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Abstract17

We present a Python package geared towards the intuitive analysis and visualization of18

paleoclimate timeseries, Pyleoclim. The code is open-source, object-oriented, and built19

upon the standard scientific Python stack, allowing users to take advantage of a large20

collection of existing and emerging techniques. We describe the code’s philosophy, struc-21

ture and base functionalities, and apply it to three paleoclimate problems: (1) orbital-22

scale climate variability in a deep-sea core, illustrating spectral, wavelet and coherency23

analysis in the presence of age uncertainties; (2) correlating a high-resolution speleothem24

to a climate field, illustrating correlation analysis in the presence of various statistical25

pitfalls (including age uncertainties); (3) model-data confrontations in the frequency do-26

main, illustrating the characterization of scaling behavior. We show how the package may27

be used for transparent and reproducible analysis of paleoclimate and paleoceanographic28

datasets, supporting FAIR software and an open science ethos. The package is supported29

by an extensive documentation and a growing library of tutorials shared publicly as videos30

and cloud-executable Jupyter notebooks, to encourage adoption by new users.31

Plain Language Summary32

This article describes a software application called Pyleoclim meant to help sci-33

entists analyze datasets of ordered observations, particularly applicable to the study of34

past climates, environments, and ecology. Pyleoclim is meant to be used by domain sci-35

entists as well as students interested in learning more about Earth’s climate through ex-36

amples provided in the documentation and online tutorials. Pyleoclim is intended to37

help scientists save time with their analyses, documenting the steps for better transparency,38

and as such, allows other scientists to reproduce results from previous studies.39

1 Introduction40

As paleoclimate and paleoceanographic data continue to increase in size, diversity,41

and quality, it remains a longstanding challenge to adequately extract and visualize the42

quantitative information present in such records so as to constrain model estimates of43

past and future change (National Academies of Sciences, Engineering, and Medicine, 2021).44

Indeed, these datasets often violate basic statistical assumptions (i.e., normality, inde-45

pendence, even sampling in time, high signal-to-noise ratio), requiring specific tools and46

workflows that go beyond what can be found in standard software libraries. In addition47
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to recent efforts in R (McKay et al., 2021) and Matlab (Greene et al., 2019), a similar48

offering in the Python research ecosystem was heretofore lacking. Python’s popularity49

among physical and data scientists has been on the rise (Perkel, 2015), with a growing50

collection of libraries for data analysis (e.g. pandas (McKinney, 2010), statsmodels (Seabold51

& Perktold, 2010), SciPy (Virtanen et al., 2020)) and visualization (e.g. matplotlib (Hunter,52

2007), seaborn (Waskom, 2021) and Cartopy (Elson et al., 2022)), including libraries53

tailored to climate research (e.g., xarray (Hoyer & Hamman, 2017) and climlab (Rose,54

2018)). However, none of the existing packages can natively handle the challenges of pa-55

leoclimatological and paleoceanographic datasets (i.e, observations are often unevenly-56

spaced in time, uncertainties are present in both abscissa and ordinate, proxies hold an57

often complex relationship to dynamically-relevant variables). As such, standard anal-58

ysis methods do not work ”out-of-the-box”, often requiring time-consuming adaptation59

by users. In addition, several well-established statistical techniques (e.g. controlling for60

spurious null hypothesis rejection with the False Discovery Rate (Benjamini & Hochberg,61

1995) or performing wavelet analysis on unevenly-spaced data (Foster, 1996)) are not62

currently implemented in a widely-available, well documented and user-friendly pack-63

age in a major programming language. Lastly, there is a persistent language barrier be-64

tween data generated by paleo-observations and model simulations, which few frameworks65

address explicitly, particularly from the viewpoint of uncertainty quantification (Dee et66

al., 2015). To remedy this situation, we present Pyleoclim, a Python package specif-67

ically designed for scientific studies in paleoceanography and paleoclimatology, using data68

generated from both observations or models. While it is impossible to anticipate all user69

needs, the package is meant to provide a one-stop shop for the most common tasks en-70

countered in the analysis of timeseries in our field, like interpolation, filtering, spectral71

and wavelet analysis, correlation analysis, principal component analysis, and many more.72

It has been, and will continue to be, used for research and teaching.73

The remainder of this paper is organized as follows: Section 2 describes the Pyleoclim74

codebase and its re-use of emerging data standards for paleoclimate datasets; Section75

3 describes three case studies, highlighting how Pyleoclim allows for FAIR (Findable,76

Accessible, Interoperable, and Reusable) paleoclimate research; Section 4 provides a con-77

clusion and outlook towards future versions and scientific uses of the package.78
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2 The Pyleoclim Codebase79

2.1 Philosophy80

Pyleoclim was designed to harness the power of various Python libraries for data81

science (e.g., NumPy (Harris et al., 2020), Pandas (McKinney, 2010), SciPy (Virtanen et82

al., 2020), and scikit-learn (Pedregosa et al., 2011)) and visualization (Matplotlib83

(Hunter, 2007), seaborn (Waskom, 2021), and Cartopy (Elson et al., 2022)) for pale-84

oclimatology and paleoceanography. The user application programming interface (API)85

is designed around manipulating objects (such as a time series) for analysis. This design,86

called object-oriented programming (OOP), places the data at the center of the anal-87

ysis, rather than the functions. The objects contain both data and metadata in the form88

of fields that can be entered by a user (e.g. a timeseries would require at least values for89

time and the quantity being measured in time, but optionally allow for labels and units)90

and code that represents procedures that are applicable to each object. The number of91

data and metadata fields is dictated by the procedures (and their desired level of automa-92

tion). OOP is ubiquitous in Python and presents several advantages over method-oriented93

programming: it follows the natural relationship between an object and a method, with94

each call representing a clearly defined action that helps constructing workflows through95

method chaining (for an example, see Section 2.3).96

Pyleoclim is supported by extensive documentation (https://pyleoclim-util97

.readthedocs.io/) that provides minimal usage examples for the code. Scientific ex-98

amples in the form of Jupyter notebooks (Kluyver et al., 2016) are available on several99

GitHub repositories (Khider, Emile-Geay, Zhu, & James, 2022; Khider, Emile-Geay, &100

Zhu, 2022; Emile-Geay et al., 2019; Khider, Emile-Geay, James, et al., 2022). Tutorials101

are also provided on YouTube (https://www.youtube.com/playlist?list=PL93NbaRnKAuF4WpIQf102

-4y U4lo-GqcrcW) and in the form of a Jupyter Book (http://linked.earth/PyleoTutorials/).103

The LinkedEarth Discourse forum (https://discourse.linked.earth) also provides104

an avenue to discuss the science applications of Pyleoclim.105

The package is open-source and follows the principle of Open Development. As such,106

the code is available on GitHub under an open-source license. A contributing guide (https://107

pyleoclim-util.readthedocs.io/en/master/contribution guide.html) details108

how the community can engage in Pyleoclim’s development. The simplest level of en-109

gagement is to report bugs as GitHub issues and starting community discussions about110
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scientific use cases on the LinkedEarth Discourse forum (https://discourse.linked111

.earth). More proficient programmers can also contribute by upgrading existing func-112

tionalities or creating new ones through GitHub pull requests.113

Finally, publishers and funding agencies are increasingly promoting the principles114

of FAIR science, not only for data (Wilkinson et al., 2016) but also software (Lamprecht115

et al., 2020) and scientific workflows (Goble et al., 2020). Pyleoclim follows the guide-116

lines set forth for FAIR software: it is available and versioned on GitHub, licensed un-117

der a GNU public license, registered on the Python Package Index (Pypi), and citable118

from a Zenodo Digital Object Identifier. Various versions of the software are available119

through Docker containers stored on quay.io. As such, Pyleoclim supports the devel-120

opment of FAIR scientific workflows (Goble et al., 2020).121

2.2 Functionalities122

Pyleoclim contains functionalities designed to help users customize their own work-123

flows from data pre-processing (such as standardizing, detrending, removing outliers, plac-124

ing time series on a common time axis) to analysis (spectral and wavelet analysis, paleo-125

aware correlation, spatial and temporal decomposition) and visualization of the results.126

Most Pyleoclim functionalities leverage existing and well-documented software pack-127

ages:128

Visualizations were built upon the Matplotlib (Hunter, 2007) and seaborn packages129

(Waskom, 2021). Mapping capabilities are provided through Cartopy (Elson et130

al., 2022).131

Signal processing and statistics: the SciPy package (Virtanen et al., 2020) supports132

signal processing functionalities, including methods for digital filtering and spec-133

tral analysis (namely the basic periodogram, Welch’s periodogram, and the Lomb-134

Scargle periodogram (VanderPlas, 2018)). Pyleoclim also allows for the use of135

the multi-taper method (Thomson, 1982) as implemented in nitime (Millman &136

Brett, 2007), many types of interpolation (e.g. linear, quadratic, natural splines),137

statistics (e.g. kernel density estimation, quantile estimation) and various opti-138

mization functions used internally by Pyleoclim.139

Machine Learning: the scikit-learn (Pedregosa et al., 2011) package supports clus-140

tering for outlier detection.141
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Timeseries modeling statsmodels (Seabold & Perktold, 2010) supports principal com-142

ponent analysis (PCA (Hannachi et al., 2007)), parametric timeseries modeling,143

and Granger causality estimation.144

Wavelet analysis via the continuous wavelet transform, as implemented in Matlab by145

Torrence and Compo (1998), was recently ported to Python (Predybaylo et al.,146

2022).147

These basic functionalities were adjusted for paleoclimate data either by changing the148

default parameter values to ones more appropriate for the data characteristics, raising149

errors when appropriate (e.g. when trying to apply a method meant for evenly-spaced150

series on an unevenly-spaced series), or performing regridding within the analysis func-151

tion at the user’s request.152

In addition, some functionalities were coded in Python specifically for the pack-153

age, such as the Weighted Wavelet Z-Transform (Foster, 1996; Kirchner & Neal, 2013)154

and Liang-Kleeman causality (Liang, 2013, 2014, 2015, 2016, 2018). Because of the non-155

linear and nonstationary nature of many paleoclimate timeseries (Ghil et al., 2002), Pyleoclim156

features advanced detrending techniques such as empirical mode decomposition (Huang157

et al., 1998) and Savitzky-Golay filtering (Savitzky & Golay, 1964). On the analysis side,158

Pyleoclim enables Singular Spectrum Analysis (SSA) (Vautard & Ghil, 1989; Vautard159

et al., 1992; Ghil et al., 2002)), including significance testing for ”red” timeseries (Allen160

& Smith, 1996) and tolerance for missing values (Schoellhamer, 2001), which enables SSA161

to be used as an interpolant.162

All these functionalities are available through the Pyleoclim utilities APIs, which163

are meant for developers and apply to NumPy (Harris et al., 2020) arrays. This means164

that those methods, which often are not specific to observational paleoclimate data, can165

easily be repurposed by other packages that rely on arrayed data (e.g. climate model out-166

put). However, most users are expected to interact with the Pyleoclim user APIs, which167

group these functionalities into a common interface attached to specific objects, which168

we now describe.169

2.3 User API170

The main interface for Pyleoclim revolves around objects that can be manipulated171

for analysis (Figure 1). The functionalities described in Section 2.2 are grouped into ob-172
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Figure 1. Diagram of the objects and associated functions in the Pyleoclim user APIs.

ject methods that offer a common interface to call the various functions from the sup-173

porting libraries and internally handle the data transformation for these functions. At174

the user level, Pyleoclim allows scientists to concentrate on their workflows rather than175

handle data transformations among the various Python data objects and types.176

The main object in Pyleoclim is the Series object, which takes as arguments the177

values for time and the variable of interest, as well as their names and units. These Series178

objects can be easily created from various file formats, e.g. csv files:179

[1] import pandas as pd

[2] import pyleoclim as pyleo

[3] url = 'https://raw.githubusercontent.com/LinkedEarth/Pyleoclim_util/' +\

'master/example_data/oni.csv'

[4] df = pd.read_csv(url,header=0)

[5] ts = pyleo.Series(time=df['Dec year'],value=df['NINO34_ANOM'],

time_name='Year', value_name='SST anomaly',

time_unit='CE', value_unit='$^\circ$C',

label='Ni~no 3.4', clean_ts=True)
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The Series object ts contains both the data in the time and value arguments180

as well as relevant metadata, such as the name and units of each variable. The meta-181

data become especially relevant for plotting; however, Pyleoclim has a rudimentary un-182

derstanding of paleo-relevant time and attempts to correct time units when two series183

are compared (for instance one in kyr BP and the other in yr BP). The label metadata184

is used to build the legend on figures. The argument clean ts is used here to remove185

NaNs and sort the timeseries in increasing time.186

Once the data are loaded into a Series object, complex analyses can be made through187

simple commands. For illustrative purposes, we run it through spectral and wavelet anal-188

ysis:189

[6] ts_detrend = ts.detrend() # remove trends

[7] ts_interp = ts_detrend.interp() # interpolate over missing values

[8] ts_std = ts_interp.standardize() # standardizing

[9] PSD = ts_std.spectral(method='mtm') #spectral analysis

[10] PSD_signif = PSD.signif_test() #run AR(1) significance test

Code lines [6]-[8] correspond to pre-processing steps (in this case, detrending, in-190

terpolation, and standardizing) using the default methods in Pyleoclim. The spectral191

density is computed through the MTM method, and the result stored in a new PSD ob-192

ject, from which a significance test against an AR(1) benchmark (Emile-Geay, 2017) can193

be performed.194

One advantage of OOP is method chaining: since each method returns a Pyleoclim195

object, the calls can be chained together in a single statement without having to store196

the intermediate results. With method chaining, the block code above can be rewritten197

as a single line:198

PSD_signif = ts.detrend().interp().standardize().spectral(method='mtm').signif_test()

It can be beneficial to limit the chaining to the pre-processing steps so the result-199

ing Series can be used with other methods like wavelet analysis, which produces a Scalogram200

object:201
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[11] scal = ts_std.wavelet(method='cwt') #wavelet analysis

[12] scal_signif=scal.signif_test(method='ar1asym') #run AR(1) significance test

The wavelet analysis presented here follows the method of Torrence and Compo202

(1998) to obtain the scalogram and significance level. Pyleoclim contains various meth-203

ods to visualize timeseries, periodograms, and scalograms. Here, we will generate a sum-204

mary of our analysis through a single method:205

[13] fig, ax = ts.summary_plot(PSD_signif, scal_signif,

time_lim=[1871,2022],

value_lim=[-3.5,3.5],

psd_label='PSD',

time_label='',

ts_plot_kwargs={'lgd_kwargs':{'loc':'upper right',

'bbox_to_anchor':(1.4,0.95)}},

gridspec_kwargs={'hspace':0,'wspace':0}) #plot

[14] ax['cb'].set_xlabel('Amplitude')

The resulting figure is shown in Figure 2. All figures generated by Pyleoclim are206

highly customizable, either directly through our APIs or Matplotlib/Cartopy. Let’s ex-207

amine the code above, which provides examples of the various options. Line [13] is for208

the direct customization of the resulting plot through Pyleoclim with the following in-209

formation: the limits for the time axis through the time lim argument, the limits for210

the y-axis of the timeseries plot (value lim argument), a new x-axis label for the pe-211

riodogram (psd label argument), removal of the time axis label (time label argument),212

a dictionary of Matplotlib arguments to deal with legend placement for the timeseries213

plot, and another dictionary to deal with the spacing between the various plots.214

Line [14] sets an appropriate label for the colorbar.215

Note that these plots can also be obtained individually:216

ts.plot()

PSD_signif.plot()

scal_signif.plot()
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Figure 2. Summary of the spectral and wavelet analysis performed on the Niño 3.4 SST

anomalies timeseries as encoded in Pyleoclim. The series displays significant power in the 2-

7year band, consistent with the El Niño Southern Oscillation.
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Even though plotting methods are available for the Series, PSD, and Scalogram217

objects, the behavior depends on the object to which it is attached. This is another ad-218

vantage of OOP: since the methods are attached to objects, they can share a name for219

a similar action (e.g., plotting) while behaving in a manner appropriate for each object.220

Although we expect that users will be creating Series objects from an existing file221

(e.g. xls, csv, NOAA, PANGAEA, netCDF), many Pyleoclim objects are generated as222

results of the analysis. For instance PSD is generated by spectral analysis methods, Scalogram223

by wavelet analysis methods, Coherence by cross-wavelet analysis methods, and Corr224

by correlation methods. Object creation in the development of Pyleoclim was motivated225

by the need to attach specific methods with specific behavior to particular objects (e.g.,226

significance testing for spectral and wavelet analysis or plotting methods).227

Several objects use the prefix Multiple (e.g., MultipleSeries, MultiplePSD), which228

signal that this object is comprised of a list of the basic Pyleoclim objects. For instance,229

the MultipleSeries object contains several Series objects, with dedicated plotting (e.g.,230

stackplot()) and analysis (e.g., principal component analysis (PCA)) methods that are231

applicable to collections of paleoclimate timeseries.232

2.4 Leveraging Paleoclimate Data Standards233

In addition to the data science and visualization libraries mentioned above, Pyleoclim234

is compatible with the Linked Paleo Data (LiPD (McKay & Emile-Geay, 2016)) format.235

LiPD is a universally-readable data container that stores metadata in a JSON-LD file236

(JavaScript Object Notation for Linked Data) and the data in tables saved in CSV for-237

mat. Utilities have been written in Matlab, Python, and R to manipulate these metadata-238

rich files. Consequently, we created two objects in Pyleoclim that take advantage of the239

additional, standardized metadata: the LiPD object, which allows users to deal with one240

file or a collection of files and have mapping capabilities, and the LipdSeries object, a241

child of the Series object. As such, LipdSeries inherits all the methods available for242

Series with additional functionalities that take advantage of the richness of the meta-243

data, such as dashboards for displaying relevant information (Figure 3).244
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Figure 3. Example dashboard in Pyleoclim enabled by LiPD. The dashboard consists of four

panels: the top left panel plots the timeseries, in this case the speleothem record from Crystal

Cave (McCabe-Glynn et al., 2013). Note that axis labels and legend are automatically gener-

ated from the metadata in the file. The envelope represents the age uncertainty obtained from

Bchron (Haslett & Parnell, 2008), a Bayesian age modeling software. The top right panel shows

the distribution of values. The bottom left panel displays the location of the record while the

bottom right displays the results of spectral analysis using the Lomb-Scargle method. To assess

the effect of age uncertainty on the interpretation of the peaks in the record, the spectral analysis

is performed on each of the members present in the age ensemble from Bchron.
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3 Three paleoclimate studies enabled by Pyleoclim245

To illustrate the use of Pyleoclim in research, we summarize three studies avail-246

able as fully executable Jupyter Notebooks as companion to this manuscript (see the code247

availability statement in the acknowledgements section). The first study walks through248

spectral, wavelet, and cross-wavelet analysis in the presence of age uncertainties. The249

second study is reproduced from Hu et al. (2017) and presents the pitfalls of using cor-250

relation analysis for the interpretation of a paleoclimate record. Finally, the last study251

shows how to reproduce the results of Zhu et al. (2019), using spectral analysis to as-252

sess whether current models can capture the continuum of climate variability.253

3.1 Orbital-scale Climate Variability in a Deep Sea Core254

The first case study concerns the analysis of paleoclimate records in the frequency255

domain (specifically spectral, wavelet, and coherence analysis). This type of analysis is256

often performed to look at common periodicities among records or between a record and257

its hypothesized forcing. Analysis of paleoclimate time series in the frequency domain258

is complicated by several factors:259

Irregular sampling: most spectral methods are designed for series that are evenly spaced260

in time. Hypothesizing over missing values can bias the statistical results and en-261

hance the the low-frequency components of the spectrum at the expense of the262

high-frequency components (Schulz & Stattegger, 1997; Schulz & Mudelsee, 2002).263

Methods that do not require interpolation, such as the Lomb-Scargle periodogram264

(Lomb, 1976; Scargle, 1982, 1989), also have known biases (Schulz & Mudelsee,265

2002; VanderPlas, 2018). The trade-offs of the various options need to be care-266

fully examined in light of the data.267

Pre-processing steps: in addition to interpolation, detrending and removal of outliers268

can affect the results of the analysis. Whether to use these options needs to be269

evaluated for the specific dataset and hypothesis to be tested.270

Age uncertainties: age uncertainties affect the location of features in time, so meth-271

ods need to allow for an ensemble of plausible chronologies (generated, for instance,272

by a Bayesian age model).273
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Pyleoclim offers a variety of pre-processing and spectral/wavelet analysis meth-274

ods to allow for a robust assessment of the time series characteristics in the frequency275

domain. This section and accompanying notebook walks the reader through spectral,276

wavelet, and coherence analysis of a marine deep sea record (Site ODP846) covering the277

past 5 million years and obtained from benthic δ18O (Mix et al., 1995; Shackleton et al.,278

1995) and alkenone paleothermometry (Lawrence et al., 2006). The core location is in279

the Eastern tropical Pacific (3.1◦S, 90.8◦W, 3296m). The age model (Khider et al., 2017)280

for the record was obtained by aligning the benthic record to the benthic stack of Lisiecki281

and Raymo (2005, LR04) using the HMM-Match algorithm developed by Lin et al. (2014).282

HMM-Match is a δ18O Bayesian alignment technique based on a hidden Markov model283

(HMM) to develop age models and accompanying uncertainties for deep sea cores.284

We first analyze the benthic δ18O record using both spectral and wavelet analy-285

sis appropriate for uneven timeseries. In this example, we use the Lomb-Scargle periodogram286

for spectral analysis and the Weighted Wavelet Z-Transform (Foster, 1996; Kirchner &287

Neal, 2013, WWZ) for both spectral and wavelet analysis (Figure 4). In both cases, the288

significance is assessed against an AR(1) benchmark. Within Pyleoclim, we use the same289

functionalities as presented in Section 2.3. We find that the record displays significant290

periodicities in the 40 kyr and 100 kyr bands. This result is hardly surprising consid-291

ering that the age model was obtained through alignment to the orbitally-tuned LR04292

record, which strongly oscillates at those frequencies. Furthermore, the scalogram reveals293

the non-stationary character of these periodicities, with a drop in power in the 100 kyr294

band at the mid-Pleistocene transition, ca 0.8 Ma (Paillard, 2001).295

The sea surface temperature (SST) record (Lawrence et al., 2006) shows similar,296

albeit less defined, power in the orbital band (Figure 5). Since the age model returns an297

ensemble of posterior draws (Lin et al., 2014; Khider et al., 2017), we can perform spec-298

tral analysis on each ensemble member to assess the robustness of our conclusions.299

Pyleoclim allows to load an age ensemble as a EnsembleSeries object, equipped with300

its own plotting and analysis functions. As illustrated in the companion notebook, we301

make use of the plot method, which shows various traces based on individual realiza-302

tions of the age model and the plot envelope method, which uses confidence intervals303

to communicate age uncertainty. The spectral method as applied to EnsembleSeries304

computes the periodogram for each age model realization in the ensemble. Pyleoclim305

allows users to plot the resulting ensemble periodograms to assess the robustness of the306
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Figure 4. Summary of the spectral and wavelet analysis performed on the benthic δ18O

record of Site ODP846 (Mix et al., 1995; Shackleton et al., 1995). Both analyses were performed

using the Weighted Wavelet Z-Transform (Foster, 1996; Kirchner & Neal, 2013) method. The

record displays significant periodicities in the 40 kyr and 100 kyr bands with a drop in power in

the 100 kyr band at the mid-Pleistocene transition.
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Figure 5. Summary of the spectral and wavelet analysis performed on the sea surface tem-

perature record of Site ODP846 (Lawrence et al., 2006). Both analyses were performed using

the Weighted Wavelet Z-Transform (Foster, 1996; Kirchner & Neal, 2013) method. The record

displays significant periodicities in the 40 kyr to 100 kyr bands.
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spectral peaks in face of age uncertainty. In the case of the Site ODP846 SST record,307

the age uncertainty precludes any meaningful interpretation of specific peaks in power308

for periods shorter than 40-50 kyr.309

Finally, we use Pyleoclim to perform wavelet coherence analysis (Grinsted et al.,310

2004) between the SST record from ODP846 (Figure 6) and insolation at 5◦S calculated311

using the climlab package (Rose, 2018). We limit the analysis to the first 3 million years312

of the record, when significant periodicities were apparent in the scalogram. The313

wavelet coherence method returns a Coherence object, which contains the cross-wavelet314

transform (XWT) and the wavelet transform coherence (WTC). XWT informs about315

areas where there is high common power between the two series. The analysis reveals316

high common power in the precession band ( 23 kyr) but the phase angles are irregu-317

lar. This is not surprising given the spectral analysis on the age ensemble, which shows318

large effects of age uncertainty at 20 kyr scales (compared to 40-100 kyr). Even if there319

was a regular behavior, the age uncertainty prevents us from capturing it in the anal-320

ysis. WTC shows areas of common behavior between the two time series even if there321

is low power. The analysis reveals coherence in the 23 kyr, 40 kyr, 100 kyr and 400 kyr322

bands, consistent with orbital forcing of climate. The phase angles in the two upper bands323

are also regular and show and an in-phase behavior in the eccentricity band (particu-324

larly around 1 Ma) and nearly in phase quadrature in the 400 kyr band.325

The example illustrates how Pyleoclim facilitates the use of sophisticated spec-326

tral and wavelet analysis methods to paleoclimate datasets, especially in regards to age327

uncertainties and irregular sampling. The package also offers a variety of pre-processing328

steps (i.e., detrending, removal of outliers and, if desired, interpolating schemes in the329

time domain) to construct workflows and easily assess the effect of each of these steps330

on the conclusions.331

3.2 Speleothem Correlations with a Temperature field332

Correlation analysis, despite its many shortcomings, remains a centerpiece of em-333

pirical analysis in many fields, particularly the paleosciences. Computing correlations334

is trivial enough; the difficulty lies in properly assessing their significance. Of particu-335

lar importance are four considerations:336
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Figure 6. Coherence analysis in Pyleoclim. a. SST over the past 3 million years obtained

from alkenone paleothermometry at Site ODP846 (blue) and insolation at 5◦S (orange) calcu-

lated using the climlab package (Rose, 2018). b. Wavelet transform coherency (WTC) obtained

from WWZ between the two timeseries. Contours display WTC, which indicates the degree of

resemblance between the signals at each time and scale. The angle of the phase arrows show the

relative phasing at each time and scale (e.g. in-phase records are indicated by arrows pointing to

the right, out-of-phase to the left, and in phase quadrature up and down). Phase angles are only

shown for areas with significant coherence values, assessed against 1,000 random realizations of

an AR(1) process. c. Cross-wavelet transform, with contours displaying areas of high common

power, and phase arrows as above. For details on the method, see Grinsted et al. (2004).
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Irregular sampling: comparing two records with different time axes, possibly unevenly337

spaced, is a challenge to standard methods, which assume concordant observations.338

Persistence: persistence violates the standard assumption that the data are indepen-339

dent (which underlies the classical T-test of significance implemented in most soft-340

ware packages).341

Age uncertainties: age uncertainties affect the location of features in time, so meth-342

ods need to allow for an ensemble of plausible chronologies (generated, for instance,343

by a Bayesian age model).344

Test multiplicity: test multiplicity, aka the ”Look Elsewhere effect”, states that re-345

peatedly performing the same test can result in unacceptably high type I error (ac-346

cepting correlations as significant, when in fact they are not). This arises e.g. when347

correlating a paleoclimate record with an instrumental field, assessing significance348

at thousands of grid points at once, or assessing significance within an age ensem-349

ble.350

Accordingly, Pyleoclim facilitates an assessment of correlations that deals with all351

these challenges, makes the necessary data transformations transparent to the user, and352

allows for one-line plot commands to visualize the results.353

This section and accompanying notebook use Pyleoclim to reproduce the study354

of Hu et al. (2017), particularly the example of their section 4, which illustrates all the355

above challenges at once. The example uses the speleothem record of McCabe-Glynn et356

al. (2013) from Crystal Cave, California, in Sequoia National Park. Based on correla-357

tions with the instrumental sea-surface temperature (SST) field of Kaplan et al. (1997),358

McCabe-Glynn et al. (2013) interpreted their δ18O record as a proxy for SST in the Kuroshio359

Extension region of the West Pacific. This interpretation was shown in Hu et al. (2017)360

to be invalid because of persistence, test multiplicity, and age uncertainties. This note-361

book repeats the analysis of Hu et al. (2017) leveraging Pyleoclim and the updated SST362

analysis of HadSST4 (Kennedy et al., 2019); in so doing, we extend the original work363

by showcasing three different methods for assessing the significance of linear correlations:364

(i) a T test with degrees of freedom adjusted for autocorrelation (Dawdy & Matalas, 1964),365

as used by Hu et al. (2017); (ii) the phase-randomization procedure of Ebisuzaki (1997)366

(dubbed ”isospectral” because it preserves a series’ amplitude spectrum) and (iii) an ”isop-367
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ersistent” method that gauges the observed correlation against a large sample of AR(1)368

timeseries with identical persistence parameter as the target series.369

In Pyleoclim, the correlation() method enables tests (i-iii), with the default im-370

plementing the isospectral method with 1,000 surrogates. The method works between371

two series, between a series and an ensemble, or between two ensembles, with the same372

user experience. In the case of ensembles, the object holding the result (CorrEns) is equipped373

with a plotting method (Figure 7) that displays the histogram of correlations, the pro-374

portion of correlations with a p-value under the test level α (i.e., correlations deemed375

significant by this test), and the proportion of those that also meet the False Discovery376

Rate criterion of Benjamini and Hochberg (1995). In this case, we see that only 1 out377

of the 327 grid points displays a significant correlation with the published Crystal Cave378

δ18O record (Figure 7, top). In addition, the published age model is simply the median379

of a broader ensemble, which was not made available by the authors. We therefore gen-380

erated another ensemble of 1,000 draws from the posterior distribution of ages using the381

Bayesian age model Bchron (Haslett & Parnell, 2008) within the GeoChronR software382

(McKay et al., 2021) – the resulting ensemble of possible timeseries is shown in Figure 3383

(top). For illustration, we show the result of correlating this ensemble with SST at a sin-384

gle grid point in the Kuroshio Extension region, where McCabe-Glynn et al. (2013) orig-385

inally reported significant correlations (Figure 7, bottom). While the correlation between386

HadSST4 SST and the published δ18O record was over 0.32, we see that the bulk of the387

histogram is far below this value, with a substantial fraction of ensemble members ex-388

hibiting negative correlations. This is a powerful illustration that age uncertainties can389

go as far as reversing the sign of a correlation, and must be taken into account in this390

type of exercise. Once all three pitfalls (persistence, multiple comparisons, age uncer-391

tainties) are considered, no significant correlation is found.392

The example illustrates the risk of relying exclusively on correlations between a pa-393

leoclimate record and an instrumental field for interpretation. Historically, this has not394

been an isolated incident (Hu et al., 2017), so this case study should not be viewed as395

an indictment of a particularly study or group of authors. Rather, it is a reminder of how396

easy it is to be fooled by spurious correlations, and how easy it is to avoid them with397

proper methods, such as those made available in Pyleoclim.398
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Figure 7. Ensemble correlations in Pyleoclim. Top: histogram of Pearson correlations

(r) between the published Crystal Cave record of McCabe-Glynn et al. (2013) with the Had-

CRUT4 SST field over the North Pacific (327 grid points). Bottom: histogram of Pearson

correlations (r) between the Crystal Cave record of McCabe-Glynn et al. (2013) with a 1000-

member Bchron (Haslett & Parnell, 2008) age model model ensemble with the HadCRUT4 SST

at 32.5◦N, 142.5◦W in the Kuroshio Extension region. On both panels, “FDR” denotes the False

Discovery Rate criterion of Benjamini and Hochberg (1995).
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3.3 Model-data confrontations in the frequency domain399

The third case study tackles an emerging need in the paleoclimate community: quan-400

titatively comparing paleoclimate observations with transient climate model simulations.401

In addition to technical challenges (model output is evenly spaced; observations typically402

are not), a conceptual difficulty is due to sensitive dependence to initial conditions (chaos):403

slight changes in initial conditions can result in wildly different climate trajectories de-404

spite identical (or even constant) boundary conditions. In paleoclimatology, those ini-405

tial conditions are unknown, as there typically is no reliable estimate of the 3D state of406

of the climate system at a given point in time. Thus, except when one seeks to compare407

the expression of external forcings (e.g., Zhu et al. (2020, 2022)), it is often sensible to408

discard phase information altogether and to restrict the comparison to spectral features409

(peaks, scaling exponents) (Laepple & Huybers, 2014; Dee et al., 2017; C. L. E. Franzke410

et al., 2020).411

This section and accompanying notebook use Pyleoclim to reproduce the compar-412

ative study of Zhu et al. (2019), which used several paleoclimate observational datasets413

to test the ability of a hierarchy of climate models to simulate the continuum of climate414

variability. Figure 8 emulates part of the original study’s Figure 2, and compares the spec-415

tral scaling exponents from 3 transient simulations and 5 observational datasets, esti-416

mated using the WWZ method. The notebook illustrates how few function calls are needed417

to perform this complex comparison with Pyleoclim, including uncertainty estimates418

of the scaling exponents.419

Zhu et al. (2019) concluded that these models produced simulations of the contin-420

uum of climate variability consistent with what can be estimated from paleoclimate ob-421

servations, provided information about the deglaciation was specified. Most remarkably,422

these 3 simulations show scaling exponents similar to those observed over the past mil-423

lennium, despite the models having no knowledge of what are believed to be the lead-424

ing causes of climate variability over this interval (solar and volcanic forcing). For more425

details and a discussion of the broader implications of this result, see the original study.426

4 Conclusion and Outlook427

We have presented a new, Python-based toolkit for the analysis and visualization428

of paleoclimate and paleoceanographic data, whether from observations or models. As429
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Figure 8. A spectral estimate of the global-average surface temperature variability as por-

trayed by transient model simulations (TraCE-21ka (Liu et al., 2009), DGns (Menviel et al.,

2011), SIM2bl (Timm & Timmermann, 2007), colors) and observational datasets (gray): Had-

CRUT4, The Met Office Hadley Centre gridded dataset of global historical surface temperature

anomalies (Morice et al., 2012); PAGES2k/LMR, the Last Millennium Reanalysis framework

(Hakim et al., 2016; Tardif et al., 2019) applied to the PAGES2k dataset (PAGES 2k Consor-

tium, 2017); the reconstruction of global average surface temperature of Snyder (2016); Prob-

Stack: A probabilistic Pliocene-Pleistocene stack of benthic δ18O (Ahn et al., 2017). The regional

dataset (EDC) EPICA Dome C Ice Core 800KYr Deuterium Data and Temperature Estimates

(Jouzel et al., 2007). β’s denote the estimated scaling exponents over each appropriate frequency

band: βCM is the centennial-to-millennial scale exponent estimated over scales of 400–2,000y,

while βDC is the decadal-to-centennial–scale exponent, estimated over 20–400 y.
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of publication, Pyleoclim supports a broad array of functionalities to load, process, an-430

alyze and visualize timeseries and their relationships to other variables.431

Although Pyleoclim was primarily designed as a research tool, its extensive doc-432

umentation makes it useful for established researchers and students alike. At the time433

of writing, Pyleoclim has been used in three virtual workshops (http://linked.earth/434

paleoHackathon/) to build data science capacity within the paleogeosciences commu-435

nities, and an undergraduate course at the University of Southern California. An in-person436

training event is planned for the summer of 2023. As part of the PaleoCube grant (https://437

medium.com/cyberpaleo/announcing-the-next-linkedearth-chapter-paleocube438

-790778b6ffb0), many video (https://www.youtube.com/channel/UCo7yzNTM 4g5H439

-xyWV5KbA) and notebook tutorials (https://github.com/LinkedEarth/PaleoBooks)440

will be made available to the community to further disseminate and demystify these tech-441

niques.442

Pyleoclim follows an open development model, accessible primarily through its GitHub443

repository (see data and software availability statement in the acknowledgement section).444

Interactions with developers and other users are facilitated by a community Slack chan-445

nel and Discourse forum (http://linked.earth/community.html), to ensure knowl-446

edge dissemination and align development to the needs of the scientific community. Cur-447

rently planned extensions include:448

Pandas integration: The Pandas library (McKinney, 2010) contains many function-449

alities for timeseries data that had to be re-implemented for Pyleoclim, since the450

way time is encoded into Pandas is not appropriate for paleoscientific applications:451

timestamps are represented at nanosecond resolution, so the largest time span that452

can be represented by a 64-bit integer is limited to approximately 584 years (CE453

1677 to 2262), an unacceptably short time for our field. Current work with the454

Pandas community aims at generalizing this representation to arbitrary intervals,455

and we expect Pyleoclim to soon make direct use of Pandas functionalities (e.g.,456

slicing, aggregating, resampling and many other built-in methods), which will al-457

low for closer integration with climate model output through the popular xarray458

library (Hoyer & Hamman, 2017).459

Generalized surrogates: currently, the statistical significance of spectral and wavelet460

features in Pyleoclim can only be assessed against parametric AR(1) surrogates.461
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While those are often reasonable first-order approximations to geophysical time-462

series (Ghil et al., 2002), many geophysical phenomena are better emulated by long-463

range dependent processes (Samorodnitsky, 2007; C. Franzke, 2010; Fredriksen &464

Rypdal, 2017). We plan for the SurrogateSeries class to include more options,465

such as phase randomization (Ebisuzaki, 1997) (currently only available to cor-466

relation and causality methods), fractal and multifractal timeseries generation, and467

maximum entropy bootstrap (Vinod & de Lacalle, 2009).468

Nonlinear Dynamics: Most of the methods currently available in Pyleoclim are lin-469

ear methods. In the near future, we plan to leverage some recent advances in the470

analysis of nonlinear timeseries via recurrence networks (Zou et al., 2019), con-471

vergent cross-mapping (Sugihara et al., 2012) and causal discovery (Runge et al.,472

2019).473

By making sophisticated and rigorous methods available to non-experienced pro-474

grammers in a few keystrokes, and by providing extensive documentation and training,475

we expect the package to help streamline the work of many readers of this journal, and476

contribute to heightened statistical rigor in the analysis of paleoclimate and paleoceano-477

graphic data. Furthermore, the package is broadly applicable to any timeseries-based data,478

and has already been re-used in other fields like astronomy (Peñil et al., 2020) – a trend479

that we hope spreads to other fields of the geosciences and beyond.480
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Peñil, P., Domı́nguez, A., Buson, S., Ajello, M., Otero-Santos, J., Barrio, J. A., . . .703

Cavazzuti, E. (2020). Systematic search for γ-ray periodicity in active galactic704

nuclei detected by the fermi large area telescope. The Astrophysical Journal ,705

896 (2), 134. doi: 10.3847/1538-4357/ab910d706

Perkel, J. M. (2015). Programming: Pick up Python. Nature, 518 (7537), 125–126.707

doi: 10.1038/518125a708

Predybaylo, E., Torrence, C., & Compo, G. (2022). Python wavelet software. Re-709

trieved from http://atoc.colorado.edu/research/wavelets/710

Rose, B. (2018). Climlab: a python toolkit for interactive, process-oriented climate711

modeling. Journal of Open Source Software, 3 (24), 659. doi: 10 .21105/joss712

.00659713

Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., & Sejdinovic, D. (2019).714

Detecting and quantifying causal associations in large nonlinear time series715

datasets. Science Advances, 5 (11), eaau4996. doi: 10.1126/sciadv.aau4996716

Samorodnitsky, G. (2007). Long range dependence. Found. Trends. Stoch. Sys.,717

1 (3), 163–257. doi: http://dx.doi.org/10.1561/0900000004718

Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by sim-719

plified least squares procedures. Analytical chemistry , 36 (8), 1627-1639.720

Scargle, J. (1982). Studies in astronomical time series analysis. ii. statistical aspects721

of spectral analyis of unvenly spaced data. The Astrophysical Journal , 263 (2),722

835-853.723

–32–



manuscript submitted to Paleoceanography and Paleoclimatology

Scargle, J. (1989). Studies in astronomical time series analysis. iii. fourier trans-724

forms, aotocorrelation functions, and cross-correlation functions of unevenly-725

spaced data. The Astrophysical Journal , 343 (2), 874-887.726

Schoellhamer, D. H. (2001). Singular spectrum analysis for time series with miss-727

ing data. Geophysical Research Letters, 28 (16), 3187–3190. Retrieved from728

http://dx.doi.org/10.1029/2000GL012698 doi: 10.1029/2000GL012698729

Schulz, M., & Mudelsee, M. (2002). Redfit: estimating red-noise spectra directly730

from unevenly spaced paleoclimatic time series. Computers and Geosciences,731

28 , 421-426.732

Schulz, M., & Stattegger, K. (1997). Spectrum: spectral analysis of unevenly spaced733

time series. Computers and Geosciences, 23 (9), 929-945.734

Seabold, S., & Perktold, J. (2010). statsmodels: Econometric and statistical model-735

ing with python. In 9th python in science conference.736

Shackleton, N. J., Hall, M., & Pate, D. (1995). Pliocene stable isotope stratigraphy737

of odp site 846. Proc. Ocean Drill. Program Sci. Results, 138 , 337-356.738

Snyder, C. W. (2016). Evolution of global temperature over the past two million739

years. Nature, 538 , 226 EP -. doi: 10.1038/nature19798740

Sugihara, G., May, R., Ye, H., Hsieh, C.-h., Deyle, E., Fogarty, M., & Munch, S.741

(2012). Detecting causality in complex ecosystems. Science, 338 (6106), 496-742

500. doi: 10.1126/science.1227079743

Tardif, R., Hakim, G. J., Perkins, W. A., Horlick, K. A., Erb, M. P., Emile-Geay,744

J., . . . Noone, D. (2019). Last millennium reanalysis with an expanded proxy745

database and seasonal proxy modeling. Climate of the Past , 15 (4), 1251–746

1273. Retrieved from https://www .clim -past .net/15/1251/2019/ doi:747

10.5194/cp-15-1251-2019748

Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proc. IEEE ,749

70(9), 1055-1096.750

Timm, O., & Timmermann, A. (2007). Simulation of the Last 21 000 Years Us-751

ing Accelerated Transient Boundary Conditions. Journal of Climate, 20 (17),752

4377–4401. doi: 10.1175/JCLI4237.1753

Torrence, C., & Compo, G. (1998). A practical guide to wavelet analysis. Bulletin of754

the American Meteorological Society , 79 , 61-78.755

VanderPlas, J. T. (2018). Understanding the lomb–scargle periodogram. The As-756

–33–



manuscript submitted to Paleoceanography and Paleoclimatology

trophysical Journal Supplement Series, 236 (1), 16. doi: 10 .3847/1538 -4365/757

aab766758

Vautard, R., & Ghil, M. (1989). Singular spectrum analysis in nonlinear dynamics,759

with applications to paleoclimatic time series. Physica D , 35 , 395-424.760

Vautard, R., Yiou, P., & Ghil, M. (1992). Singular-spectrum analysis: A toolkit for761

short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58 (1), 95–126.762

doi: 10.1016/0167-2789(92)90103-T763

Vinod, H. D., & de Lacalle, J. L. (2009, 21). Maximum entropy bootstrap for time764

series: The meboot r package. Journal of Statistical Software, 29 (5), 1–19. Re-765

trieved from http://www.jstatsoft.org/v29/i05766

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,767

D., . . . SciPy 1.0 Contributors (2020). SciPy 1.0: Fundamental Algorithms768

for Scientific Computing in Python. Nature Methods, 17 , 261–272. doi:769

10.1038/s41592-019-0686-2770

Waskom, M. L. (2021). seaborn: statistical data visualization. Journal of Open771

Source Software, 6 (60), 3021. doi: 10.21105/joss.03021772

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M.,773

Baak, A., . . . Mons, B. (2016). The FAIR Guiding Principles for sci-774

entific data management and stewardship. Sci Data, 3 , 160018. doi:775

10.1038/sdata.2016.18776

Zhu, F., Emile-Geay, J., Anchukaitis, K. J., Hakim, G. J., Wittenberg, A. T.,777

Morales, M. S., . . . King, J. (2022). A re-appraisal of the ENSO response778

to volcanism with paleoclimate data assimilation. Nature Communications,779

13 (1), 747. doi: 10.1038/s41467-022-28210-1780

Zhu, F., Emile-Geay, J., Hakim, G. J., King, J., & Anchukaitis, K. J. (2020). Re-781

solving the differences in the simulated and reconstructed temperature re-782

sponse to volcanism. Geophysical Research Letters, 47 (8), e2019GL086908.783

doi: 10.1029/2019GL086908784

Zhu, F., Emile-Geay, J., McKay, N. P., Hakim, G. J., Khider, D., Ault, T. R., . . .785

Kirchner, J. W. (2019). Climate models can correctly simulate the continuum786

of global-average temperature variability. Proceedings of the National Academy787

of Sciences, 116 (18), 8728. doi: 10.1073/pnas.1809959116788

Zou, Y., Donner, R. V., Marwan, N., Donges, J. F., & Kurths, J. (2019). Complex789

–34–



manuscript submitted to Paleoceanography and Paleoclimatology

network approaches to nonlinear time series analysis. Physics Reports, 787 , 1–790

97. doi: https://doi.org/10.1016/j.physrep.2018.10.005791

–35–


