REFERENCES
AACC. AACC approved methods of analysis. 11th ed. St. Paul: AACC
International; 2010.
Adebo O, Medina-Meza GI. Impact of fermentation on the phenolic
compounds and antioxidant activity of whole cereal grains: A mini
review. Molecules (Basel, Switzerland). 2020;25(4):927.
doi:10.3390/molecules25040927.
Adler-Nissen J. Determination of the degree of hydrolysis of food
protein hydrolysates by trinitrobenzenesulfonic acid. J Agric Food Chem.
1979;27(6):1256-1262. doi:10.1021/jf60226a042.
Aljubori A, Idrus Z, Soleimani FA, Abdullah N, Boo LJ. Response of
broiler chickens to dietary inclusion of fermented canola meal under
heat stress condition. Ital J Anim Sci. 2017;16(4):546-551.
doi:10.1080/1828051X.2017.1292830.
AOAC. Official methods of analysis of AOAC international. 18th ed.
Gaithersburg: AOAC International; 2005.
Bueckert RA, Thavarajah D, Thavarajah P, Pritchard J. Phytic acid and
mineral micronutrients in field-grown chickpea (Cicer arietinumL.) cultivars from western Canada. Eur Food Res Technol. 2011;
233:203-212. doi:10.1007/s00217-011-1495-8.
Chandra-Hioe M, Wong C, Arcot J. The potential use of fermented chickpea
and faba bean flour as food ingredients. Plant Foods Hum Nutr
(Dordrecht). 2016;71(1):90-95. doi:10.1007/s11130-016-0532-y.
Croat JR, Berhow M, Karki B, Muthukumarappan K, Gibbons WR. Conversion
of canola meal into a high-protein feed additive via solid-state fungal
incubation process. J Am Oil Chem Soc. 2016;93(4):499-507.
doi:10.1007/s11746-016-2796-7.
Croat JR, Karki B, Berhow M, Iten L, Muthukumarappan K, Gibbons WR.
Utilizing pretreatment and fungal incubation to enhance the nutritional
value of canola meal. J Appl Microbiol. 2017;123(2):362-371.
doi:10.1111/jam.13507.
El-Batal A, Abdel KH. Phytase production and phytic acid reduction in
rapeseed meal by Aspergillus niger during solid state
fermentation. Food Res Int. 2001;34(8):715-720.
doi:10.1016/s0963-9969(01)00093-x.
Emkani M, Oliete B, Saurel R. Effect of lactic acid fermentation on
legume protein properties, a review. Fermentation. 2022;8(6):244.
doi:10.3390/fermentation8060244.
Febrianto NA, Yang T. Producing high quality edible oil by using
eco-friendly technology: A review. Adv J Food Sci Technol.
2011;3(4):317-326.
Ismail F, Vaisey‐Genser M, Fyfe B. Bitterness and astringency of
sinapine and its components. J Food Sci. 1981;46(4):1241-1244.
doi:10.1111/j.1365-2621.1981.tb03031.x.
Jung S, Murphy P, Johnson L. Physicochemical and functional properties
of soy protein substrates modified by low levels of protease hydrolysis.
J Food Sci. 2005;70(2):C180-C187.
doi:10.1111/j.1365-2621.2005.tb07080.x.
Kalaydzhiev H, Ivanova P, Stoyanova M, Pavlov A, Rustad T, Silva C,
Chalova V. Valorization of rapeseed meal: Influence of ethanol
antinutrients removal on protein extractability, amino acid composition
and fractional profile. Waste Biomass Valorization.
2019;11(6):2709-2719. doi:10.1007/s12649-018-00553-1.
Kasprzak MM, Houdijk JGM, Kightley S, Olukosi OA, White GA, Carre P,
Wiseman J. Effects of rapeseed variety and oil extraction method on the
content and ileal digestibility of crude protein and amino acids in
rapeseed cake and softly processed rapeseed meal fed to broiler
chickens. Animal Feed Science and Technology. 2016: 213:90-98.
doi:10.1016/j.anifeedsci.2016.01.002
Kumitch H, Stone A, Nosworthy M, Nickerson M, House J, Korber D, Tanaka
T. Effect of fermentation time on the nutritional properties of pea
protein‐enriched flour fermented by Aspergillus oryzae andAspergillus niger. Cereal Chem. 2020;97(1):104-113.
doi:10.1002/cche.10234.
Lücke F, Fritz V, Tannhäuser K, Arya A. Controlled fermentation of
rapeseed presscake by Rhizopus , and its effect on some components
with relevance to human nutrition. Food Res Int. 2019;120:726-732.
doi:10.1016/j.foodres.2018.11.031.
Olukomaiya OO, Fernando WC, Mereddy R, Li X, Sultanbawa Y. Solid-state
fermentation of canola meal with Aspergillus sojae, Aspergillus
ficuum and their co-cultures: Effects on physicochemical,
microbiological and functional properties. LWT. 2020;127:109362.
doi:10.1016/j.lwt.2020.109362.
Osman M. Changes in sorghum enzyme inhibitors, phytic acid, tannins andin vitro protein digestibility occurring during Khamir (local
bread) fermentation. Food Chem. 2004;88(1): 129-134.
doi:10.1016/j.foodchem.2003.12.038.
Pal Vig A, Walia A. Beneficial effects of Rhizopus oligosporusfermentation on reduction of glucosinolates, fibre and phytic acid in
rapeseed (Brassica napus ) meal. Bioresour Technol.
2001;78(3):309-312. doi:10.1016/s0960-8524(01)00030-x.
Plaipetch P, Yakupitiyage A. Effect of replacing soybean meal with
yeast‐fermented canola meal on growth and nutrient retention of Nile
tilapia, Oreochromis niloticus (Linnaeus 1758). Aquac Res.
2014;45(11):1744–1753. doi:10.1111/are.12119.
Shahidi F, Naczk M. An overview of
the phenolics of canola and rapeseed: Chemical, sensory and nutritional
significance. J Am Oil Chem’ Soc. 1992;69(9):917-924.
doi:10.1007/BF02636344.
Shi C, He J, Yu J, Yu B, Huang Z, Mao X, et al. Solid state fermentation
of rapeseed cake with Aspergillus niger for degrading
glucosinolates and upgrading nutritional value. J Anim Sci Biotechnol.
2015;6(1). doi:10.1186/s40104-015-0015-2.
Simon J, Wootton S, Johnson T, Karki B, Zahler J, Baldwin E, et al.
Solid state fermentation of carinata (Brassica carinata ) meal
using various fungal strains to produce a protein-rich product for feed
application. J Microb Biochem Technol. 2017;09(02).
doi:10.4172/1948-5948.1000344.
Skalickova S, Ridoskova A, Slama P, Skladanka J, Skarpa P, Smykalova I,
Horacek J, Dostalova R, Horky P. Effect of lactic fermentation and
cooking on nutrient and mineral digestibility of peas. Front Nutr
(Lausanne). 2022;9:838963. doi:10.3389/fnut.2022.838963.
Tinus T, Damour M, Van Riel V, Sopade P. Particle size-starch–protein
digestibility relationships in cowpea (Vigna unguiculata ). J Food
Eng. 2012;113(2):254-264. doi:10.1016/j.jfoodeng.2012.05.041.
Wang X, Jin Q, Wang T, Huang J, Xia Y, Yao L, et al. Screening of
glucosinolate-degrading strains and its application in improving the
quality of rapeseed meal. Ann Microbiol. 2012;62(3):1013-1020.
doi:10.1007/s13213-011-0341-3.
Wu J, Muir A. Comparative structural, emulsifying, and biological
properties of 2 major canola proteins, cruciferin and napin. J Food
Sci. 2008;73(3):C210-C216. doi:10.1111/j.1750-3841.2008.00675.x.
Zhang B, Liu G, Ying D, Sanguansri L, Augustin MA. Effect of extrusion
conditions on the physico-chemical properties and in vitroprotein digestibility of canola meal. Food Res Int. 2017;100(1):658-664.
doi:10.1016/j.foodres.2017.07.060.