References
1. Wang, X.-T., Zhou, Y., Hu, B.-P., Fu, R. & Cheng, H.-X. Biomonitoring of polycyclic aromatic hydrocarbons and synthetic musk compounds with Masson pine (Pinus massoniana L.) needles in Shanghai, China. Environmental Pollution 252 , 1819-1827 (2019).
2. Wang, T. et al. Effects of thinning and understory removal on the soil water-holding capacity in Pinus massoniana plantations. Scientific Reports 11 , 1-13 (2021).
3. Feng, X., Yang, Z., Xiu-Rong, W., Qiao, L. & Jie, R. Transcriptome Analysis of Needle and Root of Pinus Massoniana in Response to Continuous Drought Stress. Plants10 , 769 (2021).
4. Du, M., Ding, G. & Cai, Q. The transcriptomic responses of Pinus massoniana to drought stress.Forests 9 , 326 (2018).
5. Feng, J., Zhang, X.-L., Li, Y.-Y., Cui, Y.-Y. & Chen, Y.-H. Pinus massoniana bark extract: Structure–activity relationship and biomedical potentials. The American Journal of Chinese Medicine 44 , 1559-1577 (2016).
6. Zeng, Y., Wang, S., Wei, L. & Cui, Y. Primary investigation on effects of Pinus massoniana bark extract inducing senescence of hepatoma HepG2 cells. Current Cancer Reports 2 , 34-40 (2020).
7. Mo, J. et al. Pinus massoniana introgression hybrids display differential expression of reproductive genes. Forests 10 , 230 (2019).
8. Tian, W., Wang, C., Gao, Q., Li, L. & Luan, S. Calcium spikes, waves and oscillations in plant development and biotic interactions. Nature Plants 6 , 750-759 (2020).
9. Thor, K. Calcium-Nutrient and Messenger. Front Plant Sci 10 , 440 (2019).
10. Hepler, P.K. Calcium: a central regulator of plant growth and development. The Plant Cell17 , 2142-2155 (2005).
11. Singh, R. Calcium in plant biology: nutrient and second messenger. International Journal of Biological Innovations 2 , 31-35 (2020).
12. Aldon, D., Mbengue, M., Mazars, C. & Galaud, J.-P. Calcium signalling in plant biotic interactions.International Journal of Molecular Sciences 19 , 665 (2018).
13. Ren, H. et al. Calcium signaling in plant programmed cell death. Cells 10 , 1089 (2021).
14. Kim, N.H., Jacob, P. & Dangl, J.L. Con‐Ca2+‐tenating plant immune responses via calcium‐permeable cation channels. New Phytologist 234 , 813-818 (2022).
15. Wang, Q., Yang, S., Wan, S. & Li, X. The significance of calcium in photosynthesis.International Journal of Molecular Sciences 20 , 1353 (2019).
16. White, P.J. & Broadley, M.R. Calcium in plants. Annals of Botany 92 , 487-511 (2003).
17. Liu, T.-W. et al. Effects of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain. Tree physiology31 , 402-413 (2011).
18. Hu, W.-J. et al. Proteome and calcium-related gene expression in Pinus massoniana needles in response to acid rain under different calcium levels. Plant and Soil380 , 285-303 (2014).
19. Chen, H. et al. Roles of hormones, calcium and PmWRKY31 in the defense of Pinus massoniana Lamb. against Dendrolimus punctatus Walker. Forestry Research1 , 1-14 (2021).
20. Li, D. & Zhou, Y. Effects of calcium concentration on growth and physiological characteristics of Pinus massoniana seedling. Forest Research, Beijing 30 , 174-180 (2017).
21. Liu, J. Simulated Effects of Acidic Solutions on Element Dynamics in Monsoon Evergreen Broad-leaved Forest at Dinghushan, China-Part 1: Dynamics of K, Na, Ca, Mg and P (7 pp). Environmental Science and Pollution Research-International14 , 123-129 (2007).
22. Chen, J. et al. Nitric oxide mediates root K+/Na+ balance in a mangrove plant, Kandelia obovata, by enhancing the expression of AKT1-type K+ channel and Na+/H+ antiporter under high salinity. Plos One 8 , e71543 (2013).
23. Qiao, F. et al. Elevated nitrogen metabolism and nitric oxide production are involved in Arabidopsis resistance to acid rain. Plant Physiology and Biochemistry127 , 238-247 (2018).
24. Chen, J. et al. Hydrogen sulfide alleviates aluminum toxicity in barley seedlings. Plant and Soil362 , 301-318 (2013).
25. Consortium, G.O. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Research 32 , D258-D261 (2004).
26. Consortium, U. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research47 , D506-D515 (2019).
27. Horton, P. et al. WoLF PSORT: protein localization predictor. Nucleic Acids Research35 , W585-W587 (2007).
28. Hu, W.-J. et al. Comparative proteomic analysis reveals the effects of exogenous calcium against acid rain stress in Liquidambar formosana Hance leaves. Journal of Proteome Research 15 , 216-228 (2016).
29. Szklarczyk, D. et al. STRING v10: protein–protein interaction networks, integrated over the tree of life.Nucleic Acids Research 43 , D447-D452 (2015).
30. Hu, W.-J. et al. Physiological, Proteomic Analysis, and Calcium-Related Gene Expression Reveal Taxus wallichiana var. mairei Adaptability to Acid Rain Stress Under Various Calcium Levels. Frontiers in Plant science 13 , 845107-845107 (2022).
31. Wei, M.-Y. et al. Proteomic analysis reveals the protective role of exogenous hydrogen sulfide against salt stress in rice seedlings. Nitric Oxide 111 , 14-30 (2021).
32. Bricker, T.M., Roose, J.L., Zhang, P. & Frankel, L.K. The PsbP family of proteins.Photosynthesis Research 116 , 235-250 (2013).
33. Song, C. et al. Performance intensification of CO2 absorption and microalgae conversion (CAMC) hybrid system via low temperature plasma (LTP) treatment. Science of The Total Environment 801 , 149791 (2021).
34. Ignatova, L., Rudenko, N., Zhurikova, E., Borisova-Mubarakshina, M. & Ivanov, B. Carbonic anhydrases in photosynthesizing cells of C3 higher plants.Metabolites 9 , 73 (2019).
35. Polishchuk, O. Stress-related changes in the expression and activity of plant carbonic anhydrases.Planta 253 , 1-25 (2021).
36. Eisenhut, M., Roell, M.S. & Weber, A.P. Mechanistic understanding of photorespiration paves the way to a new green revolution. New Phytologist 223 , 1762-1769 (2019).
37. Eveland, A.L. & Jackson, D.P. Sugars, signalling, and plant development. Journal of Experimental Botany 63 , 3367-3377 (2012).
38. Lastdrager, J., Hanson, J. & Smeekens, S. Sugar signals and the control of plant growth and development. Journal of Experimental Botany 65 , 799-807 (2014).
39. Bertels, L.-K., Fernández Murillo, L. & Heinisch, J.J. The pentose phosphate pathway in yeasts–more than a poor cousin of glycolysis. Biomolecules11 , 725 (2021).
40. Wang, X. et al. Global analysis of lysine succinylation in patchouli plant leaves. Horticulture Research 6 (2019).
41. Gutiérrez, T. et al. The ER chaperone calnexin controls mitochondrial positioning and respiration.Science Signaling 13 , eaax6660 (2020).
42. Shadel, G.S. & Horvath, T.L. Mitochondrial ROS signaling in organismal homeostasis. Cell163 , 560-569 (2015).
43. Wang, Y.-Y., Cheng, Y.-H., Chen, K.-E. & Tsay, Y.-F. Nitrate transport, signaling, and use efficiency.Annual Review of Plant Biology 69 , 85-122 (2018).
44. Liu, K.-H., Diener, A., Lin, Z., Liu, C. & Sheen, J. Primary nitrate responses mediated by calcium signalling and diverse protein phosphorylation. Journal of Experimental Botany 71 , 4428-4441 (2020).
45. Hu, M. et al. Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnology Journal 16 , 1858-1867 (2018).
46. Sable, A. & Agarwal, S.K. Plant heat shock protein families: essential machinery for development and defense. Journal of Biological Sciences and Medicine 4 , 51-64 (2018).
47. Li, X. et al. Proteomic analysis of the effect of plant-derived smoke on soybean during recovery from flooding stress. Journal of Proteomics 181 , 238-248 (2018).
48. Alavilli, H., Lee, H., Park, M., Yun, D.-J. & Lee, B.-h. Enhanced multiple stress tolerance in Arabidopsis by overexpression of the polar moss peptidyl prolyl isomerase FKBP12 gene. Plant Cell Reports 37 , 453-465 (2018).
49. Zhou, S., Sauvé, R. & Thannhauser, T.W. Proteome changes induced by aluminium stress in tomato roots. Journal of Experimental Botany 60 , 1849-1857 (2009).
50. Li, Z.-G. Methylglyoxal and glyoxalase system in plants: old players, new concepts. The Botanical Review 82 , 183-203 (2016).
51. Hoque, T.S. et al. Methylglyoxal: an emerging signaling molecule in plant abiotic stress responses and tolerance. Frontiers in Plant Science 7 , 1341 (2016).
52. Berthelot, K., Estevez, Y., Deffieux, A. & Peruch, F. Isopentenyl diphosphate isomerase: a checkpoint to isoprenoid biosynthesis. Biochimie 94 , 1621-1634 (2012).
53. Feng, X. et al. GmPGL1, a thiamine thiazole synthase, is required for the biosynthesis of thiamine in soybean. Frontiers in Plant Science 10 , 1546 (2019).
54. Dvořák, P., Krasylenko, Y., Zeiner, A., Šamaj, J. & Takáč, T. Signaling toward reactive oxygen species-scavenging enzymes in plants. Frontiers in Plant Science11 , 2178 (2021).
55. Hasanuzzaman, M. et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator.Antioxidants 9 , 681 (2020).
56. Khorobrykh, S., Havurinne, V., Mattila, H. & Tyystjärvi, E. Oxygen and ROS in Photosynthesis.Plants 9 , 91 (2020).
57. Foyer, C.H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis.Environmental and Experimental Botany 154 , 134-142 (2018).
58. Guo, K. et al. Cytosolic ascorbate peroxidases plays a critical role in photosynthesis by modulating reactive oxygen species level in stomatal guard cell.Frontiers in Plant Science 11 , 446 (2020).
59. Huang, Z. et al. Heterologous Expression of Dehydration-Inducible MfbHLH145 of Myrothamnus flabellifoli Enhanced Drought and Salt Tolerance in Arabidopsis.International Journal of Molecular Sciences 23 , 5546 (2022).
60. Viswanath, K.K. et al. Plant lipoxygenases and their role in plant physiology. Journal of Plant Biology 63 , 83-95 (2020).
61. Kim, S.G. et al. Physiological and protein profiling response to drought stress in KS141, a Korean maize inbred line. Journal of Crop Science and Biotechnology17 , 273-280 (2014).
62. Kang, B.-H. et al. A glossary of plant cell structures: current insights and future questions. The Plant Cell 34 , 10-52 (2022).
63. Motta, M.R. & Schnittger, A. A microtubule perspective on plant cell division. Current Biology31 , R547-R552 (2021).
64. Fadoul, H.E., El Siddig, M.A., Abdalla, A.W.H. & El Hussein, A.A. Physiological and proteomic analysis of two contrasting Sorghum bicolor genotypes in response to drought stress. Australian Journal of Crop Science 12 , 1543-1551 (2018).
65. Jackson, S. & Nicolson, S.W. Xylose as a nectar sugar: from biochemistry to ecology.Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 131 , 613-620 (2002).
66. Kim, Y.-H. & Huh, G.-H. Overexpression of cinnamyl alcohol dehydrogenase gene from sweetpotato enhances oxidative stress tolerance in transgenic Arabidopsis. In Vitro Cellular & Developmental Biology-Plant 55 , 172-179 (2019).
67. Markulin, L. et al. Pinoresinol–lariciresinol reductases, key to the lignan synthesis in plants. Planta 249 , 1695-1714 (2019).
68. Duan, Z. & Tominaga, M. Actin–myosin XI: an intracellular control network in plants.Biochemical and Biophysical Research Communications 506 , 403-408 (2018).
69. Gao, Q., Xiong, T., Li, X., Chen, W. & Zhu, X. Calcium and calcium sensors in fruit development and ripening. Scientia Horticulturae 253 , 412-421 (2019).
70. De Freitas, S.T., Amarante, C.d. & Mitcham, E.J. Calcium deficiency disorders in plants.Postharvest Ripening Physiology of Crops , 477-502 (2016).
71. Manghwar, H. & Li, J. Endoplasmic reticulum stress and unfolded protein response signaling in plants. International Journal of Molecular Sciences 23 , 828 (2022).
72. Liu, D.Y., Smith, P., Barton, D.A., Day, D.A. & Overall, R.L. Characterisation of Arabidopsis calnexin 1 and calnexin 2 in the endoplasmic reticulum and at plasmodesmata. Protoplasma 254 , 125-136 (2017).