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ABSTRACT 
The automatic, and accurate plant phenotyping plays important role to improve the crop yield through 
enabling efficient plant analysis and plant breeding studies. The 3d deep learning has allows automatic 

segmentation of plant parts from point cloud data. However, the network architecture is designed manually 

and performance is limited to prior experience. The aim of this study is to search for optimal 3d deep 
networks to perform the plant part segmentation. We perform the 3d neural architecture search by training 

a super network composed of candidate networks. Using the trained super network, the evolutionary 

searching is used to search for top performing architecture. The results demonstrate the searched 

architecture outperforms manually designed architectures by attaining mean IoU and accuracy of more than 
90% and 96%, respectively. The searched architecture achieves more than 83% class-wise IoU for all main 

stem, branches, and boll class. These plant part segmentation method shows promising results and holds 

potential to be utilized by plant breeders for enhancing the production quality. 
Keywords: Plant phenotyping, Plant part segmentation, LiDAR, Point cloud, 3D Deep learning, 3D Neural 

architecture search 

 

 

1. INTRODUCTION 
Automatic plant part segmentation is essential to analyze plant organs and enhance crop yield and 
production quality. In addition to reducing manual labor and time, it allows for non-destructive analysis. 

With recent advancements in remote sensing, both 2D and 3D devices have shown progress in plant part 

segmentation. The 2d devices allow collecting the plants data from a single view in the form of an rgb 
image. However, the data in the image may be occluded. On the other hand, the data collected using the 3d 

sensors contains the depth information. It offers more accurate estimation of plants phenotypic traits.  

 

Plant part segmentation using traditional processing methods have been performed for a wide range of 
plants, including sorghum [1], maize [2, 3], cotton [4], and others using processing methods of clustering, 

region growth, skeleton extraction. Parts of tomato and rosebush plants were segmented using machine 

learning. In this, the local point features such as normal vectors, eigen values of covariance matrix, FPFH 
features were utilized to segment the plant parts through classification of each point in the plant point cloud. 

To automatically extract the features from the data, 3D deep learning has been utilized to segment parts 

from point cloud data. 3D deep networks were trained to perform segmentation of various crops and plants 

such as wheat, cotton, rosebush and maize. In these studies, the network architectures are manually 
designed, and therefore the design of network architecture depends upon outcomes from prior experiments. 

As a result, the best performing architecture from the search space may remain unexplored. Selecting each 

network from the search space and training from scratch is time consuming and infeasible. The aim of this 
study is to search for network architecture to achieve optimal plant part segmentation using 3D neural 

architecture search. The specific objectives were 1) To apply 3D neural architecture search based on super 

network training and evolutionary searching for plant part segmentation. 2) To compare the performance 
of searched network architecture with manually designed architectures in baselines. 

 

2. MATERIALS AND METHODS 
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2.1   Data description and preprocessing 
The LiDAR dataset for cotton plants was collected in Plant research Farm in University of Georgia. Both 

indoor and outdoor areas were used in scanning the plant. The FARO LiDAR device was used to scan the 

plants from multiple views and spherical targets were used in the registration of those views. In the collected 

datatset, each sample covers a point cloud for a single plant. Each plant point cloud contains x,y,z 
coordinates and rgb i.e. color value for each point.  The collected point clouds were passed through a 

preprocessing stage where denoising, point-wise labelling, down-sampling, normalization, and 

augmentation were applied. The point clouds were denoised using statistical outlier removal method where 
6 nearest neighbors were selected and mean and standard deviation of their distances were estimated. The 

neighbors having distances greater than 0.01 times that of standard deviation were removed to denoise the 

point cloud. The plant part labelling was performed to annotate the main stem, branches and cotton bolls of 
the plant in red, green and blue respectively (Figure 2). The down sampling step was required as it is 

infeasible to apply 3d deep learning directly on high resolution LiDAR data with millions of points. Each 

point cloud was normalized to unit sphere to allow consistent scales among all samples in the dataset. 

Moreover, data augmentation was performed in each training step by rotating the input point clouds along 
z-axis.  

 

Figure 1: Point cloud sample of cotton plants collected using FARO LiDAR scanner. Left point 

cloud represents a sample plant with original rgb values. Right point cloud represents that sample 

with labelled plant parts. 

 

2.2   3D Neural architecture search 

To search for network architecture with optimal segmentation performance, the 3D neural architecture 

search paradigm with the combination of super network training and evolutionary searching is applied as 
illustrated in Figure 2. The overall workflow consists of three steps. In the first step, the super network 

covering the candidate networks is trained. In the second step, the trained super network is used in 

evolutionary searching to search for top performing architecture. The searched architecture is then trained 
from scratch for plant part segmentation in third step. 
 

 

Figure 2: Workflow of neural architecture search to find optimal network for plant part 

segmentation.  
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To search for optimal network architecture for plant part segmentation, we start by defining search space 

covering possible candidate. We define our search space to have all networks with a maximum depth of 5. 
We utilize Point Voxel Convolution (PVConv) layer as the basic building block of each candidate network. 

While there are other feature extraction layers in 3d deep learning like set abstraction layer, edge conv layer, 

x conv and others. However, the PVConv provides more efficiency in terms of memory and time 

consumption. It utilizes point representation of point cloud for global feature extraction and voxel 
representation for local feature extraction. Each PVConv layer consists of two branches for point- and 

voxel-based input. The point branch consists of Fully connected layers while the voxel branch consists of 

3d convolution layers. The extracted features from both the point and voxel branches are fused by element-
wise addition operation. In each candidate network, the features from PVConv layer are extracted and 

passed through fully connected layers for pointwise segmentation. Search is performed for optimal number 

of PVConv layers in the network as well as number of output channels in each of PVConv layer in the 
network. 

 

We apply 3d neural architecture search in two steps. In the first step, we formulate and optimize a super-

network. The super network is designed in a way to contain all candidates as sub-networks. To perform 
super network training, a random candidate is selected in each training step and weights are optimized for 

that candidate in super network. The weight sharing is used to update weights in other parts of the super 

network by sharing weights of updated candidate layers with other layers at same depth in the super 
network. 

 

The trained super network is performing the evolutionary searching to find network with optimal 
performance. We select a population of candidate networks from the super network using uniform random 

sampling and carry out several iterations of evolution. In each iteration, the performance of each candidate 

from the population is evaluated. Rather than training each candidate in the population from scratch, the 

weights are borrowed from the optimized super network and evaluation is performed using trained weights 
from super network. We select top ten high performing candidate networks and apply mutation and cross 

over to achieve updated the network architectures. These crossed over and mutated architectures are added 

to population to perform the next iteration. In the last iteration, the top performing candidate is selected as 
the searched candidate network. The searched network is trained from scratch for plant part segmentation. 

In the searched network, the features from each PVConv layer are concatenated and passed as input to the 

fully connected layers as per point classification. 

 

3. RESULTS AND DISCUSSION 
 

3.1   Searched architecture 
 

The 3d neural architecture search applied on plant part segmentation shows that the searched architecture 

utilized max depth having 5 PVConv layers. In addition, the number of output channels in each PVConv 

layer is either 64, 128, or 256 as shown in the Figure 3. 

 

 

Figure 3: Searched network architecture. The number of PVConv layers as well the output channels 
is each PVConv layer is searched through evolutionary searched from optimized super network. 
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The input and features from each PVConv layer is concatenated and passed through fully connected 

and drop out layers to output per point scores.  
 

3.2   Segmentation performance 
The comparison with manually designed network architecture in baselines show that the searched arch 

outperforms in both overall and class wise segmentation performance. In terms of overall segmentation 

performance, the overall accuracy, mean class accuracy and mean IoU achieved by searched architecture 
was 2, 4 and 6 percentage points higher than the top performing baselines respectively. In terms of class-

wise segmentation performance, the searched architecture outperformed baselines by more than 6 

percentage point when comparing main stem and branch IoU. This margin was relatively lower (around 
1%) in terms of boll IoU. 

 

Table 1: Comparison of Mean IoU (mean iou), mean class accuracy (mAcc), overall accuracy (OA) of the 

searched architecture with the baselines 
 

Network 
Pointnet Pointnet++ PVCNN DGCNN PointCNN 

Searched 

architecture 

Mean IoU (%) 38.61 83.19 83.88 79.88 68.79 90.04 

Mean class accuracy (%) 56.51 90.52 91.24 90.09 82.9 95.07 

Over all accuracy (%) 69.58 94.21 94.1 91.64 85.08 96.55 

Class-wise 
IoU 

Main stem 36.65 78.22 83.83 78.42 64.23 89.83 

Branch 9.91 75.97 73.67 70.28 60.55 83.67 

Bolls 69.29 95.38 94.13 90.94 81.57 96.61 

 
Searched architecture made fewer mispredictions compared to baselines when visualizing inference results 

(Figure 4). It was observed that Pointnet++ and PVCNN mis-labelled the vertically aligned parts of 

branches as main stem. However the searched architecture was robust to this error. The searched 
architecture showed higher accuracy in boll which was mis-segmented as main stems in some parts by 

PointCNN and Pointnet.  

 

 

Figure 4: Visualization of inference results of searched architecture and baselines on a sample from 

test set and the corresponding ground truth. 

 

4. CONCLUSIONS 
Optimal deep network architecture was searched using 3d neural architecture search by combining super 

network training with evolutionary searching. The searched architecture outperformed the baselines with 
manually designed architectures in terms of both overall and class-wise segmentation performance. Overall, 

this method showed promising results and can be utilized to achieve optimal part segmentation of all plants 

including cotton. Further this can assist the plant breeder for enhancing crop yield and production and 
quality. 
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The collected dataset used in this study is available at https://doi.org/10.25739/vnr9-xt59. 
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