References
Aldridge, H.D.J.N., Rautenbach, I.L., 1987. Morphology, Echolocation and
Resource Partitioning in Insectivorous Bats. J. Anim. Ecol. 56,
763–778. https://doi.org/10.2307/4947
Beilke, E.A., Blakey, R.V., O’Keefe, J.M., 2021. Bats partition activity
in space and time in a large, heterogeneous landscape. Ecol. Evol. 11,
6513–6526. https://doi.org/10.1002/ece3.7504
Benedict, R.A., Benedict, S.K., Howell, D.L., 2017. Use of Buildings by
Indiana Bats (Myotis sodalis) and Other Bats in South-central Iowa. Am.
Midl. Nat. 178, 29–35. https://doi.org/10.1674/0003-0031-178.1.29
Bommarco, R., Kleijn, D., Potts, S.G., 2013. Ecological intensification:
harnessing ecosystem services for food security. Trends Ecol. Evol. 28,
230–238. https://doi.org/10.1016/J.TREE.2012.10.012
Boughey, K.L., Lake, I.R., Haysom, K.A., Dolman, P.M., 2011. Improving
the biodiversity benefits of hedgerows: How physical characteristics and
the proximity of foraging habitat affect the use of linear features by
bats. Biol. Conserv. 144, 1790–1798.
https://doi.org/10.1016/j.biocon.2011.02.017
Boyles, J., Sole, C., Cryan, P., McCracken, G., 2013. On estimating the
economic value of insectivorous bats: prospects and priorities for
biologists, in: Adams, R., Pedersen, S. (Eds.), Bat Evolution, Ecology,
and Conservation. Springer New York, New York, pp. 501–515.
https://doi.org/10.1007/978-1-4614-7397-8_24
Boyles, J.G., Cryan, P.M., McCracken, G.F., Kunz, T.H., 2011. Economic
importance of bats in agriculture. Science 332, 41–42.
https://doi.org/10.1126/SCIENCE.1201366
Brooks, M.E., Kristensen, K., Van Benthem, K.J., Magnusson, A., Berg,
C.W., Nielsen, A., Skaug, H.J., Machler, M., Bolker, B.M., 2017. glmmTMB
balances speed and flexibility among packages for zero-inflated
generalized linear mixed modeling. R J. 9.
https://doi.org/10.3929/ethz-b-000240890
Burgar, J.M., Stokes, V.L., Craig, M.D., 2017. Habitat features act as
unidirectional and dynamic filters to bat use of production landscapes.
Biol. Conserv. 209, 280–288.
https://doi.org/10.1016/j.biocon.2017.02.024
Cerezo, A., Conde, M.C., Poggio, S.L., 2011. Pasture area and landscape
heterogeneity are key determinants of bird diversity in intensively
managed farmland. Biodivers. Conserv. 20, 2649.
https://doi.org/10.1007/s10531-011-0096-y
Chaplin-Kramer, R., O’Rourke, M.E., Blitzer, E.J., Kremen, C., 2011. A
meta-analysis of crop pest and natural enemy response to landscape
complexity. Ecol. Lett. 14, 922–932.
https://doi.org/10.1111/J.1461-0248.2011.01642.X
Cravens, Z.M., Brown, V.A., Divoll, T.J., Boyles, J.G., 2018.
Illuminating prey selection in an insectivorous bat community exposed to
artificial light at night. J. Appl. Ecol. 55, 705–713.
https://doi.org/10.1111/1365-2664.13036
Davidai, N., Westbrook, J.K., Lessard, J.P., Hallam, T.G., McCracken,
G.F., 2015. The importance of natural habitats to Brazilian free-tailed
bats in intensive agricultural landscapes in the Winter Garden region of
Texas, United States. Biol. Conserv. 190, 107–114.
https://doi.org/10.1016/j.biocon.2015.05.015
Davy, C.M., Squires, K., Zimmerling, J.R., 2021. Estimation of
spatiotemporal trends in bat abundance from mortality data collected at
wind turbines. Conserv. Biol. 35, 227–238.
https://doi.org/10.1111/cobi.13554
Diffenbaugh, N.S., Krupke, C.H., White, M.A., Alexander, C.E., 2008.
Global warming presents new challenges for maize pest management.
Environ. Res. Lett. 3, 044007.
https://doi.org/10.1088/1748-9326/3/4/044007
Eeraerts, M., Smagghe, G., Meeus, I., 2019. Pollinator diversity, floral
resources and semi-natural habitat, instead of honey bees and intensive
agriculture, enhance pollination service to sweet cherry. Agric.
Ecosyst. Environ. 284, 106586.
https://doi.org/10.1016/j.agee.2019.106586
Fill, C., Allen, C., Twidwell, D., Benson, J., 2022. Spatial
distribution of bat activity in agricultural fields: implications for
ecosystem service estimates. Ecol. Soc. 27.
https://doi.org/10.5751/ES-13170-270211
Ford, W.M., Menzel, M.A., Rodrigue, J.L., Menzel, J.M., Johnson, J.B.,
2005. Relating bat species presence to simple habitat measures in a
central Appalachian forest. Biol. Conserv. 126, 528–539.
https://doi.org/10.1016/j.biocon.2005.07.003
Frey-Ehrenbold, A., Bontadina, F., Arlettaz, R., Obrist, M.K., 2013.
Landscape connectivity, habitat structure and activity of bat guilds in
farmland-dominated matrices. J. Appl. Ecol. 50, 252–261.
https://doi.org/10.1111/1365-2664.12034
Frick, W.F., Kingston, T., Flanders, J., 2020. A review of the major
threats and challenges to global bat conservation. Ann. N. Y. Acad. Sci.
1469, 5–25. https://doi.org/10.1111/nyas.14045
Friedenberg, N.A., Frick, W.F., 2021. Assessing fatality minimization
for hoary bats amid continued wind energy development. Biol. Conserv.
262. https://doi.org/10.1016/j.biocon.2021.109309
Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence,
D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C.,
2010. Food security: The challenge of feeding 9 billion people. Science
327, 812–818.
Gorman, K.M., Barr, E.L., Ries, L., Nocera, T., Ford, W.M., 2021. Bat
activity patterns relative to temporal and weather effects in a
temperate coastal environment. Glob. Ecol. Conserv. 30, e01769.
https://doi.org/10.1016/j.gecco.2021.e01769
Hardin, J., Hilbe, J., 2007. Generalized linear models and extensions.
Stata Press, College Station, TX.
Heim, O., Schröder, A., Eccard, J., Jung, K., Voigt, C.C., 2016.
Seasonal activity patterns of European bats above intensively used
farmland. Agric. Ecosyst. Environ. 233, 130–139.
https://doi.org/10.1016/j.agee.2016.09.002
Henderson, L.E., Broders, H.G., 2008. Movements and Resource Selection
of the Northern Long-Eared Myotis (Myotis septentrionalis) in a
Forest—Agriculture Landscape. J. Mammal. 89, 952–963.
https://doi.org/10.1644/07-MAMM-A-214.1
Hoyt, J.R., Kilpatrick, A.M., Langwig, K.E., 2021. Ecology and impacts
of white-nose syndrome on bats. Nat. Rev. Microbiol. 19, 196–210.
https://doi.org/10.1038/s41579-020-00493-5
Hughes, M.J., Braun de Torrez, E.C., Ober, H.K., 2021. Big bats binge
bad bugs: Variation in crop pest consumption by common bat species.
Agric. Ecosyst. Environ. 314. https://doi.org/10.1016/j.agee.2021.107414
Kalda, O., Kalda, R., Liira, J., 2015. Multi-scale ecology of
insectivorous bats in agricultural landscapes. Agric. Ecosyst. Environ.
199, 105–113. https://doi.org/10.1016/j.agee.2014.08.028
Kalka, M.B., Smith, A.R., Kalko, E.K.V., 2008. Bats Limit Arthropods and
Herbivory in a Tropical Forest. Science 320, 71–71.
https://doi.org/10.1126/science.1153352
Kolkert, H., Andrew, R., Smith, R., Rader, R., Reid, N., 2020a.
Insectivorous bats selectively source moths and eat mostly pest insects
on dryland and irrigated cotton farms. Ecol. Evol. 10, 371–388.
https://doi.org/10.1002/ece3.5901
Kolkert, H., Smith, R., Rader, R., Reid, N., 2020b. Insectivorous bats
foraging in cotton crop interiors is driven by moon illumination and
insect abundance, but diversity benefits from woody vegetation cover.
Agric. Ecosyst. Environ. 302, 107068.
https://doi.org/10.1016/j.agee.2020.107068
Kunz, T.H., Braun de Torrez, E., Bauer, D., Lobova, T., Fleming, T.H.,
2011. Ecosystem services provided by bats. Ann. N. Y. Acad. Sci. 1223,
1–38. https://doi.org/10.1111/j.1749-6632.2011.06004.x
Kunz, T.H., Whitaker, J.O., Wadanoli, M.D., 1995. Dietary energetics of
the insectivorous Mexican free-tailed bat (Tadarida brasiliensis) during
pregnancy and lactation. Oecologia 101, 407–415.
https://doi.org/10.1007/BF00329419
Lentini, P.E., Gibbons, P., Fischer, J., Law, B., Hanspach, J., Martin,
T.G., 2012. Bats in a Farming Landscape Benefit from Linear Remnants and
Unimproved Pastures. PLOS ONE 7, e48201.
https://doi.org/10.1371/journal.pone.0048201
Lima, S.L., O’Keefe, J.M., 2013. Do predators influence the behaviour of
bats? Biol. Rev. 88, 626–644. https://doi.org/10.1111/brv.12021
Loeb, S.C., O’Keefe, J.M., 2011. Bats and Gaps: The Role of Early
Successional Patches in the Roosting and Foraging Ecology of Bats, in:
Greenberg, C., Collins, B., Thompson III, F. (Eds.), Sustaining Young
Forest Communities: Ecology and Management of Early Successional
Habitats in the Central Hardwood Region, USA, Managing Forest
Ecosystems. Springer Netherlands, Dordrecht, pp. 167–189.
https://doi.org/10.1007/978-94-007-1620-9_10
Loeb, S.C., Rodhouse, T.J., Ellison, L.E., Lausen, C.L., Reichard, J.D.,
Irvine, K.M., Ingersoll, T.E., Coleman, J.T.H., Thogmartin, W.E., Sauer,
J.R., Francis, C.M., Bayless, M.L., Stanley, T.R., Johnson, D.H., 2015.
A plan for the North American Bat Monitoring Program (NABat). Gen Tech
Rep SRS-208 Asheville NC US Dep. Agric. For. Serv. South. Res. Stn. 208,
1–100. https://doi.org/10.2737/SRS-GTR-208
Mager, K., Nelson, T., 2001. Roost-site selection by eastern red bats
(Lasiurus borealis). Am. Midl. Nat. 145, 120–126.
https://doi.org/10.1674/0003
Maine, J.J., Boyles, J.G., 2015. Bats initiate vital agroecological
interactions in corn. Proc. Natl. Acad. Sci. U. S. A. 112, 12438–12443.
https://doi.org/10.1073/pnas.1505413112
Maslo, B., Mau, R.L., Kerwin, K., McDonough, R., McHale, E., Foster,
J.T., 2022. Bats provide a critical ecosystem service by consuming a
large diversity of agricultural pest insects. Agric. Ecosyst. Environ.
324. https://doi.org/10.1016/j.agee.2021.107722
McCracken, G.F., Westbrook, J.K., Brown, V.A., Eldridge, M., Federico,
P., Kunz, T.H., 2012. Bats Track and Exploit Changes in Insect Pest
Populations. PLoS ONE 7. https://doi.org/10.1371/JOURNAL.PONE.0043839
Mikula, P., Morelli, F., Lučan, R.K., Jones, D.N., Tryjanowski, P.,
2016. Bats as prey of diurnal birds: a global perspective. Mammal Rev.
46, 160–174. https://doi.org/10.1111/mam.12060
Monck-Whipp, L., Martin, A.E., Francis, C.M., Fahrig, L., 2018. Farmland
heterogeneity benefits bats in agricultural landscapes. Agric. Ecosyst.
Environ. 253, 131–139. https://doi.org/10.1016/j.agee.2017.11.001
Murray, S.W., Kurta, A., 2004. Nocturnal activity of the endangered
Indiana bat (Myotis sodalis). J. Zool. 262, 197–206.
https://doi.org/10.1017/S0952836903004503
Oerke, E., 2005. Crop losses to pests. J. Agric. 144, 31–43.
https://doi.org/10.1017/S0021859605005708
Pimentel, D., 2009. Pesticides and Pest Control, in: Peshin, R., Dhawan,
A.K. (Eds.), Integrated Pest Management: Innovation-Development Process:
Volume 1. Springer Netherlands, Dordrecht, pp. 83–87.
https://doi.org/10.1007/978-1-4020-8992-3_3
Ray, D.K., Mueller, N.D., West, P.C., Foley, J.A., 2013. Yield Trends
Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 8.
https://doi.org/10.1371/JOURNAL.PONE.0066428
Russo, D., Bosso, L., Ancillotto, L., 2018. Novel perspectives on bat
insectivory highlight the value of this ecosystem service in farmland:
Research frontiers and management implications. Agric. Ecosyst. Environ.
266, 31–38.
Smith, T.N., Furnas, B.J., Nelson, M.D., Barton, D.C., Clucas, B., 2021.
Insectivorous bat occupancy is mediated by drought and agricultural land
use in a highly modified ecoregion. Divers. Distrib. 27, 1152–1165.
https://doi.org/10.1111/ddi.13264
Tilman, D., Fargione, J., Wolff, B., D’Antonio, C., Dobson, A., Howarth,
R., Schindler, D., Schlesinger, W.H., Simberloff, D., Swackhamer, D.,
2001. Forecasting Agriculturally Driven Global Environmental Change.
Science 292, 281–284.
Tschumi, M., Albrecht, M., Bärtschi, C., Collatz, J., Entling, M.H.,
Jacot, K., 2016. Perennial, species-rich wildflower strips enhance pest
control and crop yield. Agric. Ecosyst. Environ. 220, 97–103.
https://doi.org/10.1016/j.agee.2016.01.001
Whitaker, J.O., 1995. Food of the Big Brown Bat Eptesicus fuscus from
Maternity Colonies in Indiana and Illinois. Am. Midl. Nat. 134,
346–360.
Whitaker, J.O., Hamilton, W.J., 1998. Mammals of the Eastern United
States, 3rd ed. Cornell University Press, Ithaca, New York.
Wickramasinghe, L.P., Harris, S., Jones, G., Vaughan, N., 2003. Bat
activity and species richness on organic and conventional farms: Impact
of agricultural intensification. J. Appl. Ecol. 40, 984–993.
https://doi.org/10.1111/J.1365-2664.2003.00856.X
Willis, C.K.R., Brigham, R.M., 2005. Physiological and Ecological
Aspects of Roost Selection by Reproductive Female Hoary Bats (Lasiurus
cinereus). J. Mammal. 86, 85–94.
https://doi.org/10.1644/1545-1542(2005)086<0085:PAEAOR>2.0.CO;2
Willis, C.K.R., Brigham, R.M., 2004. Roost switching, roost sharing and
social cohesion: forest-dwelling big brown bats, Eptesicus fuscus,
conform to the fission–fusion model. Anim. Behav. 68, 495–505.
https://doi.org/10.1016/j.anbehav.2003.08.028