning predator 186 

predictions on the predicted occurrence of their prey (Fig. 1c), which operates as a ‘cascade’ of 187 
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predictions that start from basal species and flows up to top predators. In the case of top-down 188 

control, this would simply be the other direction.  189 

By implementing GLMs in a Bayesian framework, we can obtain samples from the posterior 190 

predictive distribution of species, which allows a correct uncertainty propagation through this 191 

cascade and a proper estimation of the uncertainties on each species’ predictions across the 192 

metaweb. Technically, we sample from the posterior predictive distribution of basal species and 193 

use those values to predict samples of the occurrences of their consumers, and so on throughout 194 

the trophic chain (this allows to correctly estimate species’ predictive posterior distribution, 195 

Supplementary Materials 1). Notice that the width of prediction credibility intervals is likely to 196 

increase when moving through the trophic network. 197 

  198 

Dimension reduction: sparse modeling and composite variables 199 

Incorporating species as predictors inherently introduces more predictors into the models, 200 

potentially leading to multicollinearity issues, particularly in large networks and for generalist 201 

species. While multicollinearity may not directly compromise model predictive performance, it 202 

can distort coefficient estimates, affecting our understanding of prey-predator effects (Dormann 203 

et al. 2013; Tredennick et al. 2021). 204 

Furthermore, involving insignificant predictors can lead to overfitting. The role of biotic 205 

interactions in shaping species’ geographic distribution and environmental niche is contentious, 206 

especially at coarse resolutions (Pottier et al. 2013; Thuiller et al. 2015). Consequently, prey may 207 

not necessarily influence predator distribution and distort the species-environment relationships 208 

in the model. 209 
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Both multicollinearity and overfitting can be mitigated by constraining coefficients of 210 

unimportant predictors to zero, reducing model complexity—a technique known as sparse 211 

modeling or regularization (O’Hara & Sillanpää 2009; Hastie et al. 2015). This approach 212 

significantly reduces model complexity and should guarantee that in cases where species 213 

interactions leave no signals in the data, our model should be equivalent to a single SDM. In an 214 

hypothetical case of perfect multicollinearity between a biotic and an abiotic variable, the 215 

regularization approach would likely select one of the two variables randomly. Comparing single 216 

and trophic SDM would thus avoid misinterpretations. 217 

 218 

For some generalist predators, there might simply be an intractable number of prey. In these 219 

cases, assuming that every prey has a differential effect on predator distribution is not only a 220 

problem but might seem ecologically unjustified. Instead, we could expect the richness or 221 

diversity of prey, or whether at least a prey is available, to be important. Hence, we implemented 222 

the use of composite variables that summarize the information of a large number of variables 223 

from the graph into a few summary variables (Henseler 2021). Implemented examples are prey 224 

richness or diversity, or a binary variable set to one if the number of preys is above a certain 225 

threshold. These variables assume that all species have the same impact on the predator. An 226 

alternative is to group species in the metaweb to represent trophic groups that clump together 227 

species that feed on, or are eaten by, the same type of species (Gauzens et al. 2015; O’Connor et 228 

al. 2020). We can then construct composite variables (e.g., their richness) for each of those 229 

trophic groups to better represent the variety of resources for species like generalists or top 230 

predators. 231 
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 Implementation 232 

We implemented our model in the R package webSDM,available on CRAN (more details on the 233 

package in Supplementary Material 2). The independent GLMs are fitted using the R library 234 

rstanarm (Goodrich et al. 2022) that easily incorporates a vast variety of priors and extensions, 235 

and exploits the STAN machinery to ensure fast sampling of the MCMC chains. Regularization was 236 

implemented with the horseshoe prior (Carvalho et al. 2010). We validated the ability of the 237 

inference algorithm to retrieve the correct parameters when sampling under the model in 238 

Supplementary Material 3. 239 

240 
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Validation against realistic simulated data 241 

In a nutshell, to validate our model, we conducted tests on realistic simulated data, which 242 

encompass selected ecological processes but exclude excessive stochasticity and sampling biases 243 

(Zurell et al. 2010; Meynard et al. 2019). We used a theoretical model that simulates species 244 

distribution data for interacting species in diverse environments, accounting for both bottom-up 245 

and top-down control (Fig. 3a,b). We then fitted both single and trophic SDMs on the simulated 246 

data and assessed their predictive efficacy for both realized (i.e., observed species distribution 247 

along an environmental gradient) and potential niches (i.e., species distribution along an 248 

environmental gradient when biotic constraints were released). Manipulating parameters of the 249 

theoretical model, such as metaweb complexity or species niche breadth, enabled us to mimic 250 

distinct ecological scenarios and deduce important performance drivers for our trophic model 251 

(Fig. 3c,d).   252 

 253 

Simulation settings 254 

To simulate species communities, we used a generalized Lotka-Volterra model that mimics 255 

realistic ecological interactions. We also extended simulations using variations of this model and 256 

the Ricker model. 257 

The Lotka-Volterra model describes species abundance dynamic over time by a set of ordinary 258 

differential equations (Lotka 1920; Volterra 1926), where prey have a positive influence on 259 

predators, and vice versa for predators. We have implemented here an abiotic control on species 260 

growth rates along an environmental axis. Based on niche theory, we assumed that intrinsic 261 
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growth rates decrease following a Gaussian distribution as the species moves away from its niche 262 

optimum along the environmental gradient (Hirzel & Le Lay 2008). Species interactions were 263 

conserved along the environmental gradient and were specified by a metaweb, where prey and 264 

predators have an antisymmetric effect on each other. To be able to compare the true occurrence 265 

probabilities with those predicted by the single SDMs/trophic SDMs, we have made the Lotka-266 

Volterra model stochastic, by introducing a stochastic term on the growth rate (see 267 

Supplementary materials 4.1-3 for equation and simulation details). For a given directed acyclic 268 

graph and given niches, we can then simulate from the stochastic generalized Lotka-Volterra 269 

model several communities (i.e., several sites) along different points of the environmental 270 

gradient. Simulated species abundances were then transformed to presence-absence (a species 271 

was set as presence if its continuous abundance was greater than zero) to obtain a species 272 

distribution dataset. 273 

 274 

 To make sure our results were not dependent of the simulation setting, we manipulated 275 

simulation parameters to assess how our trophic model’s performances respond to different 276 

ecological factors. We played with the size of the species pool, the probability of links in the 277 

metaweb, the strength of interspecific interactions, and the species’ niche breadths. Other more 278 

technical parameters, such as the number of points along the environmental gradient and the 279 

number of communities simulated for each environment, were also varied. Using Latin hypercube 280 

sampling, we selected 50 combinations of these simulation parameters. Then, for a given set of 281 

parameters, we sampled one interaction graph and species niches and used the above-described 282 

procedure to obtain one dataset of species distribution. This procedure was repeated 100 times, 283 
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each of them with a randomly sampled metaweb and species niches, for each of the 50 parameter 284 

combinations. We thus obtained a total of 100 x 50 = 5000 species distribution datasets. 285 

  286 

Statistical modeling and data analysis 287 

The statistical analysis of the simulated data was carried out independently for each of the 5000 288 

species distribution datasets (Supplementary Materials 4.4). Our trophic SDM was fitted using the 289 

true interaction network as the metaweb, and a two-degree polynomial term to model the effect 290 

of the environment.   291 

To compare the performance of our model to single SDMs, we also fitted for each species a 292 

generalized linear model as a function of the environment with the same two-degree polynomial 293 

term. Therefore, SDMs are equivalent to our trophic models, but without the biotic terms. Since 294 

the goal was to test whether including trophic interactions improves predictive performance, we 295 

used the same algorithm to avoid differences in the algorithm to determine differences in model 296 

performances. 297 

 298 

We evaluated model performances through cross-validation, by randomly separating the 51 299 

points along the environmental axis into 5 folds (i.e., training on 4 folds and predicting on the 300 

remaining fold, repeated 5 times). We compared our trophic model to SDMs in predicting species 301 

realized and potential niches. We estimated the species’ realized niche as its probability of 302 

presence along the environmental gradient (sensu Hutchinson 1957). This corresponds to the 303 

predictions of the model, that were compared against the observed probability of presence. 304 
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We defined the potential niche as the environmental conditions where a species could potentially 305 

be present if the constraints imposed by biotic interactions were released. This is different from 306 

the fundamental niche defined by niche theory (e.g., Soberón 2007), as it does not account for 307 

dispersal limitations. To release the biotic constraints, we expressed the species’ potential niche 308 

as the probability of presence along the environmental gradient when its prey is assumed to be 309 

present and its predators absent everywhere. With our trophic model, we can predict species’ 310 

potential niches by setting the prey as present everywhere across the environmental gradient 311 

(i.e., a conditional prediction). Single SDMs cannot condition on the value of other species, so we 312 

considered that the predictions of the potential and realized niche coincide. We then compared 313 

the predicted potential niches to the true ones of theoretical models, computed as the probability 314 

of species having a positive growth rate given the presence of prey, and the absence of predators 315 

(see Supplementary materials 4.3). 316 

We evaluated how well the models predicted the realized niche by comparing the predicted 317 

probability of presence to observed presence-absences using the area under the ROC curve (AUC, 318 

(Fawcett 2006). We also used the Wasserstein distance with p=1 (to compare the distance 319 

between the predicted and observed probability of presence), an approximation of the leave-320 

one-out cross-validation likelihood (Vehtari et al. 2017), and calibration (i.e., the number of times 321 

the 95% credible interval correctly covers the true value, (Norberg et al. 2019). To measure model 322 

performances in retrieving the potential niche, we only used the Wasserstein distance and 323 

calibration (see Supplementary Materials 4.4).  324 
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Finally, we checked the width of the 95% credible interval of the predicted realized niche, to 325 

understand if our uncertainty propagation technique could lead to overly large credible intervals, 326 

especially for top predator species.  327 

The codes to fully reproduce the results are available on the GitHub repository 328 

(https://github.com/giopogg/webSDM/tree/main/publication/VirtualEcoSim). 329 

 330 

Results 331 

Overall, trophic SDM correctly retrieved species realized niches (mean AUC = 0.85). On average, 332 

across all the simulation parameters, our trophic model significantly improved AUC by 6% with 333 

respect to SDM (one-side paired t-test p-value < 10−16 for non-basal species, Fig. 4a). Our trophic 334 

model improved AUC for 66% of species, while for other species predictions were only a little 335 

worsened (e.g., only 0.3% of species were worsened by more than 20%). Interestingly, the 336 

strongest improvements corresponded to cases where SDMs failed to predict species realized 337 

niches (Table S1). Regression of AUC relative improvement as a function of simulation parameters 338 

showed that only the size of the species pool and the normalized niche breadth (a measure of 339 

species niche breadth that is independent of the size of the species pool) were the main factors 340 

explaining a departure from the average improvement (Table S2). The size of the species pool 341 

bolstered model performances, while the normalized niche breadth decreased model 342 

performances, indicating greater improvement for environmentally specialized species. To 343 

understand the reason for these patterns with an example, we identified a typical case of two 344 

species corresponding to two simulation scenarios with different normalized niche breadth, all 345 

other parameters being equal (Fig. 5). A narrow niche breadth restricted prey to a small 346 

https://github.com/giopogg/webSDM/tree/main/publication/VirtualEcoSim
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environmental range, leading to a pronounced change in the realized niche shape and thus poor 347 

SDM predictions, that were outperformed by our trophic model (Fig. 5a, AUC = 0.68 for SDM and 348 

0.86 for trophic SDM). In contrast, when prey were present in a broader environmental range, 349 

predators’ distribution was less distorted by biotic interactions, SDMs more accurately predicted 350 

the realized niche, and the two models’ predictions aligned closely (Fig. 5b, AUC = 0.91 for SDM 351 

and 0.90 for trophic SDM). 352 

 353 

Our trophic model improved the predictions of the potential niche slightly more (8% mean 354 

reduction of the Wasserstein distance to the true potential niche, one-side pair t-test p-value < 355 

10−16 for non-basal species, Fig. 4b, table S3), and this mean improvement did not depend on 356 

any of the simulation parameters (Table S4). Moreover, the strongest improvements 357 

corresponded to cases where SDMs failed to predict species potential niches (Table S3). 358 

  359 

These results were consistent across the other evaluation metrics (Fig. S3, S4, Table S1-3) and for 360 

the two other theoretical models (Table S5, S6). A complete description of simulation results is 361 

available in Supplementary Materials 4.4 and 5.4. 362 

 363 
As expected, the width of credible intervals for predicted probability of presence was larger for 364 

non-basal species, increasing with the number of prey (Supplementary Materials 4.5). However, 365 

this enlargement stabilized around 0.25 regardless of the species’ trophic level and prey count, 366 

indicating that despite an increase along the trophic network, interval widths remained 367 

manageable under all conditions (Fig. S5). 368 
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Discussion 369 

 370 

In this study, we introduced a versatile SDM framework to account for known trophic interactions. 371 

Our framework models species as a function of the environment and their prey (or predators), 372 

handles multicollinearity and error propagation, and can predict species at unobserved sites or 373 

future conditions where prey (or predators) distribution remains unknown. We conducted a hard 374 

and rigorous validation using data simulated under simultaneous top-down and bottom-up 375 

control, as this is typically the case in real ecosystems. Despite this difficulty and the 376 

fundamentally dynamic simulated ecological properties, our model improved single SDMs in 377 

predicting species realized niches when these were strongly controlled by biotic interactions and 378 

allowed us to better capture the elusive species' potential niches. 379 

Yet, our framework is not a universal solution that will consistently outperform SDMs. The 380 

debated impact of biotic interactions on species distributions and potential errors in the data 381 

(e.g., metaweb, environmental covariates) are such that including prey as additional predictors 382 

may not always enhance predictions or may even slightly degrade them in specific cases. While 383 

regularization may alleviate these issues, making predictions from trophic SDM equivalent to 384 

single SDMs at worst, practical results might differ. Hence, we recommend using both SDMs and 385 

trophic SDMs and selecting the best model. Our sensitivity analysis has highlighted possible 386 

conditions that bolster the relative improvement of trophic SDM performance, yet real-world 387 

applications are needed to further refine these conditions. 388 

  389 
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Model assumptions and differences with (J)SDM 390 

The effect of biotic interactions on species distributions is particularly challenging to model 391 

(Thuiller et al. 2013). We have proposed to study this effect with a statistical model that relies on 392 

co-occurrence data and a directed acyclic interaction network. While the true causal effect of 393 

biotic interactions can hardly be unraveled with a static approach (Blanchet et al. 2020), we have 394 

demonstrated here how specifically accounting for known interactions can still boost the model 395 

predictive performance (i.e., the realized niche) and even the inference of ecological processes 396 

(i.e., the potential niche). It is useful to understand that in the conditional prediction stage, is it 397 

ultimately the environment that determines species’ presence, through the interacting species. 398 

In other words, species respond to the environment through the cumulative effect of their prey’s 399 

response to it (see Supplementary Material 6 for a more advanced). Therefore, if a single SDM 400 

with a very flexible and complex algorithm and an extremely large set of environmental predictors 401 

(e.g., XGBoost, RandomForest) could achieve an equally good representation of the realized niche 402 

(i.e., since it implicitly takes interactions into account), there would be a risk of overfitting, leading 403 

to erroneous projections in unobserved sites. Our trophic model can instead model a complex 404 

response to the environment with a more parsimonious and ecologically meaningful model, 405 

despite comparable predictive performances, especially on the training dataset (Fig. S6). 406 

  407 

Not only a predictive model 408 

Our framework can help exploring the role of known trophic interactions on species distributions 409 

and community composition. We can investigate how the effect of trophic interactions varies 410 

with spatial resolution (Thuiller et al. 2015), trophic level and species degree of generalism (Fraser 411 
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et al. 2021), functional traits (Boet et al. 2020; van der Merwe et al. 2021), and environmental 412 

conditions (by including an interaction between abiotic and biotic terms, Paquette & Hargreaves 413 

2021). We have presented a bottom-up perspective, but it could be interesting to contrast results 414 

with a top-down perspective to investigate the stronger direction of the control across different 415 

systems. The role and shape of biotic interactions can also be investigated by comparing different 416 

specifications of the biotic term of our model. Composite variables can here become particularly 417 

interesting to test whether this is the diversity, the richness, or the occurrence of certain types of 418 

prey that control the distribution of specific species.  419 

Our framework is also valuable for studying network robustness under global change. Indeed, it 420 

can spatially predict the potential effects of species extinction on the rest of the trophic chain (by 421 

predicting species conditionally on the absence/decline of prey). In other words, this could be a 422 

useful framework to investigate the potential impacts of climate and land use change on species 423 

distribution, community composition, and trophic diversity. 424 

  425 

Model extensions 426 

The proposed trophic species distribution model is implemented within a Bayesian framework 427 

that enables error propagation and can integrate informative priors that reflect our knowledge of 428 

the ecosystem (e.g., uncertainties on the interaction network). Alternatively, a frequentist 429 

approach would offer computational speed and generalization to various statistical algorithms. 430 

Indeed, thanks to the local estimation of the model, we can extend GLMs to any other type of 431 

algorithms like machine learning tools, or even an ensemble of them. Local estimation can also 432 

allow our framework to integrate any extension of SDMs, taking advantage of the important 433 



 22 

methodological developments in this field such as modeling presence-only data (e.g., Renner et 434 

al. 2015), integrating different data sources (Isaac et al. 2020), or considering imperfect species 435 

detection (MacKenzie et al. 2006). However, a drawback of this local estimation is that species-436 

environment coefficients cannot be modeled hierarchically as in multi-species models (Pollock et 437 

al. 2014), which can help to better model rare species. This could be eventually included by 438 

switching to a global estimation of our framework. Yet, this will come with the issue of assuming 439 

that all species respond to the same set of environmental variables, which might be particularly 440 

wrong in large ecological networks or when modeling multiple species with very different life 441 

history traits and ecology (e.g., parasites, autotrophs, herbivores). 442 

 443 

Conclusions and perspectives 444 

We believe our framework stands out as an exciting solution to integrate known trophic networks 445 

into species distribution models. Although it is now only applicable to directed acyclic trophic 446 

networks, this limitation could be overcome in several ways. First, symmetrical networks can be 447 

made asymmetric by choosing a dominant direction, thus allowing our model to be extended to 448 

non-trophic interactions such as competition, in which one species often dominates the other 449 

(Hardin 1960; Leathwick & Austin 2001). To extend the model to cyclical and/or symmetrical 450 

networks, a possible path of development would be to compute the set of spanning trees in the 451 

network (see the matrix tree theorem, Chaiken & Kleitman 1978), fit a model for each of them, 452 

and then predict by averaging each tree’s predictions. This kind of ensemble approach is already 453 

used in the machine learning field (Read et al. 2021) and could also integrate link uncertainties in 454 
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the metaweb. In other words, we hope this new modeling paradigm will motivate exciting and 455 

novel research, and challenge others to improve on our proposed framework.  456 
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Figures 656 

 657 

 658 

Figure 1. Description of the proposed model. The input data are the environmental variables, 659 

species distribution data, and a directed acyclic graph representing the species trophic 660 

interactions (a). Assuming six hypothetical species, each species is modeled as a function of the 661 

environmental covariates and its prey (or predators). Since the likelihood factorizes, each species 662 

can be modelled independently (b). Predictions under new environmental conditions (in space or 663 

time) where prey distribution are unknown (c). To predict with our trophic SDM, we need to 664 

guarantee that, for each predator, all its prey species have already been predicted. To do so, we 665 

order species according to the topological order 𝜎 derived from the metaweb and then perform 666 

predictions following this order (d). Therefore, predictions of species 𝑌4 , 𝑌6 and 𝑌3 are obtained 667 

as a function of the environmental conditions 𝑥new. Then, predictions for 𝑌2 are computed as a 668 

function of 𝑥new and the predictions of 𝑌4 and so on for species 𝑌1 and 𝑌5. 669 

  670 
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  671 

Figure 2. Structural dependence of SDM (a), JSDM (b), and trophic SDM (c). Black boxes refer to 672 

the environment covariates (𝑋), while black circles represent species (𝑌). Gray circles represent 673 

residuals (𝜖). Bayesian network correspond to the same diagram of trophic SDM (c), except that 674 

for Bayesian networks the graph is inferred from the data with obvious uncertainties.  675 
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 676 
Figure 3. Application of the Virtual Ecologist approach to trophic SDMs (Zurell et al. 2010). The 677 

virtual ecological model (a) consists of defining, for a given number of species, their abiotic 678 

preferences as well as a trophic interaction network, and then making their abundances vary 679 

according to a selected theoretical model combining abiotic (blue) and biotic (red) controls. After 680 

a certain time (i.e., at the stationary state), species abundances are transformed in presence 681 

absences (b) and used to fit the SDM and trophic SDM (c). Finally, the models are evaluated (d) 682 

by looking at the congruence of predicted realized and potential niches (dashed lines, and 683 

continuous lines represent the true niches). 684 
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 685 

Figure 4: Model performances for the realized niche (a) and potential niche (b).   686 
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 687 

Figure 5: True and predicted realized niches of two species corresponding to simulations where 688 

species had low normalized niche breadth (a) and high normalized niche breadth (b). For 689 

species(a), trophic SDM improved predictions (AUC = 0.86 for trophic SDM and 0.68 for SDM). For 690 

species (b) performances were almost equal (AUC = 0.91 for SDM, 0.90 for trophic SDM). 691 
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Boxes 693 

Box 1: Structural dependence in species distribution modeling 694 

Like any multivariate model, all kinds of species distribution models introduce probabilistic 695 

dependencies between variables (i.e., both species and environmental covariates). These 696 

dependencies can be expressed using the graphical representation of structural equation models 697 

(SEM), i.e., the ‘path diagram’, to understand the differences between models and, in particular, 698 

the relationships they introduce between species. In SEM, each variable is represented as a box, 699 

a direct arrow from one box to another indicates a direct relationship between the two variables 700 

(e.g., an arrow from A to B means that A affects B), and an undirected arrow between two 701 

variables indicates a correlation. From such a graphical representation, we can depict the directed 702 

and indirect relationships between variables, as well as the marginal and conditional 703 

dependencies that these relationships imply (see Koller and Friedman 2009 for a thorough 704 

introduction to probabilistic graphical models). Here, we express the dependencies introduced by 705 

the single SDM, JSDM, Bayesian networks, and trophic SDM when modeling a hypothetical set of 706 

six interacting species (Y1 to Y6) and a set of environmental covariates X (Fig. 2). 707 

 708 

SDM 709 

Single SDMs model each species independently as a function of the environment (Guisan & 710 

Thuiller 2005). This is therefore equivalent to an SEM diagram with arrows pointing from 711 

environment X to all species (Fig. 2a). As a consequence, species are marginally dependent, as 712 

they are correlated through their response to environment (e.g., species with similar niches will 713 
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be predicted to co-occur), but they are conditionally independent given the environment. Since 714 

the effect of interacting species is not controlled for, the species-environment relationships 715 

capture both the environmental and biotic effect, and, as such, SDMs only infer species’ realized 716 

niches (i.e., biotic interactions are implicitly taken into account, Araujo and Guisan 2006). 717 

JSDM 718 

JSDMs model each species as a function of the environment assuming residuals are correlated 719 

across species (Pollock et al. 2014; Ovaskainen et al. 2017). This corresponds to an SEM diagram 720 

where the environment X points to all species, and species are linked with each other, through 721 

their residuals, with undirected arrows representing their correlations (Fig. 2b). These 722 

correlations imply a symmetrical, undirected, relationship between species residuals, so that 723 

species are conditionally dependent given the environment. Moreover, since conditional 724 

independencies are expressed in a latent layer, every pair of species is conditionally dependent 725 

given the rest of the network (i.e., the inferred graph at the species level is fully connected). 726 

However, due to the residual nature of these correlations, they have little effect on the estimates 727 

of the species-environment relationships (Chib 1998; Poggiato et al. 2021) and do not modify 728 

species marginal predictions (Poggiato et al. 2021). 729 

 Bayesian network models 730 

Bayesian network models (Larsen et al. 2012; Ramazi et al. 2021) infer a directed acyclic graph 731 

(DAG) from species distributions and environmental covariates. Once this network of co-732 

occurrences is inferred, species are modeled as a function of their parents (similarly to the trophic 733 

SDM), depending on the method used (Montesinos-Navarro et al. 2018; Ramazi et al. 2021). The 734 

SEM diagram of a Bayesian network is then simply the inferred DAG. The advantage of Bayesian 735 



 37 

networks over JSDM is that they model the species together with the environment, so the two 736 

effects can be properly separated. However, the inferred DAG does not necessarily correspond 737 

to the true interaction networks, which leads to a conceptual difference between the Bayesian 738 

network and trophic SDM. Moreover, to our knowledge, Bayesian networks have never been used 739 

to generate species predictions at unobserved sites where prey distribution is unknown 740 

(Staniczenko et al. 2017). 741 

 742 

Trophic SDM 743 

Our approach proposes to inject the knowledge of the metaweb by modeling species as a function 744 

of their prey (or predators) and of the environment. This introduces a direct arrow from prey to 745 

predators on top of the arrows from the environment to species (Fig. 2c). So, the effect of prey is 746 

controlled for and the distribution of prey directly determines the prediction of the predators 747 

(reciprocally for a top-down control). Each species is therefore conditionally independent, given 748 

its prey and the environment, to the preys of its preys. However, for any connected metaweb, 749 

species are marginally correlated given the environment only, so that, for example, two predators 750 

feeding on the same prey are marginally correlated due to the indirect effect of sharing the same 751 

prey (i.e., they tend to co-occur because they both feed on the same prey). 752 


