References:
Allen, S.T., Keim, R.F., Barnard, H.R., McDonnell, J.J., Renée Brooks,
J., 2017. The role of stable isotopes in understanding rainfall
interception processes: a review. WIREs Water 4.
https://doi.org/10.1002/wat2.1187
Allen, S.T., Kirchner, J.W., Braun, S., Siegwolf, R.T.W., Goldsmith,
G.R., 2019. Seasonal origins of soil water used by trees. Hydrol. Earth
Syst. Sci. 23, 1199–1210. https://doi.org/10.5194/hess-23-1199-2019
Baird, A.J., Wilby, R.L., 1999. Eco-hydrology: plants and water in
terrestrial and aquatic environments. Psychology Press.
Błońska, E., Klamerus-Iwan, A., Łagan, S., Lasota, J., 2018. Changes to
the water repellency and storage of different species of deadwood based
on decomposition rate in a temperate climate. Ecohydrology 11, e2023.
https://doi.org/10.1002/eco.2023
Brechtel, H.M., 1969. Wald und Abfluss: Methoden zur Erforschung der
Bedeutung des Waldes fuer das Wasserdargebot. Deutsche
gewaesserkundliche Mitteilungen 1–7.
Bujoczek, L., Bujoczek, M., Zięba, S., 2021. Distribution of deadwood
and other forest structural indicators relevant for bird conservation in
Natura 2000 special protection areas in Poland. Sci Rep 11, 14937.
https://doi.org/10.1038/s41598-021-94392-1
Carnol, M., Bazgir, M., 2013. Nutrient return to the forest floor
through litter and throughfall under 7 forest species after conversion
from Norway spruce. Forest Ecology and Management 309, 66–75.
https://doi.org/10.1016/j.foreco.2013.04.008
Coenders-Gerrits, A.M.J., van der Ent, R.J., Bogaard, T.A.,
Wang-Erlandsson, L., Hrachowitz, M., Savenije, H.H.G., 2014.
Uncertainties in transpiration estimates. Nature 506, E1–E2.
https://doi.org/10.1038/nature12925
Dohnal, M., Černý, T., Votrubová, J., Tesař, M., 2014. Rainfall
interception and spatial variability of throughfall in spruce stand.
Journal of Hydrology and Hydromechanics 62, 277–284.
https://doi.org/10.2478/johh-2014-0037
Floriancic, M.G., Meerveld, I., Smoorenburg, M., Margreth, M., Naef, F.,
Kirchner, J.W., Molnar, P., 2018. Spatio‐temporal variability in
contributions to low flows in the high Alpine Poschiavino catchment.
Hydrological Processes 32, 3938–3953. https://doi.org/10.1002/hyp.13302
Gerrits, A.M.J., Pfister, L., Savenije, H.H.G., 2010. Spatial and
temporal variability of canopy and forest floor interception in a beech
forest. Hydrol. Process. 24, 3011–3025.
https://doi.org/10.1002/hyp.7712
Gerrits, A.M.J., Savenije, H.H.G., 2011. Forest Floor Interception, in:
Levia, D.F., Carlyle-Moses, D., Tanaka, T. (Eds.), Forest Hydrology and
Biogeochemistry: Synthesis of Past Research and Future Directions.
Springer Netherlands, Dordrecht, pp. 445–454.
https://doi.org/10.1007/978-94-007-1363-5_22
Gerrits, A.M.J., Savenije, H.H.G., Hoffmann, L., Pfister, L., 2007. New
technique to measure forest floor interception – an application in a
beech forest in Luxembourg. Hydrol. Earth Syst. Sci. 11, 695–701.
https://doi.org/10.5194/hess-11-695-2007
Guevara-Escobar, A., Gonzalez-Sosa, E., Ramos-Salinas, M.,
Hernandez-Delgado, G.D., 2007. Experimental analysis of drainage and
water storage of litter layers. Hydrol. Earth Syst. Sci. 11, 1703–1716.
https://doi.org/10.5194/hess-11-1703-2007
Hararuk, O., Kurz, W.A., Didion, M., 2020. Dynamics of dead wood decay
in Swiss forests. For. Ecosyst. 7, 36.
https://doi.org/10.1186/s40663-020-00248-x
Harmon, M.E., Sexton, J., 1995. Water balance of conifer logs in early
stages of decomposition. Plant Soil 172, 141–152.
https://doi.org/10.1007/BF00020868
Helvey, J.D., Patric, J.H., 1965. Canopy and litter interception of
rainfall by hardwoods of eastern United States. Water Resour. Res. 1,
193–206. https://doi.org/10.1029/WR001i002p00193
Holko, L., Škvarenina, J., Kostka, Z., Frič, M., Staroň, J., 2009.
Impact of spruce forest on rainfall interception and seasonal snow cover
evolution in the Western Tatra Mountains, Slovakia. Biologia 64,
594–599. https://doi.org/10.2478/s11756-009-0087-6
Ilek, A., Szostek, M., Mikołajczyk, A., Rajtar, M., 2021. Does Mixing
Tree Species Affect Water Storage Capacity of the Forest Floor?
Laboratory Test of Pine-Oak and Fir-Beech Litter Layers. Forests 12,
1674. https://doi.org/10.3390/f12121674
Klamerus-Iwan, A., Link, T.E., Keim, R.F., Van Stan II, J.T., 2020.
Storage and Routing of Precipitation Through Canopies. Precipitation
Partitioning by Vegetation: A Global Synthesis.
Kofroňová, J., Šípek, V., Hnilica, J., Vlček, L., Tesař, M., 2021.
Canopy interception estimates in a Norway spruce forest and their
importance for hydrological modelling. Hydrological Sciences Journal 66,
1233–1247. https://doi.org/10.1080/02626667.2021.1922691
Lachat, T., Brang, P., Bollinger, M., Brändli, U., Bütler, R., Herrmann,
S., Schneider, O., Wermelinger, B., 2019. Totholz im Wald. Entstehung,
Bedeutung und Förderung (No. 52), Merkblatt für die Praxis.
Levia, D.F., Bollinger, W.C., Hrabik, R.A., Pogge, J.T., 2004. Water
storage capacity of empty fruiting heads of Liquidambar
styraciflua L. (sweetgum) / Capacité de stockage d’eau des bourgeons
fruitiers vides de Liquidambar styraciflua L. (le copalme
d’Amérique). Hydrological Sciences Journal 49, 6.
https://doi.org/10.1623/hysj.49.5.843.55133
Levia, D.F., Frost, E.E., 2006. Variability of throughfall volume and
solute inputs in wooded ecosystems. Progress in Physical Geography:
Earth and Environment 30, 605–632.
https://doi.org/10.1177/0309133306071145
Li, X., Niu, J., Xie, B., 2013. Study on Hydrological Functions of
Litter Layers in North China. PLoS ONE 8, e70328.
https://doi.org/10.1371/journal.pone.0070328
Miller, J.D., Anderson, H.A., Ferrier, R.C., Walker, T.A.B., 1990.
Comparison of the Hydrological Budgets and Detailed Hydrological
Responses in Two Forested Catchments. Forestry 63, 251–269.
https://doi.org/10.1093/forestry/63.3.251
Minďaš, J., Bartík, M., Škvareninová, J., Repiský, R., 2018. Functional
effects of forest ecosystems on water cycle – Slovakia case study.
Journal of Forest Science 64 (2018), 331–339.
https://doi.org/10.17221/46/2018-JFS
Miralles, D.G., Gash, J.H., Holmes, T.R.H., de Jeu, R.A.M., Dolman,
A.J., 2010. Global canopy interception from satellite observations. J.
Geophys. Res. 115, D16122. https://doi.org/10.1029/2009JD013530
Öder, V., Petritan, A.M., Schellenberg, J., Bergmeier, E., Walentowski,
H., 2021. Patterns and drivers of deadwood quantity and variation in
mid-latitude deciduous forests. Forest Ecology and Management 487,
118977. https://doi.org/10.1016/j.foreco.2021.118977
Oki, T., Kanae, S., 2006. Global Hydrological Cycles and World Water
Resources. Science 313, 1068–1072.
https://doi.org/10.1126/science.1128845
Paletto, A., Tosi, V., 2010. Deadwood density variation with decay class
in seven tree species of the Italian Alps. Scandinavian Journal of
Forest Research 25, 164–173. https://doi.org/10.1080/02827581003730773
Pichler, V., Homolák, M., Skierucha, W., Pichlerová, M., Ramírez, D.,
Gregor, J., Jaloviar, P., 2012. Variability of moisture in coarse woody
debris from several ecologically important tree species of the Temperate
Zone of Europe. Ecohydrol. 5, 424–434. https://doi.org/10.1002/eco.235
Pitman, J.I., 1989. Rainfall interception by bracken litter —
Relationship between biomass, storage and drainage rate. Journal of
Hydrology 111, 281–291. https://doi.org/10.1016/0022-1694(89)90265-5
Přívětivý, T., Šamonil, P., 2021. Variation in Downed Deadwood Density,
Biomass, and Moisture during Decomposition in a Natural Temperate
Forest. Forests 12, 1352. https://doi.org/10.3390/f12101352
Putuhena, W.M., Cordery, I., 1996. Estimation of interception capacity
of the forest floor. Journal of Hydrology 180, 283–299.
https://doi.org/10.1016/0022-1694(95)02883-8
Ringgaard, R., Herbst, M., Friborg, T., 2014. Partitioning forest
evapotranspiration: Interception evaporation and the impact of canopy
structure, local and regional advection. Journal of Hydrology 517,
677–690. https://doi.org/10.1016/j.jhydrol.2014.06.007
Robin, V., Brang, P., 2008. Methode für das Monitoring von Totholz in
Kernflächen von Naturwaldreservaten (Eidgenössische Forschungsanstalt
WSL), Eidgenössische Forschungsanstalt WSL. Birmensdorf.
Rowe, L.K., 1983. Rainfall interception by an evergreen beech forest,
Nelson, New Zealand. Journal of Hydrology 66, 143–158.
https://doi.org/10.1016/0022-1694(83)90182-8
Sato, Y., Kumagai, T., Kume, A., Otsuki, K., Ogawa, S., 2004.
Experimental analysis of moisture dynamics of litter layers?the effects
of rainfall conditions and leaf shapes. Hydrol. Process. 18, 3007–3018.
https://doi.org/10.1002/hyp.5746
Schaap, M.G., Bouten, W., 1997. Forest floor evaporation in a dense
Douglas fir stand. Journal of Hydrology 193, 97–113.
https://doi.org/10.1016/S0022-1694(96)03201-5
Schlesinger, W.H., Jasechko, S., 2014. Transpiration in the global water
cycle. Agricultural and Forest Meteorology 189–190, 115–117.
https://doi.org/10.1016/j.agrformet.2014.01.011
Sexton, J.M., Harmon, M.E., 2009. Water Dynamics in Conifer Logs in
Early Stages of Decay in the Pacific Northwest, U.S.A. Northwest Science
83, 131–139. https://doi.org/10.3955/046.083.0204
Staelens, J., De Schrijver, A., Verheyen, K., Verhoest, N.E.C., 2006.
Spatial variability and temporal stability of throughfall water under a
dominant beech (Fagus sylvatica L.) tree in relationship to canopy
cover. Journal of Hydrology 330, 651–662.
https://doi.org/10.1016/j.jhydrol.2006.04.032
Stewart, J.B., 1977. Evaporation from the wet canopy of a pine forest.
Water Resources Research 13, 915–921.
https://doi.org/10.1029/WR013i006p00915
Thamm, F., Widmoser, P., 1995. Zur hydrologischen Bedeutung der
organischen Auflage im Wald: Untersuchungsmethoden und erste Ergebnisse.
Z. Pflanzenernaehr. Bodenk. 158, 287–292.
https://doi.org/10.1002/jpln.19951580312
Thielen, S.M., Gall, C., Ebner, M., Nebel, M., Scholten, T., Seitz, S.,
2021. Water’s path from moss to soil: A multi-methodological study on
water absorption and evaporation of soil-moss combinations. Journal of
Hydrology and Hydromechanics 69, 421–435.
https://doi.org/10.2478/johh-2021-0021
van Dijk, A.I.J.M., Gash, J.H., van Gorsel, E., Blanken, P.D., Cescatti,
A., Emmel, C., Gielen, B., Harman, I.N., Kiely, G., Merbold, L.,
Montagnani, L., Moors, E., Sottocornola, M., Varlagin, A., Williams,
C.A., Wohlfahrt, G., 2015. Rainfall interception and the coupled surface
water and energy balance. Agricultural and Forest Meteorology 214–215,
402–415. https://doi.org/10.1016/j.agrformet.2015.09.006
Van Stan, J.T., Coenders-Gerrits, M., Dibble, M., Bogeholz, P., Norman,
Z., 2017. Effects of phenology and meteorological disturbance on litter
rainfall interception for a Pinus elliottii stand in the
Southeastern United States. Hydrological Processes 31, 3719–3728.
https://doi.org/10.1002/hyp.11292
Van Stan, J.T., Lewis, E.S., Hildebrandt, A., Rebmann, C., Friesen, J.,
2016. Impact of interacting bark structure and rainfall conditions on
stemflow variability in a temperate beech-oak forest, central Germany.
Hydrological Sciences Journal 61, 2071–2083.
https://doi.org/10.1080/02626667.2015.1083104
Walsh, R.P.D., Voigt, P.J., 1977. Vegetation Litter: An Underestimated
Variable in Hydrology and Geomorphology. Journal of Biogeography 4, 253.
https://doi.org/10.2307/3038060
Wang, D., Wang, G., Anagnostou, E.N., 2007. Evaluation of canopy
interception schemes in land surface models. Journal of Hydrology 347,
308–318. https://doi.org/10.1016/j.jhydrol.2007.09.041
Woodall, C.W., Evans, D.M., Fraver, S., Green, M.B., Lutz, D.A.,
D’Amato, A.W., 2020. Real-time monitoring of deadwood moisture in
forests: lessons learned from an intensive case study. Can. J. For. Res.
50, 1244–1252. https://doi.org/10.1139/cjfr-2020-0110
Xiao, Q., McPherson, E.G., Ustin, S.L., Grismer, M.E., Simpson, J.R.,
2000. Winter rainfall interception by two mature open-grown trees in
Davis, California. Hydrol. Process. 14, 763–784.
https://doi.org/10.1002/(SICI)1099-1085(200003)14:4<763::AID-HYP971>3.0.CO;2-7
Yue, K., De Frenne, P., Fornara, D.A., Van Meerbeek, K., Li, W., Peng,
X., Ni, X., Peng, Y., Wu, F., Yang, Y., Peñuelas, J., 2021. Global
patterns and drivers of rainfall partitioning by trees and shrubs. Glob
Change Biol 27, 3350–3357. https://doi.org/10.1111/gcb.15644
Zagyvai-Kiss, K.A., Kalicz, P., Szilágyi, J., Gribovszki, Z., 2019. On
the specific water holding capacity of litter for three forest
ecosystems in the eastern foothills of the Alps. Agricultural and Forest
Meteorology 278, 107656. https://doi.org/10.1016/j.agrformet.2019.107656
Zhang, Y., Peña-Arancibia, J.L., McVicar, T.R., Chiew, F.H.S., Vaze, J.,
Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y.Y., Miralles, D.G., Pan,
M., 2016. Multi-decadal trends in global terrestrial evapotranspiration
and its components. Sci Rep 6, 19124. https://doi.org/10.1038/srep19124
Zheng, C., Jia, L., 2020. Global canopy rainfall interception loss
derived from satellite earth observations. Ecohydrology 13.
https://doi.org/10.1002/eco.2186
Zhou, Q., Keith, D.M., Zhou, X., Cai, M., Cui, X., Wei, X., Luo, Y.,
2018. Comparing the Water-holding Characteristics of Broadleaved,
Coniferous, and Mixed Forest Litter Layers in a Karst Region. Mountain
Research and Development 38, 220–229.
https://doi.org/10.1659/MRD-JOURNAL-D-17-00002.1