References
Asakura, A., Hoshino, T. (1995). Alcohol/aldehyde dehydrogenase from Gluconobacter oxydans DSM 4025 FERM BP-3812. Biotechnology Advances , 14 , 562-562(1). DOI : 10.1016/S0734-9750(97)81929-5
Asano, T., Takagi, H., Nakagawa, Y., Tamura, M., Tomishige, K. (2019). Selective hydrogenolysis of 2-furancarboxylic acid to 5-hydroxyvaleric acid derivatives over supported platinum catalysts. Green Chemistry, 21 , 6133-6145. DOI : 10.1039/C9GC03315G
Bhattacharyya, S.K., Das, C.K. (1969). Pressure effect and mechanism in the acid-catalyzed hydration of acrylic acid. Journal of the American Chemical Society, 91, 6715-6720. DOI : 10.1021/ja01052a030
Deppenmeier, U., Hoffmeister, M., Prust, C. (2002). Biochemistry and biotechnological applications of Gluconobacter strains. Applied Microbiology and Biotechnology, 60 , 233-242. DOI : 10.1007/s00253-002-1114-5
Du, G., Hua, X., Xu, B., Wang, H., Zhou, X., Xu, Y. (2021). The processing-module assembly strategy for continuous bio-oxidation of furan chemicals by integrated and coupled biotechnology. Green Chemistry, 23, 1330-1336. DOI : 10.1039/D0GC03300F
Dunn, E.W., Lamb, J.R., Lapointe, A.M., Coates, G.W. (2016). Carbonylation of Ethylene Oxide to β-Propiolactone: A Facile Route to Poly(3-hydroxypropionate) and Acrylic Acid. Acs Catalysis, 6 , 8219-8223. DOI : 10.1021/acscatal.6b02773
Gupta, A., Singh, V.K., Qazi, G.N., Kumar, A. (2001). Gluconobacter oxydans: its biotechnological applications. Journal of Molecular Microbiology and Biotechnology, 3 , 445-456. DOI : 10.1016/S0167-7012(01)00251-2
Hua, X., Du, G.L., Han, J., Xu, Y. (2020). Bioprocess Intensification for Whole-Cell Catalysis of Catabolized Chemicals with 2,4-Dinitrophenol Uncoupling. ACS Sustainable Chemistry and Engineering, 8,15782-15790. DOI: 10.1021/acssuschemeng.0c06466
Hua, X., Zhou, X., Du, G.L., Xu, Y. (2020). Resolving the formidable barrier of oxygen transferring rate (OTR) in ultrahigh-titer bioconversion/biocatalysis by a sealed-oxygen supply biotechnology (SOS). Biotechnology for Biofuels, 13 . DOI : 10.1186/s13068-019-1642-1
Ichikawa, S., Ohgomori, Y., Sumitani, N., Hayashi, H., Imanari, M. (1995). Process for Manufacturing 1,4Butanediol from Acrolein.Industrial and Engineering Chemistry Research, 34 , 971-973.DOI : 10.1021/ie00042a034
Jiang, W., Gupta, R.K., Deshpande, M.C., Schwendeman, S.P. (2005). Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Advanced Drug Delivery Reviews, 57 , 391-410. DOI : 10.1016/j.addr.2004.09.003
Kam, P., Yoong, F. (2015). Gamma‐hydroxybutyric acid: an emerging recreational drug. Anaesthesia, 53 , 1195-1198. DOI : 10.1046/j.1365-2044.1998.00603.x
Kim, H., Lee, S., Won, W. (2020). System-level analyses for the production of 1,6-hexanediol from cellulose. Energy, 214 , 118974. DOI: 10.1016/j.energy.2020.118974
Liu, S., Amada, Y., Tamura, M., Nakagawa, Y., Tomishige, K. (2014). One-pot selective conversion of furfural into 1,5-pentanediol over a Pd-added Ir–ReOx/SiO2 bifunctional catalyst. Green Chemistry, 16 . 617-626. DOI : 10.1039/c3gc41335g
Liujing, W., Xuepeng, Y., Keliang, G., Jinping, L., Shengli, Y., Qiang, H., Dongzhi, W. (2010). Characterization of Enzymes in the Oxidation of 1,2-Propanediol to d -()-Lactic Acid by Gluconobacter oxydans DSM 2003.Molecular Biotechnology, 46 , 26-33. DOI : 10.1007/s12033-010-9263-8
Maihom, T., Namuangruk, S., Nanok, T., Limtrakul, J. (2008). Theoretical Study on Structures and Reaction Mechanisms of Ethylene Oxide Hydration over H-ZSM-5: Ethylene Glycol Formation. Journal of Physical Chemistry C, 112 , 1-2. DOI : 10.1021/jp8034677
Molinari, F., Villa, R., Manzoni, M., Aragozzini, F. (1995). Aldehyde production by alcohol oxidation with Gluconobacter oxydans. Applied Microbiology and Biotechnology , 43 , 989-994. DOI : 10.1007/BF00166914
Moore, T., Adhikari, R., Gunatillake, P. (2005). Chemosynthesis of bioresorbable poly(gamma-butyrolactone) by ring-opening polymerisation: a review. Biomaterials, 26 , 3771-3782. DOI : 10.1016/j.biomaterials.2004.10.002
Mormul, J., Breitenfeld, J., Trapp, O., Paciello, R., Schaub, T., Hofmann, P. (2016). Synthesis of Adipic Acid, 1,6-Hexanediamine, and 1,6-Hexanediol via Double-n-Selective Hydroformylation of 1,3-Butadiene.Acs Catalysis, 6, 2802-2810. DOI : 10.1021/acscatal.6b00189
Peters, B., Mientus, M., Kostner, D. (2013). Characterization of membrane-bound dehydrogenases from Gluconobacter oxydans 621H via whole-cell activity assays using multideletion strains. Applied Microbiology and Biotechnology, 97, 6397-6412. DOI : 10.1007/s00253-013-4824-y
Pina, C.D., Falletta, E., Rossi, M. (2009). Oxidation of Allyl Alcohol in the Presence of a Gold Catalyst: A Route to 3-Hydroxypropionic Acid.Chem Sus Chem, 2 , 57-58. DOI : 10.1002/cssc.200800172
Pyo, S.H., Dishisha, T., Dayankac, S., Gerelsaikhan, J., Lundmark, S., Rehnberg, N., Hatti-Kaul, R. (2012). A new route for the synthesis of methacrylic acid from 2-methyl-1,3-propanediol by integrating biotransformation and catalytic dehydration. Green Chemistry, 14 , 1942-1948. DOI : 10.1039/c2gc35214a
Rossi, S., Azghani, A.O., Omri, A. (2004). Antimicrobial efficacy of a new antibiotic-loaded poly(hydroxybutyric-co-hydroxyvaleric acid) controlled release system. J. Antimicrob. Journal of Antimicrobial Chemotherapy, 54 , 1013-1018. DOI : 10.1093/jac/dkh477
Sun, Q., Wang, S., Liu, H. (2019). Selective Hydrogenolysis of αC–O Bond in Biomass-Derived 2Furancarboxylic Acid to 5Hydroxyvaleric Acid on Supported Pt Catalysts at Near-Ambient Temperature. Acs Catalysis, 9 , 11413-11425. DOI : 10.1021/acscatal.9b04074
Wang, X., Liu, J., Du, G., Zhou, J., Chen, J. (2013). Efficient production of l-sorbose from d-sorbitol by whole cell immobilization of Gluconobacter oxydans WSH-003. Biochemical Engineering Journal. 77, 171-176. DOI : 10.1016/j.bej.2013.06.008
Wolinsky, J.B., Ray, W.C., Colson, Y.L., Grinstaff, M.W. (2007). Poly(carbonate ester)s Based on Units of 6-Hydroxyhexanoic Acid and Glycerol.Macromolecules, 40 , 7065-7068. DOI : 10.1021/ma071276v
Xia, Hua, Rou, Cao, Xin, Zhou, Yong. (2018). One-step continuous/semi-continuous whole-cell catalysis production of glycolic acid by a combining bioprocess with in-situ cell recycling and electrodialysis. Bioresource Technology, 273 , 515-520.DOI : 10.1016/j.biortech.2018.11.061
Xia, H., Cao, R., Zhou, X., Yong, X. (2018). Integrated process for scalable bioproduction of glycolic acid from cell catalysis of ethylene glycol.Bioresource Technology, 268 , 402-407. DOI: 10.1016/j.biortech.2018.08.021
Yao, R., Hou, W., Bao, J. (2017). Complete oxidative conversion of lignocellulose derived non-glucose sugars to sugar acids by Gluconobacter oxydans. Bioresource Technology, 244 , 1188-1192.DOI : 10.1016/j.biortech.2017.08.078
Yu, J.S., Kang, M., Baritugo, K.A., Son, J., Kim, H.T. (2021). Fermentative High-Level Production of 5-Hydroxyvaleric Acid by Metabolically Engineered Corynebacterium glutamicum. ACS Sustainable Chemistry and Engineering, 9 , 2523-2533. DOI : 10.1021/acssuschemeng.0c08118
Zhao, L., Lin, J., Wang, H., Xie, J., Wei, D. (2015). Development of a two-step process for production of 3-hydroxypropionic acid from glycerol using Klebsiella pneumoniae and Gluconobacter oxydans. Bioprocess & Biosystems Engineering, 38 , 2487-2495. DOI : 10.1007/s00449-015-1486-4
Zhou, XL (2017). Improvement of fermentation performance of Gluconobacter oxydans by combination of enhanced oxygen mass transfer in compressed-oxygen-supplied sealed system and cell-recycle technique.Bioresource Technology, 244 , 1137-1141. DOI : 10.1016/j.biortech.2017.08.107
Zhou, X., Hua, X., Zhou, X., Xu, Y. (2018). Process for the successive production of calcium galactonate crystals by Gluconobacter oxydans. Bioresource Technology 261, 458-460. DOI : 10.1016/j.biortech.2018.04.043