References
Bibi, T., Perveen, S., Aziz, I., Bashir, Q., Rashid, N., Imanaka, T., & Akhtar, M. (2016). Pcal_1127, a highly stable and efficient ribose-5-phosphate pyrophosphokinase from Pyrobaculum calidifontis.Extremophiles , 20 (6), 821–830. https://doi.org/10.1007/s00792-016-0869-z
Bogorad, I. W., Lin, T.-S., & Liao, J. C. (2013). Synthetic non-oxidative glycolysis enables complete carbon conservation.Nature , 502 (7473), 693–697. https://doi.org/10.1038/nature12575
Bowie, J. U., Sherkhanov, S., Korman, T. P., Valliere, M. A., Opgenorth, P. H., & Liu, H. (2020). Synthetic Biochemistry: The Bio-inspired Cell-Free Approach to Commodity Chemical Production. Trends in Biotechnology , 38 (7), 766–778. https://doi.org/10.1016/j.tibtech.2019.12.024
Bundy, B. C., Hunt, J. P., Jewett, M. C., Swartz, J. R., Wood, D. W., Frey, D. D., & Rao, G. (2018). Cell-free biomanufacturing.Current Opinion in Chemical Engineering , 22 , 177–183. https://doi.org/10.1016/j.coche.2018.10.003
Cabantous, S., Terwilliger, T. C., & Waldo, G. S. (2005). Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nature Biotechnology , 23 (1), 102–107. https://doi.org/10.1038/nbt1044
Cabantous, S., & Waldo, G. S. (2006). In vivo and in vitro protein solubility assays using split GFP. Nature Methods , 3 (10), 845–854. https://doi.org/10.1038/nmeth932
Chae, T. U., Choi, S. Y., Kim, J. W., Ko, Y.-S., & Lee, S. Y. (2017). Recent advances in systems metabolic engineering tools and strategies.Current Opinion in Biotechnology , 47 , 67–82. https://doi.org/10.1016/j.copbio.2017.06.007
Dudley, Q. M., Anderson, K. C., & Jewett, M. C. (2016). Cell-Free Mixing of Escherichia coli Crude Extracts to Prototype and Rationally Engineer High-Titer Mevalonate Synthesis. ACS Synthetic Biology ,5 (12), 1578–1588. https://doi.org/10.1021/acssynbio.6b00154
Dudley, Q. M., Karim, A. S., & Jewett, M. C. (2015). Cell-free metabolic engineering: Biomanufacturing beyond the cell.Biotechnology Journal , 10 (1), 69–82. https://doi.org/10.1002/biot.201400330
Dudley, Q. M., Karim, A. S., Nash, C. J., & Jewett, M. C. (2020). In vitro prototyping of limonene biosynthesis using cell-free protein synthesis. Metabolic Engineering , 61 , 251–260. https://doi.org/10.1016/j.ymben.2020.05.006
Dudley, Q. M., Nash, C. J., & Jewett, M. C. (2019). Cell-free biosynthesis of limonene using enzyme-enriched Escherichia coli lysates.Synthetic Biology , 4 (1), 1–9. https://doi.org/10.1093/synbio/ysz003
Flamholz, A., Noor, E., Bar-Even, A., & Milo, R. (2012). eQuilibrator–the biochemical thermodynamics calculator. Nucleic Acids Research , 40 (D1), D770–D775. https://doi.org/10.1093/nar/gkr874
Grubbe, W. S., Rasor, B. J., Krüger, A., Jewett, M. C., & Karim, A. S. (2020). Cell-free styrene biosynthesis at high titers. Metabolic Engineering , 61 , 89–95. https://doi.org/10.1016/j.ymben.2020.05.009
Hara, N., Yamada, K., Shibata, T., Osago, H., & Tsuchiya, M. (2011). Nicotinamide Phosphoribosyltransferase/Visfatin Does Not Catalyze Nicotinamide Mononucleotide Formation in Blood Plasma. PLoS ONE ,6 (8), e22781. https://doi.org/10.1371/journal.pone.0022781
Hove-Jensen, B., Andersen, K. R., Kilstrup, M., Martinussen, J., Switzer, R. L., & Willemoës, M. (2017). Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance. Microbiology and Molecular Biology Reviews ,81 (1), e00040–e00016. https://doi.org/10.1128/MMBR.00040-16
Jewett, M. C., Calhoun, K. A., Voloshin, A., Wuu, J. J., & Swartz, J. R. (2008). An integrated cell‐free metabolic platform for protein production and synthetic biology. Molecular Systems Biology ,4 (1), 220. https://doi.org/10.1038/msb.2008.57
Jewett, M. C., & Swartz, J. R. (2004). Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnology and Bioengineering ,86 (1), 19–26. https://doi.org/10.1002/bit.20026
Kamiyama, D., Sekine, S., Barsi-Rhyne, B., Hu, J., Chen, B., Gilbert, L. A., Ishikawa, H., Leonetti, M. D., Marshall, W. F., Weissman, J. S., & Huang, B. (2016). Versatile protein tagging in cells with split fluorescent protein. Nature Communications , 7 (1), 11046. https://doi.org/10.1038/ncomms11046
Karim, A. S., Dudley, Q. M., Juminaga, A., Yuan, Y., Crowe, S. A., Heggestad, J. T., Garg, S., Abdalla, T., Grubbe, W. S., Rasor, B. J., Coar, D. N., Torculas, M., Krein, M., Liew, F. M. (Eric), Quattlebaum, A., Jensen, R. O., Stuart, J. A., Simpson, S. D., Köpke, M., & Jewett, M. C. (2020). In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design. Nature Chemical Biology ,16 (8), 912–919. https://doi.org/10.1038/s41589-020-0559-0
Karim, A. S., & Jewett, M. C. (2016). A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery. Metabolic Engineering , 36 , 116–126. https://doi.org/10.1016/j.ymben.2016.03.002
Karim, A. S., & Jewett, M. C. (2018). Cell-Free Synthetic Biology for Pathway Prototyping. In Methods in Enzymology (pp. 31–57). https://doi.org/10.1016/bs.mie.2018.04.029
Kelwick, R., Ricci, L., Chee, S. M., Bell, D., Webb, A. J., & Freemont, P. S. (2018). Cell-free prototyping strategies for enhancing the sustainable production of polyhydroxyalkanoates bioplastics.Synthetic Biology , 3 (1), 1–12. https://doi.org/10.1093/synbio/ysy016
Khatri, Y., Hohlman, R. M., Mendoza, J., Li, S., Lowell, A. N., Asahara, H., & Sherman, D. H. (2020). Multicomponent Microscale Biosynthesis of Unnatural Cyanobacterial Indole Alkaloids. ACS Synthetic Biology ,9 (6), 1349–1360. https://doi.org/10.1021/acssynbio.0c00038
Knapp, A., Ripphahn, M., Volkenborn, K., Skoczinski, P., & Jaeger, K.-E. (2017). Activity-independent screening of secreted proteins using split GFP. Journal of Biotechnology , 258 , 110–116. https://doi.org/10.1016/j.jbiotec.2017.05.024
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics , 23 (21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
Levine, M. Z., Gregorio, N. E., Jewett, M. C., Watts, K. R., & Oza, J. P. (2019). Escherichia coli-Based Cell-Free Protein Synthesis: Protocols for a robust, flexible, and accessible platform technology.Journal of Visualized Experiments , 144 , 1–11. https://doi.org/10.3791/58882
Lin, J. B., Kubota, S., Ban, N., Yoshida, M., Santeford, A., Sene, A., Nakamura, R., Zapata, N., Kubota, M., Tsubota, K., Yoshino, J., Imai, S., & Apte, R. S. (2016). NAMPT-Mediated NAD+ Biosynthesis Is Essential for Vision In Mice. Cell Reports , 17 (1), 69–85. https://doi.org/10.1016/j.celrep.2016.08.073
Liu, Y., & Nielsen, J. (2019). Recent trends in metabolic engineering of microbial chemical factories. Current Opinion in Biotechnology , 60 , 188–197. https://doi.org/10.1016/j.copbio.2019.05.010
Maj, M. C., & Gupta, R. S. (2001). The effect of inorganic phosphate on the activity of bacterial ribokinase. Journal of Protein Chemistry , 20 (2), 139–144. https://doi.org/10.1023/A:1011081508171
Marinescu, G. C., Popescu, R.-G., Stoian, G., & Dinischiotu, A. (2018). β-nicotinamide mononucleotide (NMN) production in Escherichia coli.Scientific Reports , 8 (1), 12278. https://doi.org/10.1038/s41598-018-30792-0
Moore, S. J., MacDonald, J. T., Wienecke, S., Ishwarbhai, A., Tsipa, A., Aw, R., Kylilis, N., Bell, D. J., McClymont, D. W., Jensen, K., Polizzi, K. M., Biedendieck, R., & Freemont, P. S. (2018). Rapid acquisition and model-based analysis of cell-free transcription–translation reactions from nonmodel bacteria. Proceedings of the National Academy of Sciences , 115 (19), E4340–E4349. https://doi.org/10.1073/pnas.1715806115
Morgado, G., Gerngross, D., Roberts, T. M., & Panke, S. (2016).Synthetic Biology for Cell-Free Biosynthesis: Fundamentals of Designing Novel In Vitro Multi-Enzyme Reaction Networks (pp. 117–146). https://doi.org/10.1007/10_2016_13
Ngivprom, U., Lasin, P., Khunnonkwao, P., Worakaensai, S., Jantama, K., Kamkaew, A., & Lai, R. (2022). Synthesis of Nicotinamide Mononucleotide from Xylose via Coupling Engineered Escherichia coli and a Biocatalytic Cascade. ChemBioChem , 23 (11). https://doi.org/10.1002/cbic.202200071
Nielsen, J., & Keasling, J. D. (2016). Engineering Cellular Metabolism.Cell , 164 (6), 1185–1197. https://doi.org/10.1016/j.cell.2016.02.004
Nosal, J. M., Switzer, R. L., & Becker, M. A. (1993). Overexpression, purification, and characterization of recombinant human 5-phosphoribosyl-1-pyrophosphate synthetase isozymes I and II.Journal of Biological Chemistry , 268 (14), 10168–10175. https://doi.org/10.1016/S0021-9258(18)82187-1
Park, J., van Koeverden, P., Singh, B., & Gupta, R. S. (2007). Identification and characterization of human ribokinase and comparison of its properties with E. coli ribokinase and human adenosine kinase.FEBS Letters , 581 (17), 3211–3216. https://doi.org/10.1016/j.febslet.2007.06.009
Poddar, S. K., Sifat, A. E., Haque, S., Nahid, N. A., Chowdhury, S., & Mehedi, I. (2019). Nicotinamide Mononucleotide: Exploration of Diverse Therapeutic Applications of a Potential Molecule. Biomolecules ,9 (1), 34. https://doi.org/10.3390/biom9010034
Qian, X.-L., Dai, Y.-S., Li, C.-X., Pan, J., Xu, J.-H., & Mu, B. (2022). Enzymatic synthesis of high-titer nicotinamide mononucleotide with a new nicotinamide riboside kinase and an efficient ATP regeneration system. Bioresources and Bioprocessing , 9 (1), 26. https://doi.org/10.1186/s40643-022-00514-6
Rasor, B. J., Vögeli, B., Jewett, M. C., & Karim, A. S. (2022).Cell-Free Protein Synthesis for High-Throughput Biosynthetic Pathway Prototyping (Vol. 2433, pp. 199–215). https://doi.org/10.1007/978-1-0716-1998-8_12
Rasor, B. J., Vögeli, B., Landwehr, G. M., Bogart, J. W., Karim, A. S., & Jewett, M. C. (2021). Toward sustainable, cell-free biomanufacturing.Current Opinion in Biotechnology , 69 , 136–144. https://doi.org/10.1016/j.copbio.2020.12.012
Santos-Aberturas, J., Dörr, M., Waldo, G. S., & Bornscheuer, U. T. (2015). In-Depth High-Throughput Screening of Protein Engineering Libraries by Split-GFP Direct Crude Cell Extract Data Normalization.Chemistry & Biology , 22 (10), 1406–1414. https://doi.org/10.1016/j.chembiol.2015.08.014
Shoji, S., Yamaji, T., Makino, H., Ishii, J., & Kondo, A. (2021). Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide. Metabolic Engineering , 65 , 167–177. https://doi.org/10.1016/j.ymben.2020.11.008
Sun, Z. Z., Yeung, E., Hayes, C. A., Noireaux, V., & Murray, R. M. (2014). Linear DNA for Rapid Prototyping of Synthetic Biological Circuits in an Escherichia coli Based TX-TL Cell-Free System. ACS Synthetic Biology , 3 (6), 387–397. https://doi.org/10.1021/sb400131a
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods.Molecular Biology and Evolution , 28 (10), 2731–2739. https://doi.org/10.1093/molbev/msr121
Tamura, R., Jiang, F., Xie, J., & Kamiyama, D. (2021). Multiplexed labeling of cellular proteins with split fluorescent protein tags.Communications Biology , 4 (1), 1–8. https://doi.org/10.1038/s42003-021-01780-4
Vilkhovoy, M., Adhikari, A., Vadhin, S., & Varner, J. D. (2020). The Evolution of Cell Free Biomanufacturing. Processes , 8 (6), 675. https://doi.org/10.3390/pr8060675
Wu, G., Yan, Q., Jones, J. A., Tang, Y. J., Fong, S. S., & Koffas, M. A. G. (2016). Metabolic Burden: Cornerstones in Synthetic Biology and Metabolic Engineering Applications. Trends in Biotechnology ,34 (8), 652–664. https://doi.org/10.1016/j.tibtech.2016.02.010
Yoshino, J., Mills, K. F., Yoon, M. J., & Imai, S. (2011). Nicotinamide Mononucleotide, a Key NAD+ Intermediate, Treats the Pathophysiology of Diet- and Age-Induced Diabetes in Mice. Cell Metabolism ,14 (4), 528–536. https://doi.org/10.1016/j.cmet.2011.08.014
Zhang, R. Y., Qin, Y., Lv, X. Q., Wang, P., Xu, T. Y., Zhang, L., & Miao, C. Y. (2011). A fluorometric assay for high-throughput screening targeting nicotinamide phosphoribosyltransferase. Analytical Biochemistry , 412 (1), 18–25. https://doi.org/10.1016/j.ab.2010.12.035
Zhou, C., Feng, J., Wang, J., Hao, N., Wang, X., & Chen, K. (2022). Design of an in vitro multienzyme cascade system for the biosynthesis of nicotinamide mononucleotide . Catalysis Science & Technology ,12 (4), 1080–1091. https://doi.org/10.1039/d1cy01798e
Zhu, F., Zhong, X., Hu, M., Lu, L., Deng, Z., & Liu, T. (2014). In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Biotechnology and Bioengineering , 111 (7), 1396–1405. https://doi.org/10.1002/bit.25198
Zhuang, L., Huang, S., Liu, W. Q., Karim, A. S., Jewett, M. C., & Li, J. (2020). Total in vitro biosynthesis of the nonribosomal macrolactone peptide valinomycin. Metabolic Engineering , 60 , 37–44. https://doi.org/10.1016/j.ymben.2020.03.009