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Abstract13

We conduct a global assessment of the spatial heterogeneity of cloud phase within the14

temperature range where liquid and ice can coexist. Single-shot CALIOP lidar retrievals15

are used to examine cloud phase at scales as fine as 333 m, and horizontal heterogene-16

ity is quantified according to the frequency of switches between liquid and ice along the17

satellite’s path. In the global mean, heterogeneity is greatest between −15 and −4 °C18

with a peak at −5 °C, when small patches of ice are prevalent within liquid-dominated19

clouds. Heterogeneity “hot spots” are typically found over the extratropical continents,20

whereas phase is relatively homogeneous over the Southern Ocean and the eastern sub-21

tropical ocean basins, where supercooled liquid clouds dominate. Even at a fixed tem-22

perature, heterogeneity undergoes a pronounced annual cycle that, in most places, con-23

sists of a minimum during autumn or winter and a maximum during spring or summer.24

Based on this spatial and temporal variability, it is hypothesized that heterogeneity is25

affected by the availability of ice nucleating particles. These results can be used to im-26

prove the representation of subgrid-scale heterogeneity in general circulation models, which27

has the potential to reduce longstanding model biases in cloud phase partitioning and28

radiative fluxes.29

Plain Language Summary30

At temperatures where ice and liquid can coexist within clouds, climate models tend31

to produce too much ice and too little liquid compared to satellite observations. This32

bias is likely caused by the assumption that liquid and ice are uniformly mixed, which33

results in the rapid conversion of liquid to ice for thermodynamic reasons. To reduce this34

bias, models need to account for the spatial heterogeneity (“patchiness”) of liquid and35

ice that exists in the real atmosphere. The goal of this paper is to quantify this spatial36

heterogeneity using satellite-based lidar observations of cloud phase. We find small pock-37

ets of ice in liquid-dominated clouds to be more common than small pockets of liquid38

in ice-dominated clouds. The greatest heterogeneity is found over the midlatitude con-39

tinents, whereas phase is relatively uniform over the Southern Ocean and other maritime40

regions with extensive low cloud cover. In the mid and high latitudes, cloud phase tends41

to be more heterogeneous during spring and summer and more homogeneous during au-42

tumn and winter. These results can be used in the future to improve model represen-43

tations of the thermodynamic processes responsible for biases in cloud phase.44

1 Introduction45

Cloud feedbacks remain a leading source of uncertainty in estimates of climate sen-46

sitivity (Sherwood et al., 2020; Zelinka et al., 2020). One such feedback is the cloud phase47

feedback, which was first described by Mitchell et al. (1989) as a negative feedback re-48

sulting from a shift in cloud phase partitioning from ice to liquid with warming. The feed-49

back is negative because liquid cloud droplets are generally smaller and more numerous50

than ice crystals, which means that liquid clouds are optically thicker than ice clouds of51

the same condensate mass. A shift in phase partitioning from ice to liquid therefore pro-52

duces an increase in cloud albedo.53

The magnitude of the cloud phase feedback has proved tricky to constrain using54

models, largely because of its sensitivity to the phase partitioning of the initial state (Storelvmo55

et al., 2015; Choi et al., 2014; Tsushima et al., 2006). General circulation models (GCMs)56

systematically produce too much ice and too little liquid within the mixed-phase tem-57

perature range (-40 to 0◦), especially over the Southern Ocean (Cesana et al., 2015; Ko-58

murcu et al., 2014; Kay et al., 2016). As a result, present-day cloud albedo is too low59

in many GCM simulations, and the albedo enhancement associated with ice-to-liquid tran-60

sitions is too dramatic. Adjustment of present-day phase partitioning to more closely61

match observations results in a weakened cloud phase feedback and an increase in sim-62
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ulated climate sensitivity (Tan et al., 2016; Frey & Kay, 2018). While these biases have63

been significantly mitigated in the most recent phase of the Coupled Model Intercom-64

parison Project (Zelinka et al., 2020), representing phase partitioning in a physically in-65

formed manner remains a challenge.66

Biases in phase partitioning are thought to be caused, at least in part, by an over-67

active Wegener-Bergeron-Findeisen (WBF) process (Tan & Storelvmo, 2016; McIlhat-68

tan et al., 2017). The WBF process is a consequence of the difference in saturation va-69

por pressures with respect to liquid and ice, which, in a mixed-phase environment, can70

cause ice crystals to grow at the expense of nearby liquid droplets (Wegener, 1911; Berg-71

eron, 1928; Findeisen, 1938). GCM parameterizations of the WBF process typically as-72

sume that liquid and ice are homogeneously mixed throughout a model grid box, which73

allows for efficient WBF glaciation of supercooled liquid. But aircraft observations, while74

limited, suggest that mixed-phase clouds often contain discrete liquid-only and ice-only75

pockets much smaller than a GCM grid box (Korolev et al., 2003; Chylek & Borel, 2004;76

Field et al., 2004). By reducing the spatial overlap of ice and liquid condensate, this het-77

erogeneity could limit WBF efficiency in the real atmosphere, and previous work has shown78

that accounting for heterogeneity can mitigate model biases in phase partitioning (Tan79

& Storelvmo, 2016; Zhang et al., 2019; Huang et al., 2021). An important takeaway from80

this previous work is that there is no one-size-fits-all adjustment to WBF efficiency that81

improves model phase biases across time and space: the sensitivity of phase biases to WBF82

efficiency varies with location, season, and temperature, and this variability presumably83

reflects different degrees of phase heterogeneity in the real world. Attempts to reduce84

model phase biases, if they are to be physically grounded, must therefore account not85

only for the existence of phase heterogeneity but also for its spatial and temporal vari-86

ability.87

Understanding phase heterogeneity in the real atmosphere is a difficult problem88

because it occurs on scales ranging from microns to kilometers (Korolev et al., 2003; At-89

las et al., 2021). Capturing this range of scales requires in situ aircraft observations, which90

typically have a measurement frequency of 1 Hz (every 100-200 m, depending on aircraft91

speed). Studies making use of these measurements have generally shown that a relatively92

small portion of 1-Hz observations within the mixed-phase temperature range contain93

both liquid and ice; most are single-phase or heavily dominated by one phase or the other94

(Korolev et al., 2003; Field et al., 2004; D’Alessandro et al., 2019; D’Alessandro et al.,95

2021; Zhang et al., 2019). On the whole, these studies suggest that mixed-phase condi-96

tions at the 100-m scale are relatively rare. This is not surprising given that mixtures97

of liquid and ice are thermodynamically unstable, which is what gives rise to the WBF98

process in the first place. Nevertheless, these observational assessments come with con-99

siderable uncertainty arising from imperfect phase classification algorithms, varied def-100

initions of “mixed-phase”, and various instrument limitations (Baumgardner et al., 2017;101

McFarquhar et al., 2013) . Perhaps most importantly, aircraft observations are limited102

in number, and the generalizability of existing observations is unknown.103

Spaceborne satellite observations are a largely untapped resource for studying cloud104

phase heterogeneity. Thompson et al. (2018) assessed phase heterogeneity at cloud top105

using retrievals from the Hyperion spectrometer, but the spatial coverage of the obser-106

vations was very sparse, and they were limited to daytime hours. These limitations can107

be largely overcome by polar-orbiting satellites with active sensors, which offer near-global108

coverage over extended periods of time and can penetrate below cloud top until their sig-109

nal is attenuated. While these satellites cannot capture the fine spatial scales observ-110

able by aircraft and Hyperion, the aircraft observations discussed previously suggest that111

a resolution of a few hundred meters can capture a large portion of cloud phase variabil-112

ity. For these reasons, we believe active-sensing satellites are a promising avenue for un-113

derstanding phase heterogeneity on a global scale and improving its representation in114

models.115
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The goal of this work is to quantify cloud phase heterogeneity, its temperature de-116

pendence, and its spatiotemporal variability using spaceborne lidar measurements. In117

section 2, we describe the lidar observations and develop a metric used to quantify phase118

heterogeneity in the satellite record. Results are presented in section 3 and discussed in119

section 4.120

2 Data and Methods121

2.1 Observational Data122

Observations of cloud phase are obtained from the Cloud-Aerosol Lidar with Or-123

thogonal Polarization (CALIOP) aboard the polar-orbiting CALIPSO satellite (Winker124

et al., 2009). The reasons for using CALIOP are its near-global coverage and its rela-125

tively high horizontal resolution: single-shot profiles of the atmosphere have a horizon-126

tal footprint of 90 m and are recorded every 333 m along the satellite’s path. We take127

data from the L2 Vertical Feature Mask (VFM) product (v4.20; NASA/LARC/SD/ASDC,128

2018a), which provides retrieved cloud phase at the single-shot resolution up to an al-129

titude of 8.2 km. Temperature data are obtained from GEOS-5 reanalysis via the CALIOP130

L2 Cloud Profile product (v4.20; NASA/LARC/SD/ASDC, 2018b) and are interpolated131

onto the same single-shot grid used for the phase data. Interpolation onto the single-shot132

grid captures the large-scale thermal structure of the atmosphere but likely fails to cap-133

ture small-scale temperature variations. The study period is from 2009-12-01 to 2012-134

11-30. To reduce specular reflection from horizontally oriented ice particles, the CALIPSO135

viewing angle was 3° off-nadir at this time.136

In the CALIOP retrievals used here, cloud phase is determined based on the layer-137

integrated attenuated backscatter and depolarization ratio (Hu et al., 2009; Avery et al.,138

2020). Cloudy volumes are classified as liquid, randomly oriented ice, horizontally ori-139

ented ice, or unknown, and each phase determination is accompanied by a quality in-140

dicator, which we use to eliminate low-confidence determinations. As with any remotely141

retrieved quantity, the phase retrievals have several limitations. First, the phase classi-142

fication scheme does not include a mixed-phase category despite the fact that mixed-phase143

conditions are known to occur on length scales smaller than 333 m (Field et al., 2004;144

Atlas et al., 2021). In such conditions, it is difficult to detect ice by lidar since the num-145

ber concentration of ice crystals is generally much lower than that of supercooled liquid146

droplets (Mace et al., 2021). As a result, many mixed-phase cloud scenes are likely clas-147

sified as liquid.148

A second limitation is that multiple single-shot profiles must often be averaged to-149

gether before any cloud-related backscatter signal can be distinguished from background150

noise (Winker et al., 2009; Vaughan et al., 2009). For this reason, the CALIOP retrievals151

use an automated, multi-gridded cloud layer detection scheme that is thoroughly described152

in Vaughan et al. (2005) and Vaughan et al. (2009). The scheme passes through the data153

multiple times with varying degrees of horizontal averaging; we refer to this along-track154

averaging length as L. Cloud features can be identified during any one of these passes,155

and cloud phase is retrieved at the same resolution that the feature was identified with.156

For the first pass, fifteen single-shot profiles are averaged into a 5-km chunk before the157

feature detection algorithm is applied. If a cloud feature is identified, two subsequent passes158

are done, one with L = 1 km and another at the 333-m single-shot resolution. If any159

features detected at L = 333 m are within the surface boundary layer, they are removed160

from the 5-km chunk and 5-km layer properties are recalculated. Lastly, two more passes161

are done using 20- and 80-km chunks, in which finer features are removed before the fea-162

ture properties are calculated. The implication of this scheme is that single-shot phase163

identifications can be embedded within broader features identified at greater L. For ex-164

ample, if a cloud layer is identified with L =5 km (i.e., when 15 single-shot profiles are165

averaged together), a single phase retrieval is performed for the entire 5-km chunk, and166
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the phase information is simply repeated in 15 consecutive, “single-shot” pixels in the167

VFM data product used here. Pixels within the 5-km chunk may be altered if finer cloud168

features of different phase are identified during the subsequent 1-km and 333-m scans.169

An important consequence of the multi-gridded cloud-finding scheme is that ad-170

jacent phase retrievals are not always independent from one another. In fact, only 20%171

of the retrievals included in this analysis were made at the single-shot resolution; 47%172

were made with L = 1 km; 24% with L = 5 km; 7% with L = 20 km; and 2% with173

L = 80 km (Figure 1a). For this reason, we group cloudy pixels by their associated av-174

eraging length L and perform our phase heterogeneity analysis (described in section 2.2)175

separately for each group. We exclude 20- and 80-km phase retrievals from our analy-176

sis, since they account for a small fraction of the total observations and are beyond our177

lengthscales of interest. The multi-gridded averaging also means that our results under-178

estimate true phase heterogeneity and serve as a lower bound on heterogeneity at the179

single-shot (∼333 m) scale.180
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Figure 1. Statistics of the cloud phase retrievals used in this analysis. (a) number of pix-

els sorted by averaging length L and retrieved cloud phase; (b) liquid cloud fraction (LCF) as

a function of L and temperature. Values in (a) reflect the number of pixels at the single-shot

resolution, even if the phase determinations required averaging at a greater spatial scale. Only

medium- and high-quality phase determinations are included.

In addition, the averaging length required to detect a cloud feature is itself depen-181

dent on cloud phase. Figure 1a shows the distribution of L for each liquid or ice pixel182

on the single-shot grid. In general, liquid clouds are detected at shorter averaging lengths.183

This is to be expected, since liquid clouds are, on average, optically thicker than ice clouds184

and produce a stronger backscatter signal. The disparity is especially clear for phase re-185
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trievals made at the single-shot resolution: two-thirds of these retrievals are liquid de-186

spite the fact that the liquid cloud fraction (LCF) is 0.43 for the entire set of pixels con-187

sidered here. Here, LCF is simply the fraction of cloudy pixels with a phase identifica-188

tion that have been classified as liquid. Fig. 1b shows how LCF varies with L and tem-189

perature; in general, LCF increases smoothly between -40 and 0 ◦C, consistent with pre-190

vious work (Korolev et al., 2017; Cesana et al., 2016). Across most of the mixed-phase191

temperature range, LCF generally decreases with increasing L, but the relationship is192

nonlinear: there is a large decrease in LCF as L increases from 333 m to 1 km, but very193

little change between 1 and 5 km. LCF is lower again for L = 20 km, but relatively sim-194

ilar for 20 and 80 km.195

2.2 Quantification of Phase Heterogeneity196

Previous work has quantified phase heterogeneity based on the frequency of switches197

between liquid and ice along an aircraft flight track or on the horizontal extent of single-198

phase patches within a cloud (Atlas et al., 2021; D’Alessandro et al., 2021). We take a199

similar approach with the satellite observations. We define the interface density I [km−1]200

as the number of switches between liquid and ice per horizontal kilometer of cloud along201

the satellite track. To compute I, we compare immediately adjacent phase observations202

at the same vertical level. The boundary between two pixels is considered to be a liquid-203

ice interface only if one of the pixels is liquid and the other is ice (either randomly or204

horizontally oriented) and only if both phase determinations are of medium or high con-205

fidence. Each cloud observation is assigned a value equal to the number of liquid-ice in-206

terfaces at its horizontal edges (0, 1, or 2). The averaging length required to make the207

phase retrieval has not been considered up to this stage.208

Once pixels have been assigned a value of 0, 1, or 2, they are sorted by tempera-209

ture (1 °C bins), latitude (5° bins), longitude (10° bins), month, and averaging length210

L. For each subset of observations, we then compute I as211

I =
(N1/2 +N2)

Nc ·∆x
(1)
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Figure 2. Schematic illustrating the interface density metric, I, used to quantify cloud phase

heterogeneity. Each box represents one single-shot lidar profile and its associated phase retrieval.

For simplicity, we have assumed that each retrieval was made at the single-shot resolution (L =

333 m). The number below each pixel indicates the number of adjacent liquid-ice interfaces.

Circles represent liquid and hexagons represent ice. I is computed for each transect following

Equation 1.
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where ∆x is the horizontal resolution of the retrieval grid (333 m), Nx is the number of212

cloud observations in the subset with x adjacent phase interfaces, and Nc = N0+N1+213

N2 is the total number of cloud observations in the subset (excluding low-confidence re-214

trievals). N1 is scaled by a factor of 1/2 so that interfaces are not double-counted. The215

maximum possible value of I is 3 km−1 (=1/∆x), which would be achieved in the lim-216

iting case of an infinitely long cloud with alternating phase observations retrieved at the217

single-shot resolution. In this case, Nc = N2.218

Figure 2 illustrates our methodology for three schematic cloud transects. When I219

is large, cloud phase is more heterogeneous, single-phase cloud segments are shorter in220

length, and there is a greater contact area between liquid-only and ice-only patches. This221

is the case in transect C, a mixed-phase cloud in which liquid and ice alternate with ev-222

ery pixel. Conversely, small I corresponds to large patches of uniform phase. This is the223

case in the all-liquid Transect A, which represents the most homogeneous case. Tran-224

sect B is a compromise between the extremes.225

Furthermore, I can be computed separately for the liquid and ice-phase observa-226

tions within each data subset. We refer to these quantities as Iliq and Iice, which can227

be used to understand how the characteristic size of ice-only patches differs from that228

of liquid-only patches. Iliq and Iice are related to I by229

I = LCF · Iliq + (1− LCF) · Iice (2)

When computing Iliq using Equation 1, Nx represents the number of liquid cloud ob-230

servations, rather than total cloud observations, with x adjacent interfaces. Iice is com-231

puted in the same manner but using the number of ice observations. When Iliq is large,232

liquid cloud observations are more likely to be adjacent to ice cloud observations, mean-233

ing that liquid-only patches are relatively small; conversely, small Iliq corresponds to large234

liquid-only patches. For a set of cloud observations corresponding to a particular tem-235

perature range, time period, and/or latitude, the values of I, Iliq, Iice, and LCF provide236

an informative description of cloud phase composition and heterogeneity.237

The heterogeneity metrics described here only reflect horizontal heterogeneity. For238

our purpose of improving model representation of subgrid-scale heterogeneity, it is ap-239

propriate to neglect the vertical dimension, since the horizontal extent of a GCM grid-240

box is ∼2 orders of magnitude larger than the vertical extent. Most of the interface area241

between liquid-ice within a grid box would therefore be expected to arise from horizon-242

tal heterogeneity. Moreover, the CALIOP cloud phase retrievals are performed using layer-243

integrated quantities, which means that vertically adjacent phase retrievals are seldom244

independent.245

3 Results246

3.1 Temperature dependence247

We first examine how phase heterogeneity varies with temperature. Figure 3a-c shows248

global mean I as a function of temperature and averaging length. As expected, phase249

retrievals made at the single-shot resolution are the most heterogeneous, simply because250

they are more likely to be independent of adjacent retrievals. But the variations in I across251

the mixed-phase temperature range are qualitatively similar for all L, so we discuss them252

here in general terms. I is lowest near the homogeneous freezing point at −40 °C, in-253

creases with temperature between −40 and −14 °C, and remains high between −14 and254

−5 °C before decreasing slightly as temperature nears the melting point . Heterogene-255

ity peaks around −5 °C for all three L values in consideration, and secondary peaks are256

found at −14, −12, and −10 °C for L =333 m, 1 km, and 5 km, respectively. The peaks257

in I at −5 and and −14 °C mirror previous studies that documented cloud phase tran-258

sition points at similar temperatures. Danker et al. (2022) examined low clouds over the259
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Figure 3. (a-c) Global mean I, (d-f) global mean Iliq and Iice, and (g-i) zonal mean I as a

function of temperature for retrieval averaging lengths L of (a,d) 333 m (b,e) 1 km, and (c,f) 5

km. In (a-f), shading shows the weighted standard deviation of all monthly mean 5°x5°values.
Values are weighted by the cloudy pixel sample size (or by the liquid/ice pixel sample size for

Iliq/Iice). In (g-i), data are only shown for bins containing at least 2×104 pixels with retrieved

cloud phase. Note the varying y-axis scales in (a-f).

Southern Ocean (SO) and found a relative maximum in the frequency of mixed-phase260

conditions at −5 °C. Moreover, they found evidence for rapid glaciation once temper-261

atures fall below ∼ −15 °C, which is also supported by aircraft observations (D’Alessandro262

et al., 2021). Silber et al. (2021) found local minima in the occurrence of liquid in clouds263

over Alaska at −6 and −15 °C and suggested that the minima are caused by the espe-264

cially rapid vapor growth of ice at these temperatures. While I is not a direct measure-265

ment of mixed-phase conditions, the local maxima at −5 and −14 °C suggests that I in-266

deed captures the cloud phase transitions that we seek to understand.267

Several aspects of Fig. 3 suggest that the most heterogeneous cloud conditions are268

characterized by small pockets of ice within majority-liquid clouds, whereas small pock-269

ets of liquid within majority-ice clouds are rare. The clearest evidence for this is the fact270

that I is largest when liquid is the dominant phase: LCF=80–90% at −5 °C (Fig. 1b).271
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At this temperature, Iice is significantly larger than Iliq (Fig. 3d-f), lending confidence272

that the smallest single-phase patches are indeed composed of ice. Less obviously, the273

shapes of the Iliq and Iice curves in (Fig. 3d-f) also speak to the rarity of small liquid274

pockets within clouds that are otherwise glaciated. Starting from 0 °C, Iice decreases rel-275

atively gradually as temperature decreases before flattening out at ∼−20 °C. The grad-276

ual change reflects a gradual increase in the size of ice-only pockets as temperature falls277

and more and more liquid freezes. On the other hand, Iliq changes very little as temper-278

ature decreases from 0 to −30 °C, even as ice becomes the dominant phase. This means279

that liquid-only patches persisting at such cold temperatures are relatively large, allow-280

ing more liquid to remain isolated from ice. Iliq abruptly increases as temperature de-281

creases from −30 to −40 °C, suggesting that liquid exists primarily in small pockets only282

at temperatures just above the homogeneous freezing point. These findings are broadly283

consistent with the expectation that the WBF process acts to quickly glaciate small liq-284

uid pockets surrounded by ice.285

Above −25 °C, the temperature dependence of I varies significantly with latitude,286

as is shown in Fig. 3g-i. In the Tropics, I is only weakly dependent on temperature. Since287

we are examining cloudy, sub-freezing portions of the atmosphere below 8.2 km, data288

from the Tropics presumably reflect tropical convective clouds that have penetrated above289

the freezing level. The weak temperature dependence of I in these regions may then in-290

dicate that phase heterogeneity within these clouds is relatively independent of altitude291

(i.e., temperature). In addition to the Tropics, I is only weakly dependent on temper-292

ature in the Southern Ocean (SO), Antarctic, and Arctic regions. This indicates that the293

global mean temperature dependence of I arises primarily from the mid-latitudes.294

3.2 Spatial Variability295

We now turn to the spatial variability of I, which is shown in Figure 4 for four 10-296

°C temperature bins and L = 333 m and 1 km (see Fig. S1 for L = 5 km). As may be297

expected from Fig. 3g-i, these maps show that I varies substantially across the globe,298

even within a fixed, narrow temperature range. In general, the patterns of spatial vari-299

ability found within the two warmest temperature bins are similar, but these patterns300

differ in many respects from those found in the two coldest temperature bins. For ex-301

ample, the swath of east Asia centered at (40 °N, 105 °E) has especially high I between302

−20 and 0 °C but especially low I at colder temperatures.303

We focus on the spatial variability of phase heterogeneity between −20 and 0 °C,304

which is similar for L = 333 m and 1 km. I is largest over central and eastern Asia, west-305

ern North America, central South America, and southern Africa. These heterogeneity306

hot spots are primarily over extratropical land and, when temperature is controlled for,307

have lower LCF than other regions (Figures S2, S3). On the other hand, areas of espe-308

cially low I are typically found over oceans, including most of the SO region between 45-309

70°S and the eastern subtropical ocean basins. These are all regions of widespread cov-310

erage of low clouds (Wood, 2012) and relatively high LCF (Figs. S2, S3). These patterns311

suggest that low clouds near the top of the marine boundary layer have a more homo-312

geneous phase composition than other cloud types. While this may very well be true over313

the SO, we caution that the heterogeneity characteristics of the eastern subtropical basins314

should not be immediately attributed to the low stratocumulus decks that dominate those315

regions, since subfreezing temperatures are unlikely to occur at such low altitudes there316

throughout much of the year.317

It is notable that I is especially low over the SO compared to similar latitudes in318

the northern hemisphere (NH) and other oceanic regions. The sharp gradient in I in the319

vicinity of the Antarctic Polar Front (APF; 50-55°S; Freeman & Lovenduski, 2016) is320

consistent with the previous finding that mixed-phase clouds become increasingly scarce321

poleward of that point (Mace et al., 2020, 2021). The causes of low heterogeneity to the322
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Figure 4. Mean I binned by temperature (rows; 10 °C bin width) for L =333 m (left) and 1

km (right). Values are only shown for grid boxes containing 2×104 or more cloud phase retrievals

over the 3-year study period. Color scales vary for each map to highlight spatial variability. See

Fig. S1 for L = 5 km.
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south of the APF are likely complex, as changes in sea surface temperature and sea ice323

coverage are known to have myriad effects on boundary layer clouds (e.g., Sotiropoulou324

et al., 2016; Young et al., 2017; Eirund et al., 2019; Carlsen & David, 2022). Low I over325

the SO is also consistent with the fact that, in some models, biases in LCF and absorbed326

shortwave radiation are larger over the SO than in the extratropical NH (Trenberth &327

Fasullo, 2010; Tan et al., 2016; Kay et al., 2016). Because low I implies relatively lim-328

ited contact area between liquid and ice and reduced potential for widespread WBF glacia-329

tion, the failure of models to account for subgrid phase heterogeneity would thus be ex-330

pected to produce the largest LCF biases where I is low.331

It is possible that some of the spatial variability in I is due to the varied availabil-332

ity of ice nucleating particles (INPs). INPs are aerosol particles capable of driving het-333

erogeneous ice formation at temperatures warmer than the homogeneous freezing tem-334

perature (−38 °C). By causing localized glaciation in clouds that would otherwise per-335

sist as homogeneous, supercooled liquid, INPs could plausibly affect phase heterogene-336

ity on our lengthscales of interest. Many of the most effective INPs, such as mineral dusts,337

soil dusts, and certain biological particles, are emitted primarily from land (Kanji et al.,338

2017; Murray et al., 2012), and this could contribute to the land-sea contrast in I found339

here. Moreover, several of the heterogeneity hot spots seen in Fig. 4—such as central340

Asia, central South America and the western subtropical Atlantic, and the maritime re-341

gion southest of South Africa—are known regions of high concentrations of mineral dust342

(Adebiyi et al., 2023). If dust INPs can indeed cause elevated phase heterogeneity, the343

disappearance of the central Asian hot spot at temperatures below −20 °C could reflect344

the near-complete glaciation of clouds by abundant dust particles, which become more345

effective INPs as temperature decreases. As we shall see in the next section, seasonal vari-346

ations in I also suggest that phase heterogeneity is affected by INP availability.347

3.3 Annual Cycle348

We now turn to the annual cycle of zonal mean I, shown in Figure 5 for four 10-349

°C temperature bins and L = 333 m and 1 km (see Fig. S4 for L = 5 km). The com-350

posite annual cycle reflects the average across the three-year study period, and we have351

verified that the cycle is very similar for each of the three years. The annual cycles are352

similar for L = 333 m, 1 km, and 5 km, so we discuss them together. It is clear from353

Figure 5 that, even for fixed latitude, temperature, and L, I can vary significantly over354

the course of the year. At many latitudes, the amplitude of the annual cycle is compa-355

rable to or greater than differences between temperature bins.356

The annual cycle of I throughout most of the NH extratropics is characterized by357

a maximum in between March and June, during boreal spring and early summer. Pole-358

ward of 60°N, I decreases throughout summer and reaches its minimum in autumn be-359

fore increasing slowly throughout the winter. In the midlatitudes, I remains relatively360

high throughout the summer and reaches its minimum in December of January, a bit later361

than the polar minimum. In the tropical NH, the annual minimum occurs later still, in362

February or March, with a broader maximum throughout late spring and summer.363

Throughout most of the Southern Hemisphere (SH), the annual cycle of I is gen-364

erally weaker in amplitude than in the NH but similarly features a peak during local spring365

or summer (Oct.–Feb.). As might be expected from the low climatological I over the SO366

(Fig. 4), the annual cycle of I there is modest in amplitude compared to other regions.367

However, the SO annual cycle is robust across different temperatures and averaging lengths,368

and the SO heterogeneity minimum during austral winter produces some of the lowest369

values of I seen around the globe. That SO phase heterogeneity is lowest during aus-370

tral winter is consistent with previous work that found model LCF biases to be great-371

est during the same time of year (Figs. 9 and 10 in Kay et al., 2016).372
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Figure 5. The annual cycle of zonal, monthly mean I (in km−1) binned by temperature

(rows; 10 °C bin width) for L =333 m (left) and 1 km (right). Data are only shown for bins con-

taining 2×104 or more cloud phase retrievals. Note the different color scales for each plot, which

are intended to highlight variability. The annual cycle reflects the mean over the three-year study

period. See Fig. S4 for L = 5 km.
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The spring and summertime maximum in I seen throughout the extratropics is broadly373

consistent with the idea that INP availability affects phase heterogeneity. Several field-374

based studies have found that INP concentrations in the Arctic surge after the spring-375

time thaw of sea ice and land-based snow (Wex et al., 2019; Creamean et al., 2018; Tobo376

et al., 2019), and these seasonal fluctuations were recently found to affect cloud glacia-377

tion temperatures (Carlsen & David, 2022). In the SO region, I is elevated during the378

ice-free time of the year and depressed during the ice-covered seasons, suggesting that379

INPs may enhance heterogeneity there. In the Arctic, the surge in I during late spring380

and summer in the Arctic is aligned with the thawing of snow and sea ice, but the het-381

erogeneity minimum in Sept.-Oct., when sea ice coverage reaches its annual minimum,382

suggests that the relationship between heterogeneity and Arctic sea ice and snow cover383

is not straightforward.384

A major exception to the spring and summertime heterogeneity maximum is found385

just north of the APF (30-45 °S) for -30 < T < -10 °C. Here, I is greatest during aus-386

tral winter. The relatively abrupt shift in the timing of the annual cycle across the APF387

is aligned with the abrupt change in annual mean I there and is yet another piece of ev-388

idence suggesting that cloud phase characteristics change dramatically across the APF.389

Explaining the shift in the timing of the annual cycle of may be a worthwhile endeavor390

but is beyond our scope here.391

4 Discussion392

This paper presents, to our knowledge, the first global assessment of cloud phase393

heterogeneity using spaceborne satellite measurements. The most heterogeneous cloud394

phase conditions, characterized by the presence of small ice pockets within majority-liquid395

clouds, are found between −15 and −5 °C and tend to occur over midlatitude land. Phase396

tends to be me more homogeneous over cloudy maritime regions such as the Southern397

Ocean and the eastern subtropical basins. The annual cycle of phase heterogeneity de-398

pends on temperature and location but is generally characterized by a minimum dur-399

ing local winter and a maximum during local spring or summer. While the patterns of400

variability found here are informative, phase heterogeneity is clearly affected by factors401

other than temperature, location, and time of year. One such factor may be the avail-402

ability of INPs; our results suggest that phase heterogeneity is greater during times of403

year when INP emissions are thought to be elevated. The relationship between INP avail-404

ability and phase heterogeneity is surely complex and, at this point, is only speculative.405

Future work may focus more on this subject and on understanding how heterogeneity406

is affected by factors such as cloud type, cloud dynamics, and thermodynamic conditions.407

The use of spaceborne lidar to study phase heterogeneity has many limitations. In408

addition to the lack of a mixed-phase classification and the complications arising from409

CALIOP’s multigridded averaging scheme (section 2.1), the lidar signal attenuates at410

an optical depth of ∼5 (Winker et al., 2009), which means that our results are skewed411

to represent conditions near cloud top. Furthermore, about 17% of the cloud observa-412

tions in our study period lacked a high- or medium-quality phase determination and were413

not included in our analysis. We reiterate that we have neglected vertical phase hetero-414

geneity here, which may be a significant source of liquid-ice interface area over the SO415

(e.g., Alexander et al., 2021). Lastly, we draw attention to the sources of error discussed416

in Mace et al. (2021), who demonstrated the difficulty of observing mixed-phase clouds417

using spaceborne lidar. In particular, they documented the presence of low clouds over418

the Southern Ocean that are mixed-phase but appear to spaceborne lidar as supercooled419

liquid because the layer scattering characteristics are heavily dominated by liquid droplets.420

The inability of spaceborne lidar to identify the presence of ice in such clouds is an in-421

herent limitation of our methodology.422
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Despite these significant limitations, the patterns of phase heterogeneity captured423

by our metric, I, are largely consistent with expectations from previous work. The tem-424

perature dependence of I features transition points that have been documented previ-425

ously (section 3.1), and the climatological and seasonal variability of I over the SO is426

consistent with expectations from studies of model LCF bias (3.2-3.3). Thus, while the427

I metric used here is far from perfect, it is presumably able to capture real variability428

in cloud phase characteristics. These successes add credence to the use of spaceborne ob-429

servations to bridge the gap between high-resolution, limited-area aircraft data and the430

global scales on which GCMs operate. The ability of lidar observations to characterize431

phase heterogeneity on scales much smaller than a GCM grid box presents a valuable432

opportunity to improve model representations of mixed-phase microphysics and address433

longstanding model biases related to clouds and radiation.434

Future work will focus on how to meaningfully convert satellite-derived I to a scal-435

ing parameter that can be used to adjust WBF efficiency in the microphysics parame-436

terizations used in GCMs. Based on the results presented here, it would be wise for these437

implementations to account for the dependence of phase heterogeneity on temperature,438

latitude, and time of year. Any implementation must also consider the fact that I is a439

measure of liquid-ice interface density at a fixed vertical level along a one-dimensional440

satellite track; even if vertical phase heterogeneity is to be neglected, I must still be gen-441

eralized from one horizontal dimension to two. Approaches may vary from model to model442

due to differences in grid type and WBF parameterizations, and for this reason we leave443

the details of such implementation for future work.444
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.
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