DevOps CICD in Higher Education
Indrabudhi Lokaadinugroho[footnoteRef:1],2 & Burhanudin[footnoteRef:2] [1: Indrabudhi Lokaadinugroho
indrabudhi.lokaadinugroho@binus.ac.id

Burhanudin
burhanudin@binus.ac.id (correspondence)

 	IT System & Infrastructure Division, Bina Nusantara University.] [2: 	Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia.

]

Abstract
Purpose – This study aims to answer two research questions which come from problems faced by a university and the solution proposed by the researchers is the implementation of CICD DevOps.
Design/methodology/approach – This study used a true experimental design method with a pretest-posttest control group design approach that attempts a type of experimental design where the researcher randomly assigns test units and treatments (DevOps) to the experimental group (System Analyst, Programmer, Developer, System Administration and Database Administration), with the aim of systematically describing the facts and characteristics of the object under study precisely using primary and secondary data from a previous ticketing system and implemented DevOps.
Findings – From the empirical data results, DevOps were found to be able to communicate and collaborate better as a team. DevOps also could increase the number of priority deployments that needed to be performed as continuous deployment; with good versioning code maintenance when the rollback is done by DevOps, there will be no downtime.
Research limitations/implications – More effort is needed to identify all aspects that changed with the DevOps’ impact in an IT department of higher education.
Originality/value – In higher education, DevOps could be well implemented to maximize agile software lifecycle development especially in server applications, system administration and database administration.

Keywords: database administrator, DevOps CICD, higher education, system administrator.

Introduction
Companies have started using agile development to support their business needs in building their applications. They also use agile to get better power in creating and building application requirements. However, in the field of education, it has only just begun to enter agile development (Prejean, Kilcoyne, Liao, & Parker, 2019). In general, the servers in the company can only be accessed by the system administrator (sys. admin) to maintain the security of applications development so that any changes in the server can be recorded properly, especially when application development is getting more and more complicated (Li, Rogers, Mathur, Malkin, & Chetty, 2019). Meanwhile, to maintain security in the database, if there are changes to the table structure and configurations in the database, it can only be done by the database administrator (DBA) (Abdullah, Alharbi, & Alsulami, 2014). Because of this, when there an application needs to be repaired it will take a long time. This is because when updating the application, you must provide the file or the script you want to update to the system administrator and database administrator, which is often seen as an obstacle. Meanwhile, the system administrator and database administrator also have other jobs to do besides updating applications. So, when a prompt response is needed it often becomes an obstacle and ultimately has an impact on the performance of the application itself, especially if the application needs to be updated regarding bug fixes and/or performance problems.
In addition, other obstacles are often faced in universities because they do not have a good code repository. Often the code on development servers and production servers does not have good versioning so that it can cause code overlapping problems. There are often lost application functions because the code is overwritten when deploying/updating applications.
In general, all companies, both universities and enterprises, have similar problems. What we can do is improve the deployment process and an automated toolchain in agile software development (SD) so that the deployment process can be automated using DevOps (Ghantous & Gill, 2017). To support fast delivery of software features with reliable quality, DevOps attracts more practitioners and shows the potential to become one of the mainstream approaches for software development and operation (Rong, Gu, Zhang, & Shao, 2017). The research questions are described as follows:
RQ-1: Will DevOps be able to increase continuous deployment in higher education?
RQ-2: Will DevOps be able to maintain the version code of applications in higher education?

Literature Review
DevOps
Nowadays, the application development process keeps evolving to become more agile and find innovative ways for collaborative ways of working (Fowler & Highsmith, 2001). Agile in earlier times was more focused on the development aspect in software development with no attention to the operation itself (Diel, Marczak, & Cruzes, 2016; Bayser, Azevedo, & Cerqueira, 2015). Recently the DevOps concept has become more integrated with the agile process (Farroha & Farroha, 2014).Agile is an iterative approach that focuses on teamwork, customer reviews, and small rapid launches, while DevOps is a method of putting production and operations teams together. DevOps is a collection of practices that tries to bridge the developer-operations gap at the heart of things while also covering all the aspects that aid in speedy, optimized, and high-quality software delivery (Nagpal & Shadab, 2014). Continuous deployment, log monitoring, automated testing, and upgrade components are all part of DevOps activities (Moore, et al., 2016; Soni, 2015; Diel, Marczak, & Cruzes, 2016; Bayser, Azevedo, & Cerqueira, 2015). A variety of tools, such as repository, development, and deployment management tools, can help support these activities (Ahmadighohandizi & Systa, (2015); Lwakatare, Kuvaja, & Oivo, (2016). According to Erich et al. (2014) various architecture trends help DevOps automation and enhance the continuous delivery of software applications on cloud platforms and are supported by DevOps automation. DevOps is said to allow for faster delivery of builds, features, and bug fixes, resulting in a continuous build pipeline (Soni, 2015); DevOps adoption, on the other hand, is not an easy process (Wettinger, Andrikopoulos, & Leymann, 2015). It takes a lot of effort to implement DevOps in one entity. Commitment from high level management is not enough; we also need to upgrade knowledge of all analysts and programmers to fully understand how DevOps and agile work. It is viable to start with small things by creating the DevOps evangelist team to create the culture and learning curve so that analysts and programmers fully understand why they should use DevOps and agile software development.
Continuous Integration (CI)
CI is a service that combines hosting source code repositories (such as Github, Gitlab, or Bitbucket) with automated builds and tests. Any time we push a new commit or a pull request to the project repository, this service runs a build and test, ensuring that any errors or test failures are caught immediately. Build automation, code reliability, analytics, continuous delivery enablement, faster releases and cost savings, improved efficiency, and code quality are listed as realized benefits when implementing CI practices by (Kumbhar, Shailaja, and Anupindi, 2018).

Continuous Delivery (CD)
According to Humble (2010), CD is the ability to bring any form of change, such as new features, interface improvements, bug fixes, and tests, into production or into the hands of consumers, in a safe and timely manner. Krusche and Alperowitz (2014), analyzed the use, experience, and benefits of CD in multi-customer project courses. According to Chen (2015), CD investment is growing rapidly due to benefits such as increased productivity and performance, reliable launches, enhanced customer loyalty, accelerated time to market, and the production of the right products.

Continuous Deployment (CDE)
According to Amazon Web Services (2017), the CDE ensures that any change committed is production ready, and continuous deployment automatically deploys them in production. According to Rahman et al. (2015), continuous deployment has sped up the processes in agile methods, citing Facebook, GitHub, Netflix, and Rally Soft as examples of businesses that successfully use continuous deployment in production deployments.

CICD Pipeline
According to Arachchi and Perera (2018), a company may not be able to follow the CICD pipeline all at once. Before they may adopt CD, they must first practice CI. This pipeline has eliminated the manual process execution when going from CI to CD, and then continuous delivery to continuous deployment, and finally the whole process has become automated. Apart from output deployment, the majority of the phases are automated by using CD. The primary distinction between continuous delivery and continuous implementation is automation in the manufacturing environment (Arachchi & Perera, 2018), or production environment (Shahin, Babar, & Zhu, 2017). Repository and version control tools, construct tools, automation tools, test automation tools, and monitoring tools are all examples of CICD tools (Arachchi & Perera, 2018).

Azure DevOps-Pipeline
Azure DevOps allows support teams to schedule work, collaborate on code creation, and create and deploy applications using developer resources. Azure DevOps is a community and collection of processes that brings together developers, project managers, and contributors to finish software creation. It enables businesses to produce and upgrade products at a faster rate than they do using conventional software development methods (Microsoft, 2021). Azure Pipelines builds and checks code projects automatically before making them available to others. It can be used for almost any language or project form. Azure Pipelines integrates continuous integration (CI) and continuous delivery (CD) to test, create, and ship the code to any goal on a regular basis (Microsoft, 2021).

Methodology Design
This study used a true experimental design method with a pretest-posttest control group design approach that attempts a type of experimental design where the researcher randomly assigns test units and treatments (DevOps) to the experimental group (system analyst, programmer, developer, system administration and database administration), with the aim of systematically describing the facts and characteristics of the object under study precisely, using primary and secondary data from a previous ticketing system and implemented DevOps.
In elaboration of the methodology and to answering the research questions, the researchers studied the literature (Microsoft, 2021), seven processes are included: boards/backlog, apps source code web.config, repos, test plan, cicd pipeline, web apps, & review/insight as seen in Figure 1.

Figure 1. Design Process Approach of DevOps CICD of System Administrator
(Source: Authors)

The data flows through new processes in Figure 1 as follows:
a) Source code is revised or created by a programmer or developer.
b) The source code repository in Repos is compiled with the application code (including the web.config file).
c) Using Test Plans, continuous integration activates application builds and unit tests.
d) Continuous deployment activates an automatic deployment of application objects with environment-specific configuration values within pipelines.
e) App Service is used to deploy the objects.
f) Review/perspectives based on wellness, efficiency, and consumption data that has been collected and analyzed.
g) Developers keep track of and maintain data on health, performance, and use.
h) Using Boards, backlog information is used to prioritize new functionality and bug fixes.

Analysis and Results
In this process, the researchers tried to revise the existing business process when deploying the application to maximize the delivery and timeline; initially the university had not adopted DevOps. The most common complaint that occurs when deploying applications is that the system administrator is not ready when the programmer has finished programming or coding. This often happens because the development of an application often changes according to business/stakeholder needs.
Shifting urgently from one project to another in business must be done by companies considering that those who cannot change or innovate will die; so, the final project often changes over time depending on the needs that occur. The impact of project changes and urgency on system analysts and programmers is that they must be able to keep up with the required changes with a short timeline and deployment times are quicker. Meanwhile, the number of system administrators is limited and when deployment is done manually takes time to serve a single deployment project so that there is often a queue for when deployments can be carried out.
Meanwhile, adding to the number of system administrators is also not effective when the deployment queue does not occur every day. They may only return at uncertain times. How DevOps can solve this problem could begin from good communication between the project manager/system analyst and the programmer(s) into the Boards.

Boards
The interactive lists and signboards below are provided by Boards. Each tool offers a filtered list of tasks. All of the tools allow you to display and define work objects.
a) Work products include: Used to quickly identify assigned job objects. Work things that we follow, are listed in, or that we viewed or modified can be pivoted or filtered based on other criteria.
b) Boards: Boards display work items as cards and allow for drag-and-drop status updates. Sticky notes on a physical whiteboard are similar to this feature. Used to imagine a team's work flow and incorporate Kanban activities.
c) Backlogs: Backlogs are lists of job products. A product backlog is a repository for all of the information we need to track and share with our team, as well as our project plan. Portfolio backlogs allow us to categorize and organize our backlog. Work can be planned, prioritized, and organized using this tool.
d) Sprints: Sprint backlogs and task boards offer a filtered view of work items allocated to a particular iteration course, or sprint, by a team. We can drag-and-drop tasks from our backlog onto an iteration course. The work can then be seen in its own sprint backlog. To put Scrum activities into action, use this tool.
e) Queries: Queries are filtered lists of work items that you create using a query editor. The following tasks are supported by queries:
· Look for groups of work objects that have a similar theme.
· Create a list of job objects to share with others or update in bulk. To prioritize or delegate a collection of objects, triage them.
· Build status and trend maps, which we can then use to populate dashboards.

[image:]
Figure 2. Boards view
(Source: Authors’ screenshot)

In Figure 2, project managers or system analysts and programmers, can see the progress of the status of each task or user story; they can find out which tasks are still not being done with a 'New' status. Meanwhile, the task currently still in progress by the team will be put into 'Active' and could be assigned to the designated programmer. When the task has been done by the programmer, the task is moved by the programmer to 'Resolved' to start testing and quality assurance checking by the system analyst. When the testing has been completed and the requirement has been fulfilled, the system analyst will move it into 'Closed', meaning it is ready for deployment or merging to a production branch, which is directly in line with the CI/CD of the production environment. With Boards, the monitoring of status of each task from backlogs or stories becomes easier to communicate and collaborate as a team.

[image:]
Figure 3. Backlog view
(Source: Authors’ screenshot)

In the Backlogs menu in Figure 3, all the tasks/backlogs/stories in the project can be seen, along with the points and efforts in their execution. Like Boards, Backlogs can also monitor any tasks or stories whose status is new, active, resolved or closed.

[image:]
Figure 4. Sprint view
(Source: Authors’ screenshot)

If the points get bigger, the effort in solving them will be even greater. In DevOps, the determination of these points and efforts is calculated by each team and how they determine it depends on the method used in making the project, whether waterfall, rapid, scrum, etc. In this study our point creation is based on man-days and the iteration per sprint is one week. Each project can be different in the length of the sprint depending on how big the scope of the project is. In Figure 4, we can see detailed tasks/stories per sprint, per iteration, and how much effort per iteration.

Repos
Repos are a series of version control tools for managing code. Using version control as soon as possible, whether a software project is big or small is a good idea. Version control systems are pieces of software that allow us to keep track of changes to our code over time. We instruct the version control system to take a snapshot of our files while we update them. The snapshot is stored permanently in the version control system so we can return to it later if appropriate. To save our work and organize code changes around our team, we use version control. Even if we only have one developer, version control keeps us coordinated while we fix bugs and add new features. Version control records our progress so that we can easily revisit and roll back to the previous version of our code. Version control is given by repos in two ways:
· Git is a distributed version control framework.
· Team Foundation Version Control (TFVC): version control that is centralized.

[image:]
Figure 5. Repos view
(Source: Authors’ screenshot)

In Figure 5 above we can see the existing code file (source code) created and show the versioning every time there is a change/revision in the code, especially when it has been merged to the production branch.

[image:]
Figure 6. Commits view
(Source: Authors’ screenshot)
If the file code has been changed to implement then we could monitor the history (Figure 6) so that if there are problems, we can find out when the application was changed, by whom, and what things were changed. The determination of naming when merged can be determined by each team.

[image:]
Figure 7. Boards view
(Source: Authors’ screenshot)

In the branches menu in Figure 7, we can see what branches are available. In this research we only used one branch, the master branch, where if the code is merged to the master branch it will also be deployed to the production server.

Test plan
To track manual testing for sprints or milestones, we should build test plans and test suites. We will be able to see when the testing for a particular sprint or goal is finished this way. Test plans, test suites, and test cases are the three key forms of test management objects offered by DevOps Server's Test center. These components are saved as unique types of work objects in our work repository. We can export and distribute them with our team, and all our DevOps tasks are tightly integrated.
· Test plans: Individual test scenarios, group test sets, and test plans are all combined. Static test suites, requirements-based test suites, and query-based test suites are all examples of test plans.
· Test Suites: Within a single test strategy, we divide test cases into different testing scenarios. It is easier to see which situations are complete when test cases are grouped together.
· Test cases: Individual sections of our code or app deployment are validated. We should ensure that our code is error-free and meets both company and consumer requirements. If we do not want to build a test suite, we can add individual test cases to a test plan. A test case may be referenced by more than one test suite or test plan. Without having to copy or clone test cases for each suite or strategy, we can effectively reuse them.

[image:]
Figure 8. Boards view
(Source: Authors’ screenshot)

In this research, we did not take advantage of the test plan feature of DevOps as in Figure 8, but instead took advantage of the test plan on .net where testing the behavior of code is done when the code has been compiled successfully before releasing or merging to the master branch.
Pipeline
The DevOps Starter simplifies the process of setting up a CI and CD pipeline. We can either carry our own code and Git repository or choose a sample program. The steps are as follows:
· We set up access to our GitHub repository and pick a system (we can use GitHub or an external Git code repository) as well as Branch.
· Build a new free organization in DevOps Organization or pick an existing organization from the drop-down menu to configure DevOps and a subscription. Then choose Subscription and either give the Web app a name or leave it blank, then choose a place. DevOps Starter creates a CI build and release trigger for you. Our code is held in your GitHub repository or another external repository, and a sample app is created in a DevOps Organization repository. DevOps Starter executes the build and deploys the app to the DevOps Starter environment.
· We are now able to work on our app with a team after committing improvements to GitHub and automatically deploying them to DevOps. The most recent work is automatically deployed to the website through the CI/CD process. Each update to the GitHub repo triggers a DevOps create, and a CD pipeline triggers a DevOps deployment.
· Examine the Pipelines CI/CD pipeline; DevOps Starter creates a CI/CD pipeline in Pipelines automatically. As required, explore and customize the pipeline.
· When App Service and the related services that we built are no longer needed, we can uninstall them.

[image:]
Figure 9. Pipeline view
(Source: Authors screenshot)

In the pipeline, we create and activate a CICD for automatic deployment. After the code is merged to the master branch, it will be deployed automatically to the production server. Configuration to be automatic is created in the pipeline. In this study we made one example of Trial2-CI pipelines as in Figure 9 above.

[image:]
Figure 10. Pipeline tasks view
(Source: Authors’ screenshot)

In this Trial2-CI as in Figure 10, we created a task:
a) Compile or build a solution or project.
b) Perform testing on the code according to the test scenario that we created in the test plan.
c) If there are no errors in the compilation of the test plan, the final code will be built.
d) The compiled code is copied to the artifact and published into the production server.

Meanwhile, the configuration of deployment to the production server can be seen which is done from the branch master and the release menu.

[image:]
Figure 11. Virtual test view
(Source: Authors’ screenshot)

In this research, testing of application behavior is carried out when compiling and merging to the master branch; in this example we create a calculator application and when compiled there will be addition, subtraction, multiplication and division tests as in Figure 12 below:

[image:]
Figure 12. Test Plan in .Net
(Source: Authors’ screenshot)

If the output did not match the test that was conducted, then the task will fail and the code cannot be merged to the branch master, so the programmer must determine the presence of bugs and these must be fixed first.
[image:]
Figure 13. Pipeline released
(Source: Authors’ screenshot)

In the release pipelines menu that was created, it will automatically be deployed to the target server; the example in Figure 13 above is deployed to local drive C:. However, in overall research we deploy to a production server or cloud.

Artifacts
With artifacts, teams of any size can build and distribute Maven, npm, and NuGet package feeds from public and private sources. Our CI/CD pipelines will now provide fully integrated package management. Multiple feeds are introduced in Objects, which we can use to arrange and monitor access to our packages. If you are familiar with NuGet.org or npmjs, you can think of each of those places as a single feed. A word on terminology: whether you use npm or Maven, you might have seen feeds referred to as package repositories or package sources.

[image:]
Figure 14. Artifacts view
(Source: Authors’ screenshot)

In this research, we have not taken advantage of the features of artifacts as in Figure 14, where artifacts basically can be used if we want to publish the results of our package code to several repositories such as Nuget, Git, etc. The compiled code is only copied to the artifact and published into the production server.

Review/Insights
In this stage we collected and analysed health, performance, and usage data as an insight/review for the deployment of new/revised source code. Some business processes/implemented flows have been changed after we applied the DevOps CICD. Initially, the university had not used DevOps but had used a ticketing system for tracking problems when there was a problem with applications. If there is a problem with the application, it could be tracked from the ticket by seeing when the application was last updated and what was updated in the application. It could then be traced if the new code caused problems. However, with this system there is no code repository. The code that is deployed to the production server is sent from the programmer.

Before 						After
Figure 15. Before and After DevOps Implemented Flows
(Source: Authors)

In this research, we tried to change the deployment process by using DevOps, which contains a repository code and implements continuous integration/continuous development (CI / CD) in the pipeline, so it changes the new business processes. There is no more system administrator role; it is replaced by automation flow from DevOps application as in Figure 2.
The results of the analysis on this change shows that the application deployment process at university is better because it eliminates dependence on people, system administration, where application deployments were often improved on server code applications then updated to the database configuration. Using available primary and secondary data, the comparison of the time deployment before and after using DevOps can be seen in Table 1:

Table 1. Comparison per deployment before and after using DevOps.
	Activities
	Durations (minutes)

	
	Before (O1)
	After (O2)

	The programmer fills in the form and creates a ticket for deployment
	5
	5

	Approval by Technical Lead (Average length of time waiting for approval)
	15
	15

	Approval by Database Admin (DBA) Section Head (Average length of time waiting for approval)
	60
	60

	Done by the DBA team
	60
	60

	Approval by the System Admin Section Head (Average length of time waiting for approval)
	60
	-

	Deployment by Sys. Admin (Average)
	277
	-

	Deployment using DevOps Sync
	-
	2

	Closing Ticket
	-
	-

	TOTAL
	477
	142

From the time difference figures above, we could see that deployment using DevOps became markedly faster. The impact resulting from using DevOps on each deployment activity of source code to the server application is:
O1 – O2 = 477 – 142 = 335 minutes

[bookmark: _Hlk67163996]It means we will save as much as 335 minutes per deployment when using DevOps and it can increase the number of priority deployments that need to be performed. Then, if the savings are adjusted Indonesian Rupiah (IDR), if monthly wages are IDR 5 million and hourly wages are calculated by multiplying 1/173 times the monthly wage (Better-Work-Indonesia, 2012).
Table 2. Total savings per deployment in Rupiah.
	Remarks
	Rupiah (IDR)

	Monthly wage
	5,000,000

	Hourly wage
	28,902

	Wage per minute
	482

	
	

	The amount of savings in 1x deployment (335 x Rp 482)
	161,368

There were 647 deployment transactions in 2019, so the annual savings rate could reach almost 105 million Rupiah.
Table 2 below shows the comparison of the time before and after deployment using DevOps when rolling back the source code if there was an error:

Table 3. Comparison before and after using DevOps when rolling back the source code.

	Activities
	Durations (minutes)

	
	Before
	After

	The programmer finds an error after deploying
	-
	-

	Programmers inform Sys. Admin to rollback due to errors after deployment
	5
	5

	Sys. Admin rolls back the deployment results file back to the previous version (average time)
	90
	-

	Rolls back using DevOps
	-
	-

	TOTAL
	95
	5

From the time difference in Table 3 the application server downtime when the system admin rolled back the source code application occured for 90 minutes before the application could be used again. Meanwhile, if the rollback was done through DevOps, there would be no downtime (Hodges, 2017). If it is calculated in terms of loss due to downtime, especially if the application is used by many people (tens of thousands of active students and thousands of lecturers), it will be very significant.

Conclusion
This study aims to answer 2 (two) research questions which come from problems faced by a university and the solution proposed by the researchers is the implementation of CICD DevOps that revealed with Boards in DevOps, the monitoring of the status of each task from Backlogs or stories became easier to be communicate and collaborate as a team (Farroha & Farroha, 2014; Wettinger, Andrikopoulos, & Leymann, 2015; Soni, 2015; Diel, Marczak, & Cruzes, 2016; Rajkumar, Pole, Adige, & Mahanta, 2016; Wettinger, Breitenbücher, & Leymann, 2014; Jabbari, Ali, Petersen, & Tanveer, 2016; Zheng, Liu, & Lin, 2016; Lwakatare, Kuvaja, & Oivo, 2016). When using DevOps, it also can increase the number of priority deployments that need to be performed as continuous deployment (Nitto, Jamshidi, Guerriero, Spais, & Tamburri, 2016; Chen, Kazman, Haziyev, Kropov, & Chtchourov, 2015; Erich, Amrit, & Daneva, 2014). With good code maintenance when the rollback is done by DevOps, there will be no downtime (Nitto, Jamshidi, Guerriero, Spais, & Tamburri, 2016; Jabbari, Ali, Petersen, & Tanveer, 2016). DevOps is very helpful for the information technology needs at the university in maintaining good performance, reliability, and validity of web server application life cycles as well as their continuity.
For future study we recommended to be applied in database administrator and all sectors that related with web server applications in higher education department like Marketing and Operations.

Competing Interests
The authors declare that they have no conflicts of interest to disclose, no-plagiarism, and no funding was received for this manuscript.

Authors’ Contributions
IL designed, developed, and tested the software, analyzed the data, and wrote this manuscript. B analyzed the data and wrote this manuscript. Both authors read and approved the final manuscript.

References
Abdullah, A., Alharbi, E., & Alsulami, N. (2014). A Study of DBA (Data Base Administrator) Job Awareness among Saudi Female IT Professionals. International conference on business and social sceience (ICBASS) (pp. 141-151). Tokyo, Japan: ICBASS. Retrieved from https://www.researchgate.net/publication/294382082_A_Study_of_DBA_Data_Base_Administrator_Job_Awareness_among_Saudi_Female_IT_Professionals
Ahmadighohandizi, F., & Systa, K. (2015). ICDO: Integrated Cloud-based Development Tool for DevOps. Finland: Department of Pervasive Computing, Tampere University of Technology. Retrieved from http://ceur-ws.org/Vol-1525/paper-06.pdf
Amazon Web Services, I. (2017). Practicing Continuous Integration and Continuous Delivery on AWS. USA: Amazon Web Services, Inc. Retrieved from https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/practicing-continuous-integration-continuous-delivery.pdf
Arachchi, S., & Perera, I. (2018). Continuous Integration and Continuous Delivery Pipeline Automation for Agile Software Project Management. 2018 Moratuwa Engineering Research Conference (MERCon) (pp. 156-161). Moratuwa, Sri Lanka: IEEE. doi:10.1109/MERCon.2018.8421965
Bayser, M. d., Azevedo, L. G., & Cerqueira, R. (2015). ResearchOps: The case for DevOps in scientific applications. IFIP/IEEE International Symposium on Integrated Network Management (IM) (pp. 1398-1404). Canada: IEEE. doi:10.1109/INM.2015.7140503
Better-Work-Indonesia. (2012). Indonesian Labour Law Guide. Timor Leste: International Labour Organization (ILO).
Chen, H., Kazman, R., Haziyev, S., Kropov, V., & Chtchourov, D. (2015). Architectural Support for DevOps in a Neo-Metropolis BDaaS Platform. 2015 IEEE 34th Symposium on Reliable Distributed Systems Workshop (SRDSW) (pp. 25-30). Montreal, QC, Canada: IEEE. doi:10.1109/SRDSW.2015.14
Chen, L. (2015). Continuous Delivery: Huge Benefits, but Challenges Too. IEEE Software, 32(2), 50-54. doi:10.1109/MS.2015.27
Diel, E., Marczak, S., & Cruzes, D. S. (2016). Communication Challenges and Strategies in Distributed DevOps. IEEE 11th International Conference on Global Software Engineering (ICGSE) (pp. 24-28). USA: IEEE. doi:10.1109/ICGSE.2016.28
Erich, F., Amrit, C., & Daneva, M. (2014). DevOps Literature Review. Netherlands: University of Twente. doi:10.13140/2.1.5125.1201
Farroha, B. S., & Farroha, D. L. (2014). A Framework for Managing Mission Needs, Compliance, and Trust in the DevOps Environment. IEEE Military Communications Conference (pp. 288-293). USA: IEEE. doi:10.1109/MILCOM.2014.54
Fowler, M., & Highsmith, J. (2001). The Agile Manifesto. Utah: Software Development. Retrieved from http://users.jyu.fi/~mieijala/kandimateriaali/Agile-Manifesto.pdf
Ghantous, G. B., & Gill, A. Q. (2017). DevOps: Concepts, Practices, Tools, Benefits and Challenges. 21st Pacific Asia Conference on Information Systems (PACIS 2017) (pp. 1-12). Langkawi: AIS Electronic Library (AISeL). Retrieved from https://core.ac.uk/download/pdf/301372865.pdf
Hodges, B. (2017, November 9). Achieving No Downtime Through Versioned Service Updates. Retrieved from Azure DevOps: https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/achieving-no-downtime-versioned-service-updates
Humble, J., & Farley, D. (2010). Continuous Delivery: Reliable Software Releases Through Build, Test, and Deployment Automation. Semantic Scholar. Retrieved from https://www.semanticscholar.org/paper/Continuous-Delivery%3A-Reliable-Software-Releases-and-Humble-Farley/be6ffdd33424878b52b52a1f875d5049b2b3382e
Jabbari, R., Ali, N. B., Petersen, K., & Tanveer, B. (2016). What is DevOps?: A Systematic Mapping Study on Definitions and Practices. Scientific Workshop XP 2016 (pp. 1-11). Edinburgh, Scotland UK: ACM Digital Library. doi:10.1145/2962695.2962707
Krusche, S., & Alperowitz, L. (2014). Introduction of continuous delivery in multi-customer project courses. 36th International Conference on Software Engineering (pp. 335–343). India: ACM Digital Library. doi:10.1145/2591062.2591163
Kumbhar, A., Shailaja, M., & Anupindi, R. S. (2018). Getting Started with Continuous Integration in Software Development. India: Infosys. Retrieved from https://www.infosys.com/services/it-services/documents/continuous-integration-software-development.pdf
Li, F., Rogers, L., Mathur, A., Malkin, N., & Chetty, M. (2019). Keepers of the Machines: Examining How System Administrators Manage Software Updates. Fifteenth Symposium on Usable Privacy and Security (pp. 273-288). USA: USENIX Association. Retrieved from https://www.usenix.org/system/files/soups2019-li.pdf
Lwakatare, L. E., Kuvaja, P., & Oivo, M. (2016). An Exploratory Study of DevOps: Extending the Dimensions of DevOps with Practices. The Eleventh International Conference on Software Engineering Advances (ICSEA 2016) (pp. 91-99). Rome, Italy: Semantic Scholar. Retrieved from https://www.researchgate.net/publication/307576316_ICSEA_2016_The_Eleventh_International_Conference_on_Software_Engineering_Advances
Microsoft. (2021). Azure DevOps Architecture. Retrieved from Design a CI/CD pipeline using Azure DevOps: https://docs.microsoft.com/en-us/azure/architecture/example-scenario/apps/devops-dotnet-webapp
Microsoft. (2021). Azure DevOps documentation. Retrieved from Microsoft Azure DevOps: https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
Moore, J. P., Kortuem, G., Smith, A. F., Chowdhury, N., Cavero, J., & Gooch, D. (2016). DevOps for the Urban IoT. Second International Conference on IoT in Urban Space (pp. 78–81). Tokyo Japan: ACM Digital Library. doi:10.1145/2962735.2962747
Nagpal , S., & Shadab, A. (2014). Literature Review: Promises and Challenges of DevOps. Canada: University of Waterloo.
Nitto, E. D., Jamshidi, P., Guerriero, M., Spais, I., & Tamburri, D. A. (2016). A software architecture framework for quality-aware DevOps. 2nd International Workshop on Quality-Aware DevOps (pp. 12-17). Saarbrücken Germany: Association for Computing Machinery. doi:10.1145/2945408.2945411
Prejean, E. A., Kilcoyne, M. S., Liao, W., & Parker, C. (2019). Is Higher Education Talking and Walking Agile Management: A Review of the Literature. American International Journal of Business Management (AIJBM), 8-18. Retrieved from https://www.aijbm.com/wp-content/uploads/2019/08/B270818.pdf
Rahman, A. A., Helms, E., Williams, L., & Parnin, C. (2015). Synthesizing Continuous Deployment Practices Used in Software Development. 2015 Agile Conference (pp. 1-10). USA: IEEE. doi:10.1109/Agile.2015.12
Rajkumar, M., Pole, A. K., Adige, V. S., & Mahanta, P. (2016). DevOps culture and its impact on cloud delivery and software development. 2016 International Conference on Advances in Computing, Communication, & Automation (ICACCA) (Spring) (pp. 1-6). Dehradun, India: IEEE Xplore. doi:10.1109/ICACCA.2016.7578902
Rong, G., Gu, S., Zhang, H., & Shao, D. (2017). DevOpsEnvy: An Education Support System for DevOps. IEEE 30th Conference on Software Engineering Education and Training (CSEE&T) (pp. 37-46). Savannah, GA, USA: IEEE. doi:10.1109/CSEET.2017.17
Shahin, M., Babar, M. A., & Zhu, L. (2017). Continuous Integration, Delivery and Deployment: A Systematic Review on Approaches, Tools, Challenges and Practices. IEEE Access, 5, 3909-3943. doi:10.1109/ACCESS.2017.2685629.
Soni, M. (2015). End to End Automation on Cloud with Build Pipeline: The Case for DevOps in Insurance Industry, Continuous Integration, Continuous Testing, and Continuous Delivery. IEEE International Conference on Cloud Computing in Emerging Markets (CCEM) (pp. 85-89). Bangalore, India: IEEE. doi:10.1109/CCEM.2015.29
Wettinger, J., Andrikopoulos, V., & Leymann, F. (2015). Automated Capturing and Systematic Usage of DevOps Knowledge for Cloud Applications. the IEEE International Conference on Cloud Engineering (IC2E) (pp. 60-65). USA: IEEE Computer Society. doi:10.1109/IC2E.2015.23
Wettinger, J., Breitenbücher, U., & Leymann, F. (2014). Standards-Based DevOps Automation and Integration Using TOSCA. 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing (pp. 59-68). London, UK: IEEE Xplore. doi:10.1109/UCC.2014.14
Zheng, J., Liu, Y., & Lin, J. (2016). Exploring and Enabling DevOps for Data Analytical System with Essential Demands Elicitation. International Journal of Software Engineering and Knowledge Engineering, 26(09n10), 1453-1472. doi:10.1142/S021819401640012X

Page 2 of 2

image3.png

image4.png

image5.png

image6.png

image7.jpeg

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.emf
StartNew / revise code need to be deployedApproved by Technical Lead?Is there any updates to Database?YesCreate ticket to DBA for deploymentDBA received the ticketTicket approved by DBA Section Head?YesRevise the code according to recommendationNoNoIs there any updates to apps. server?Create ticket for Sys. AdminSys. Admin received the ticketTicket approved by Section Head?Sys. Admin update file/code at serverEndDBA update DBYesYesNoYesNoNo

Microsoft_Visio_Drawing1.vsdx
Start
New / revise code need to be deployed
Approved by Technical Lead?
Is there any updates to Database?
Yes
Create ticket to DBA for deployment
DBA received the ticket
Ticket approved by DBA Section Head?
Yes
Revise the code according to recommendation
No
No
Is there any updates to apps. server?
Create ticket for Sys. Admin
Sys. Admin received the ticket
Ticket approved by Section Head?
Sys. Admin update file/code at server
End
DBA update DB
Yes
Yes
No
Yes
No
No

image17.emf
StartEndNew / revise code need to be deployedSync to Brach Production in DevOpsApproved by Technical Lead?Is there any updates in Database?YesIs there any updates to apps. server?NoNoApps source code (web.config) created / revisedReposTest PlanCICD PipelineWeb AppsReview / InsightBoards / backlogYesCreate ticket to DBA for deploymentDBA received the ticketTicket approved by DBA Section Head?YesRevise the code according to recommendationDBA update DBNoNoYes

Microsoft_Visio_Drawing2.vsdx

DevOps CICD of Sys Adm

Start
End
New / revise code need to be deployed
Sync to Brach Production in DevOps
Approved by Technical Lead?
Is there any updates in Database?
Yes
Is there any updates to apps. server?
No
No
Apps source code (web.config) created / revised
Repos
Test Plan
CICD Pipeline
Web Apps
Review / Insight
Boards / backlog
Yes
Create ticket to DBA for deployment
DBA received the ticket
Ticket approved by DBA Section Head?
Yes
Revise the code according to recommendation
DBA update DB
No
No
Yes

image2.emf
StartApps source code (web.config) created / revisedReposTest Plan B CICD PipelineWeb AppsReview / InsightEnd C D E F Boards / backlog G A H

Microsoft_Visio_Drawing.vsdx
Start
Apps source code (web.config) created / revised
Repos
Test Plan
B
CICD Pipeline
Web Apps
Review / Insight
End
C
D
E
F
Boards / backlog
G

A
H

