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Abstract
Trade-offs between traits arise and reflect constraints imposed by the environment and physicochemical laws. Trade-off situations are expected to be highly relevant for sessile plants, which have to respond to changes in the environment to ensure survival. Despite increasing interest in determining the genetic and molecular basis of plant trade-offs, there are still gaps and differences with respect to how trade-offs are defined, how they are measured, and how their genetic architecture is dissected. The first step to fill these gaps is to establish what is meant by trade-offs. In this review we provide a classification of the existing definitions of trade-offs according to: (1) the measures used for their quantification, (2) the dependence of trade-offs on environment, and (3) whether data based on which they are inferred are from a single individual across different environments or a population of individuals in single or multiple environments. We then compare the approaches for quantification of trade-offs based on phenotypic, between-individual, and genetic correlations, and stress the need for developing further quantification indices particularly for trade-offs between multiple traits. Lastly, we highlight the genetic mechanisms underpinning trade-offs and experimental designs that facilitate their discovery in plants, with focus on usage of natural variability. This review also offers a perspective for future research aimed at identification of plant trade-offs, dissection of their genetic architecture, and development of strategies to overcome trade-offs, with applications in crop breeding.   
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1. Introduction
All organisms function under resource limitations and biophysical constraints imposed either by the external environment, determined by the surrounding ecosystem, or by the internal molecular and biochemical networks. These constraints lead to trade-off situations whereby one trait depends on and is compromised by others. Since the constraints are environment-dependent, so are the trade-offs—a fact that complicates the understanding of the underlying genetic architecture of trade-offs. Yet, knowledge of the different genetic and molecular factors controlling trade-offs would allow us to engineer organisms that can overcome trade-offs between traits that are relevant for biotechnological applications. In addition, this knowledge is key to specifying effects that trade-offs may have in adaptation of organisms to future environments and, thus, in steering evolution.  
One can hypothesize that the degree and strength of trade-offs depend on the constraints faced by an organism. As a result, trade-off situations are expected to be highly relevant for plants that cannot escape constraints imposed by the environment. Indeed, the research interest in the study of plant trade-offs has steadily increased, resulting in over 1660 peer-reviewed publications in the last decade alone[footnoteRef:1]. The knowledge about trade-offs in plants have been summarized in recent reviews that discuss growth-defence trade-offs (He, Webster, & He, 2022) and involved mechanisms (Panda, Kazachkova, & Aharoni, 2021), trade-offs in the context of plant-microbe interactions (Khanna, Kohli, Ohri, & Bhardwaj, 2021) as well as biodiversity and yield trade-offs (Gong et al., 2022).  [1:  PubMed search with (plant) AND (trade-off)] 

Despite the growing interest in plant trade-offs, there seem to be conceptual gaps related to what is meant by trade-off situations, how trade-offs are quantified, and how these quantifications are used to determine the genetic and molecular mechanisms underlying them. This is largely due to lack of interdisciplinary effort that is required to integrate methodologies and data across different levels of biological organizations from genomics, genetics, and physiology as well as molecular and evolutionary biology. In particular, identifying the genes that control plant trade-offs can have far-reaching implications for breeding efforts aimed at overcoming trade-offs involving agronomically relevant traits. 
In this review, we provide a critical view on the existing definitions and classifications of trade-offs. We then focus on reviewing the measures used to identify and quantify trade-offs from data on different traits. To this end, we make the distinction between trade-off quantified in a single individual across different environments and trade-offs measured in a population in one or multiple environments. In doing so, we also draw an important, but overlooked, connection between trade-offs and plasticity of traits. We then discuss recent evidence concerning the genetic architecture of plant trade-offs and provide a perspective for future research targeted at mining of the existing and newly gathered data sets to identify the genetic underpinning of plant trade-offs.   
2. Definitions and classifications of trade-offs
A trade-off situation denotes the dependence between traits whereby increase in one of the traits leads to decrease in at least one of the others. Before presenting examples of studies that have dissected the genetic underpinning of plant trade-offs, it is important to highlight and discuss the nuanced differences in the existing definitions of trade-offs, the assumptions on which quantification of trade-offs rely, and the implications they have in practice. We would like to stress that in the following we use the term individual and genotype synonymously, unless otherwise stated.  
2.1. The concept of dependence reaction norm
A reaction norm for a trait depicts the trait values expressed by an individual over multiple environments (Fig. 1a). Therefore, the reaction norm captures the extent to which the individual respond to changes in the environment with respect to the trait, i.e. the phenotypic plasticity (Laitinen & Nikoloski, 2019). For instance, the two traits in Fig. 1a remain fixed and do not show plasticity across environments E3 – E5, but they show pronounced plasticity when considering any other combination of environments. Reaction norms can differ between different individuals (i.e. genotypes), denoting the presence of genotype-by-environment interaction for the studied trait. As a result, phenotypic plasticity of a focal trait has been considered a trait itself, and considerable recent efforts have started to unravel its genetic underpinnings (see references in Table 1) (Laitinen & Nikoloski, 2019; Ronnegard & Valdar, 2012). 
The dependence between two traits in a single individual over different environments can be described by a dependence reaction norm (Fig. 1b), alluded in Stearns (1989) (therein called trade-off function). A dependence reaction norm for two traits in an individual can readily be obtained by projecting the reaction norms of the respective traits in two-dimensional coordinate systems in which the axes correspond to the traits (Figs. 1a, b). Every point on the dependence reaction norm then denotes the specific combination of traits in a different environment. Clearly, such a diagram can be expanded to include dependence reaction norms for multiple individuals (lines of different colours in Fig. 1c). 
From the concept of dependence reaction norm, the following can be easily deduced: 
(1) for trade-offs to be manifested in an individual, the traits must exhibit plasticity (Fig. 1a). Specifically, if one of the trade-off traits does not change over the considered environments, then no dependence between the traits can be established. For instance, the two traits in Fig. 1a do not exhibit plasticity in environments E1 – E3, and therefore do not lead to a trade-off situation in these environments (Fig. 1b). 
(2) the dependence between the traits may change with the considered environments, leading to fleetingness of trade-offs. Specifically, trade-offs in a single individual may only be manifested in one set of environments, but not in another. For instance, trade-off between the two traits in Fig. 1a cannot be identified in environment E3 – E5 due to the absence of plasticity in the traits in these environments, as stated above (Fig. 1b).
(3) individuals (i.e. genotypes) may exhibit differences in the extent to which given traits are in trade-offs depending on the extent of genotype-by-environment interaction for the respective traits. For instance, the dependence reaction norms of different individuals do not have to coincide (Fig. 1c). This leads to differences in genetic correlations determined from data in different environments (see Section 3).  
The visualization facilitated by the dependence reaction norm is instructive and can be extended in three dimensions; however, dependence reaction norms cannot be visualized for more than three traits. 
2.2. Classification of definitions and types of trade-offs
The dependence between traits implied in the intuitive definition of trade-offs can be calculated based on different measures and data from various experimental designs, resulting in several definitions of trade-offs. Here, we present a classification of the definitions of trade-offs based on: (1) the measures used for their quantification, (2) the dependence of trade-offs on environment, and (3) whether data based on which they are inferred are from a single individual across different environments or a population of individuals in one or multiple environments. 
Regarding the first criterion, trade-offs can be quantified based on measures of linear or non-linear association. This leads to two principal classes – of linear and non-linear trade-offs (Fig. 2a). For instance, linear trade-offs for two traits can be quantified by the Pearson correlation coefficient (Kirch, 2008). In this regard, linear trade-offs between two traits correspond to negative phenotypic correlations, in line with the intuitive description of trade-offs above (see Section 3 for critical details). The non-linear trade-offs can further be subdivided into concave or convex, depending on the properties of the mathematical function that describes the dependence between the traits (Fig. 2a). Convex trade-offs have been related to life history strategies in plants and other organisms (Bernardes et al., 2021; Stearns, 1989).
Trade-offs can also be classified according to the degree to which they depend on the environment – namely as absolute or relative trade-offs.  A trade-off is considered absolute, if the respective dependence between the traits holds over all conceivable environments. In contrast, a trade-off is relative, if the dependence holds only over a specified set of environments (Fig. 2b). This classification has implications on the capacity of statistical approaches to identify trade-offs. 
Finally, regarding the third criterion, trade-offs can be classified based on whether they are identified for traits of a single individual over multiple environments, referred to as intraindividual trade-offs (Stearns, 1989), and for individuals in a population in a single environment. The intraindividual trade-offs may differ between individuals (Fig. 2c, left panel). The trade-offs determined over an entire population can involve traits scored in a single or multiple environments (Fig. 2c, right panel). Furthermore, trade-offs can be investigated between individuals from same or different generations (i.e. parents and offsprings), leading to the classification of trade-offs into within-generation and inter-generational (Dingemanse & Dochtermann, 2013; Stearns, 1989), respectively.    
From a biological perspective, three types of trade-offs are considered fundamental depending on the processes that determine trade-offs; namely: trade-offs that result from allocation of resources, trade-offs in mortality due to duration of resource acquisition, and trade-offs due to specialization in a particular environment (Angilletta, Wilson, Navas, & James, 2003) (Fig. 2d). Although several authors have stressed the need to develop models and theories to explain how these trade-offs arise due to the inherent constraints on the limited resources in relation to the environment (Reznick, 1985; Roff & Fairbairn, 2007; Stearns, 1989), there is little efforts in this area of research, predominantly focused on black-box models or specific cellular systems (e.g. metabolism) (See Hashimi et al. 2022).
3. Inference of trade-offs from data 
Like phenotypic plasticity (Bradshaw, 1984; Laitinen & Nikoloski, 2019), we propose that a trade-off, reflecting the dependence between traits can be seen as a trait itself. In such a way, the problems of identifying a trade-off from determining the genetic architecture of the trade-off are decoupled. This distinction extends to the experimental designs used to address the two problems. Trade-offs can be identified in a single environment over a population of individuals or in a single individual over different environments; yet, these approaches do not provide insights in the genetic basis of trade-offs. To determine the genetic architecture of trade-offs, one must rely on a population of individuals exposed to different environments. Here we provide a succinct summary of approaches that have been proposed for inferences of trade-offs from data. First, we deal with the problem of inferring trade-offs between two traits, and then consider the multivariate extensions.
3.1. Inference of trade-offs using correlation-based approaches
As noted in Section 2, negative phenotypic correlation between two traits is indicative of a linear trade-off. The phenotypic correlation between two traits, captured by the random variables  and , is calculated as
, 
with  denoting the covariance and  representing the variance of random variables. Since each trait is shaped by the genotype, environment, and the genotype-by-environment interaction (Lynch & Walsh, 1998), it is also important to understand the factors that contribute to phenotypic correlations. To this end, when data over multiple individuals and environments are available, multivariate mixed effect models, popularly applied in ecology and behavioural biology research as well as quantitative genetics research (Careau & Wilson, 2017; Dingemanse & Dochtermann, 2013; Houslay & Wilson, 2017), can provide insights in the factors that shape phenotypic correlations. In the following, we provide a brief account of decomposition of phenotypic correlations in the bivariate case, in an attempt to describe the factor that shape such correlations. 
In a univariate setting, the phenotype,  for the trait  scored in replicate  for individual  can be modelled as 
,	(1)
where  denotes the grand mean for trait ,   is the deviation of the mean of individual  from the grand mean, and  represents the residual error. In mixed effect models,  is referred to as a random intercept and models the differences in mean responses between individuals; it is assumed to be normally distributed, with zero mean and variance  denoting the between-individual variance. Similarly, the residual error is assumed to be normally distributed, with zero mean and variance  denoting the within-individual variance, also called residual variance. Note that this elementary mixed-effect model can be expanded to include individual-specific responses to a changing environmental cue, leading to the concept of random regression (Henderson, 1982) popularized by studies of phenotypic plasticity (Arnold, Kruuk, & Nicotra, 2019). From this model, the phenotypic variance, , can be decomposed as , whereby the ratio , denotes the repeatability of the trait. We note that the repeatability represents an upper bound to the heritability,  of a trait, since  can be further decomposed into variance due to genotype and other factors.           
For another trait, , the model in Eq. (1) takes the form 
.	(2)
Determining the covariance of the two traits,  and  one can easily derive that
, 		(3)
with  denoting the between-individual covariance and  the residual covariance. The between-individual covariance can be understood as the correlation between the trait means across the different individuals (Fig. 2c, right panel); the residual correlations correspond to the correlation between the residuals around the means of the respective traits in a single individual. 
From the decomposition of phenotypic covariance, one can readily obtain the following expression for decomposition of phenotypic correlation:
 		(4)
with  denoting the between-individual correlation and  the residual correlation (Fig. 2). From Eq. (4), it is clear that the phenotypic correlation depends on the repeatability,  and , of the traits. Studies often assume that the residual correlation, , is negligible and, as a result, the phenotypic correlation is often hypothesized to be of same sign as the between-individual correlation. However, Eq. (4) can be used to derive the conditions under which the phenotypic correlations differ in sign from the between-individual correlation, and provide further masking of trade-offs. Therefore, since the negative between-individual correlations remove the effect of the residual correlations, they may provide a more reliable indicator of linear trade-offs than phenotypic correlations.
However, it must be noted that between-individual phenotypic correlation is not fully genetically determined. To highlight this point, we consider the decomposition of the between-individual correlations. We note that that  can be expressed as the additive genetic value of the individual  and the common environment effects experienced by the examined individuals. As a result, the phenotypic correlation can be further decomposed as:
 	(5)
with  denoting the heritability of trait  and . The expression in Eq. (5) includes the genetic correlation  between the two traits that upon selection constrain their evolution (Gomulkiewicz & Kirkpatrick, 1992; Kingsolver, Gomulkiewicz, & Carter, 2001; Roff & Fairbairn, 2007). Dingemanse and Dochtermann (2013) propose further decomposition of the residual correlation, which provides little biological insights relevant to understanding trade-offs, since it is fully determined by the environmental as well measurement error correlations. 
From this decomposition it becomes apparent that negative genetic correlations do not always correspond to negative phenotypic correlations, since the latter are shaped by the remaining terms in Eq. (5). For this reason, it has been argued that two traits should be considered in trade-off only if their genetic correlations are negative (Reznick, 1985; Roff & Fairbairn, 2007). Unlike Reznick (1985), our perspective on trade-offs does not diminish the importance of studies that focus on trade-offs inferred by negative phenotypic correlations or between-individual correlations. Like in the literature on phenotypic plasticity, it can be argued that one should not exclude the possibility that artificial or natural selection may result in genetic assimilation whereby trade-offs can become genetically encoded (Pigliucci, Murren, & Schlichting, 2006). Further argument for this perspective is that in the context of maximizing rate of improvement of plastic traits (e.g. yield) via artificial selection, the selection response depends on both phenotypic and genetic correlations (Kirkpatrick & Bataillon, 1999).     
Genetic correlations can be determined by using data from populations composed of parent-off-springs, full or half-sib families (Lynch & Walsh, 1998). They can be quantified by using linkage disequilibrium score regression and genomic restricted maximum likelihood (Roff & Fairbairn, 2007). In addition, recent advances have shown how summary statistics from genome-wide association can provide estimates of genetic correlations from designs that explore natural variability in a species (Zhang et al., 2021). However, the quantification of linear trade-offs by genetic correlations strongly depends on the population used and environments considered. Therefore, caution is warranted in applying the findings of genetic correlations to other populations or environments. To this end, we propose that as much as the experimental design allows, any investigation of trade-offs should consider the three different types of quantification, based on phenotypic, between-individual, and genetic correlations (Fig. 2). 
Finally, we note that several primers for application of mixed-effect models have already detailed the effects of repeatability and sample sizes on the power and accuracy of inferring between-individual and genetic correlations (Dingemanse & Dochtermann, 2013; Houslay & Wilson, 2017). As a result, they can be readily employed to infer trade-offs by determining negative between-individual correlations and genetic correlations for pairs of traits. While the reporting of between-individual correlations have been advocated in ecology and behavioural biology research, we note that this is not yet applied in interdisciplinary studies that combine quantitative genetics with plant physiology or molecular biology (Careau & Wilson, 2017; Dingemanse & Dochtermann, 2013; Houslay & Wilson, 2017).
3.2. Inference of tasks in trade-offs from Principal Component Analysis 
When trade-offs between more than two traits are of interest, the mixed effect framework can be adapted to account for the larger number of traits (Dingemanse & Dochtermann, 2013; Wilson, de Boer, Arnott, & Grimmer, 2011). However, such an approach has two limitations: First, it allows for determining only pairwise correlations. Second, with an increasing number of traits considered, the models become data-hungry and the procedures for parameter estimation may not converge. As a result, classical techniques from multivariate analysis, like principal component analysis (PCA), has been used to identify combinations of traits in trade-off. 
PCA identifies linear combinations of variables describing the set of items that capture maximum variance of the data set. These linear combinations are referred to as principal components and facilitate visualizing the items in a lower-dimensional space. When the variables and objects correspond to traits measured in individuals of a population, the principal components can also be seen as a task performed by the individuals.  Using this approach, Shoval et al. (2012) have shown that in presence of trade-offs between tasks, the individuals align within simple polygons (e.g. lines, triangles, or tetrahedrons) determined by the number of tasks. The vertices of the polygons may be regarded as individuals that are specialists for a single task and are referred to as archetypes. As a result, the performance of each individual can be seen as a linear combination of archetypes, with individuals closer to an archetype being more specialized to the corresponding task. This insight has been used to derive a statistical test for assessing the significance of the tasks in trade-offs obtained by fitting convex hulls in the lower-dimensional space obtained by PCA (Fig. 3). 
Despite these advances in the application of multivariate statistical techniques for identification of trade-offs, it remains to be shown whether and to what extent the findings of archetypes and tasks in trade-off are affected by using between-individual correlations rather than phenotypic correlations on which PCA is based.
4. Genetic mechanisms explaining trade-offs: examples from plant studies
Overcoming trade-offs by uncoupling the traits in trade-off requires understanding of their underlying genetic mechanisms. In view of the decomposition in Eq. (5), the estimates of genetic correlations depend on the data used and may change with the studied population and/or environmental cues. For instance, as shown in Fig. 1c, measurements in two different environments can result in positive or negative genetic correlations. To this end, while negative genetic correlations are indicative of trade-offs, they do not pinpoint the underlying genetic mechanisms that lead to negative genetic correlations. The same holds for between-individual correlations and the underlying molecular mechanisms that determine them. 
Two genetic mechanisms can explain how negative genetic correlation arise. First, negative genetic correlations may be indicative of antagonistic pleiotropy, whereby the same gene affects the expression of multiple phenotypes in opposite directions. Trade-offs due to antagonistic pleiotropy can arise through selection if beneficial mutations in the selected environment have deleterious effects in non-selected environments (Brown & Kelly, 2018; Caspari, 1950; Williams, 1957) or by accumulation of mutations that are neutral in a selected environment but deleterious or neutral in another environment (Fournier-Level et al., 2011; Fry, 1996; Hall, Lowry, & Willis, 2010). Second, negative genetic correlations may be indicative of linkage disequilibrium, whereby genes that are inherited together affect the traits in trade-off (Roff & Fairbairn, 2007). We note that while the classical designs for calculating genetic correlations cannot pinpoint the genetic mechanisms underlying trade-offs, using the summary statistics from genome-wide association can provide some level of insight (see Section 3.1). It is also plausible that negative genetic correlations can also occur due to indirect effects of the genes interacting with the causal genes. 
These two mechanisms hold true when the trade-off is explained by limited resources allocated to the traits in trade-off. However, for relative trade-offs, that depend on the environment, a third genetic mechanism, the interaction between the genotype and the environment, can explain genetic correlation between the traits. Advances in genotyping technologies, precision phenotyping, and computational approaches for integration of the resulting data have propelled the application of genome-wide association in determining genes controlling diverse plant traits, including those involved in trade-offs (Grimm et al., 2017; Seren et al., 2012), see Table 1. One can then ask if genes controlling a single trait, involved in a trade-off, also control the trade-off itself. To this end, the concept of antagonistic pleiotropy as a genetic mechanism underpinning trade-offs is particularly appealing in the context of genome-wide association, since it translates into identifying associated markers that have opposing effects on two respective traits. 
In recent years, natural variation together with quantitative trait locus (QTL) mapping or genome-wide association (GWA) analysis have indeed revealed genes controlling trade-off through antagonistic pleiotropy. For instance, in Arabidopsis thaliana both disease resistance and growth (measured as leaf initiation rate) were both independently linked to the same locus on chromosome 4, containing ACCELERATED CELL DEATH 6 (ACD6) gene (Todesco et al., 2010). Yet, ACD6 was linked to increased resistance and reduced growth. Recently growth traits and colour in leaves were found to be co-localized to same QTL in A. thaliana, and allelic variation in FLOWERING LOCUS M (FLM) gene was found to mediate trade-off between resource acquisition and resource conservation (Hanemian et al., 2020). In another case, GWA analysis revealed that grain weight and grain number in wheat were associated to same loci posing opposite effects on the traits (Guo et al., 2018). In rice, grain number and grain size trade-off has been shown to be determined by the GRAIN SIZE AND NUMBER 1 (GSN1) gene (Guo et al., 2018). In this study, the gsn1 knock-out mutants and transgenic lines with reduced GSN1 expression showed both increased grain size and reduced number, indicating that GSN1 mediates trade-off between the grain size and number through negative regulation of grain size and positive regulation of grain number (Guo et al., 2018). Finally, antagonistic pleiotropy controlling hypoxia and drought in A. thaliana was identified using GWA analysis. These examples demonstrate that genes controlling trade-offs can be identified based on their co-localization of the significant associations of the individual traits involved in trade-offs.    
Interestingly, however, several recent studies have provided evidence that (i) focal traits and trade-offs between them are controlled by different mechanisms and (ii) trade-offs depend on conditions or developmental stage of the plant. For example, a well-known trade-off between defence and growth could be overcome by conditionally inducing the defence response genes at a certain stage of development (Karasov, Chae, Herman, & Bergelson, 2017). Using drought sensitive mutants, it has also been shown that the growth in these mutants can be improved by expressing genes that are known to enhance growth but are not responsive to drought (Kudo et al., 2019). Moreover, the trade-off between the seed number and seed size observed in many plant species has a genetic mechanism that differs from those explaining the individual traits (Calderini et al., 2021; Guo et al., 2018; Sadras, 2007). Expressing expansin in seeds has shown to overcome the trade-off between grain weight and number in wheat by increasing the weight without affecting the number of grains (Calderini et al., 2021). This evidence demonstrates that the pleiotropy of the genes controlling the traits does not alone explain the genetic mechanisms of trade-offs, but they can also arise independently due to genotype and environment interactions, which affect genetic correlations. Further, the increasing evidence for independent genetic control of the traits and entailed trade-offs suggest that the implicated genes could be under different evolutionary pressure.
5. Perspectives
Trade-offs between traits are inevitable because organisms function under diverse genetic and physicochemical constraints. In addition, expression of phenotypes is conditionally constrained by the environment (e.g. nutrient availability, organ/tissue or developmental stage). Yet, several studies have shown that individuals differ in their trade-offs, indicating that the degree of trade-offs is not under same genetic control as the individual traits. This is further supported by the recent observations that trade-offs are conditional and influenced by external factors (Calderini et al., 2021; Karasov et al., 2017; Kudo et al., 2019). In this sense, we propose that trade-offs, like plasticity, should be viewed as traits themselves. This in turn would imply that trade-offs themselves can also be a subject for selection and play a role in steering evolution. It also has important implications when designing strategies aiming to engineer superior crop plants that can overcome trade-offs. 
We propose that the future research of plant trade-offs should focus in understanding the factors involved in uncoupling of traits in trade-offs. Hence, it is of great importance to understand: (1) the genetic architecture of trade-offs, particularly those involving agronomically important traits, (2) the extent to which trade-offs depend on environmental factors, (3) effects that trade-offs have on selecting lines with desired performance.  Addressing these questions is particularly important, since several genes and other biochemical components have emerged as possible leads to overcome trade-offs in crops based on basic research conducted in model plants (Dwivedi, Reynolds, & Ortiz, 2021).
First, dissecting the genetic architecture of trade-offs can be achieved by identifying genes underlying antagonistic pleiotropy for two or more traits. This problem can be readily addressed by mining the findings from genome wide association studies (Grimm et al., 2017; Seren et al., 2012). Another direction for future research consists of expanding the concept of relationship quantitative trait loci (rQTL) to detect genes controlling trade-offs. rQTL capture the association of a locus with a trait after controlling for the effect of another (Pavlicev, Wagner, Noonan, Hallgrimsson, & Cheverud, 2013). Such partialing out of trait effects can facilitate the identification of trade-offs between more than two traits at the cost of increasing the computational demand, due to the need to consider different trait combinations. 
Second, the discoveries related to the genetic architecture of trade-offs must go hand-in-hand with efforts directed at understanding the extent to which trade-offs are affected by the environment. This is particularly relevant if we aim to breed crop lines for future climate scenarios that are superior in multiple traits thought to be in trade-off, like size and nutritional value (Dwivedi et al., 2021). To this end, particular emphasis should be placed on identify whether traits with contrasting plasticities over different environments tend to overcome or strengthen trade-offs involving these traits. For instance, a recent study found prominent trade-off between plant biomass and soil organic carbon under elevated carbon dioxide, suggesting that trade-off may emerge due to climate change (Terrer et al., 2021). Importantly, future efforts should also go to perform experiments towards understanding the trade-offs in variable conditions, ultimately with more than one changing cue relevant in future climate scenarios. 
Another direction in dissecting the genetic architecture of trade-offs can focus on deriving indices that are indicative of trade-offs at the level of an individual which can then be employed with the existing approaches for genome-wide association. For instance, the concept of dependence reaction norm, applicable on the level of individual, can be used to address this point. It would also be of interest to develop approaches that can identify the genetic architecture of trade-offs between more than two traits. All of these suggestions stress the possibility of using natural variation of crops and plant models to dissect the genetic basis of trade-offs. This perspective is feasible and supported by recent studies demonstrating that the growth-flavour trade-off in different crops (Gnan et al., 2014; Su et al., 2021). 
Last, it is important to investigate how the knowledge about the genetic architecture of trade-offs and their dependence on environments can be combined with approaches for genomic prediction to identify individuals of desired performance (Tong & Nikoloski, 2021). To this end, prediction of traits in trade-off can capitalize on recent advances in computational approaches for prediction of multiple traits under different environments (Runcie, Qu, Cheng, & Crawford, 2021). We envision that these directions for future research that rely on interdisciplinary approaches will enable us to obtain a better understanding of the role that trade-offs play in rapid adaptation as well as their more prominent or attenuating effects under future climate scenarios.   
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Tables and Figures (with captions)
Table 1. Trade-offs between plant fitness traits with genetic evidence. The table lists recent studies that have identified genetic architecture of trade-offs involving different plant traits.
	Species
	Traits
	Genetic evidence
	References

	Mimulus guttatus
	flowering time and flower size
	24 polymorphisms with AP 
	(Troth, Puzey, Kim, Willis, & Kelly, 2018)

	Mimulus guttatus
	flower size and fecundity
	AP
	(Mojica, Lee, Willis, & Kelly, 2012) 

	Mimulus guttatus
	viability and fecundity
	AP
	(Brown & Kelly, 2018) 

	Wheat, rice
	Grain weight and number
	GWAS AP
	(Calderini et al., 2021; Guo et al., 2018; Sukumaran, Lopes, Dreisigacker, & Reynolds, 2018)

	Sorghum
	panicle growth and development
	GWA meta-analysis 
AP
	(Mural et al., 2021)

	Boechera stricta
	fecundity and survival
	Allelic correlation
	(Anderson, Lee, & Mitchell-Olds, 2014)

	A. thaliana
	Seed size and number
	QTL analysis
	 (Alonso-Blanco, Blankestijn-de Vries, Hanhart, & Koornneef, 1999; Ellis, Postma, Oakley, & Agren, 2021; Gnan, Priest, & Kover, 2014; Van Daele et al., 2012)

	A. thaliana
	Defence and growth
	Mutant analysis 
HBI1, ACD6, BZR1
	(Fan et al., 2014; Lozano-Duran et al., 2013; Todesco et al., 2010) 

	A. thaliana
	Hypoxia and drought
	GWAS/STOP1 gene
AP
	(Sadhukhan, Kobayashi, Iuchi, & Koyama, 2021)

	A. thaliana
	Freezing tolerance/local adaptation
	QTL
	(Oakley, Agren, Atchison, & Schemske, 2014)

	A. thaliana
	Drought tolerance and growth
	
	(Kudo et al., 2019)

	A. thaliana
	Regeneration and defence
	Candidate gene analysis  
	(Hernandez-Coronado et al., 2022) 

	A. thaliana
	Resource aquisition and conservation
	QTL mapping, candidate gene analysis
	(Hanemian et al., 2020)

	Brassica rapa
	Growth and flavor
	QTL 
	(Su et al., 2021) 

	White clover
	Life history strategies
	Allelic correlations
	(Wright, Goad, Gross, Munoz, & Olsen, 2022) 



Figure legends
Figure 1. Inference of trade-offs depend on environment and population. a. Reaction norms of two traits (y-axis) measured in a single individual in five environments, E1 – E5. Each point corresponds to the trait score in the respective environment (x-axis). The reaction norms show that both traits are plastic over the considered environments, with no plasticity E3 – E5 (plateauing curves) and plasticity for any other combination of environments. b. The projection of the reaction norms from panel a onto the space of the two traits leads to a dependence reaction norm. Each point is determined by the trait values in the respective environment. c. Dependence reaction norms for three individuals, marked in different colours. The black and grey points correspond to the trait values in two respective environments, Ei and Ej. Genetic correlations, marked by dotted lines, depend on the environment, with trait values in environment Ei yielding negative genetic correlations, while those in environment Ej resulting in positive genetic correlations.
Figure 2. Classification of trade-offs. The definitions of trade-offs can be classified based on the measure used for their quantification, dependence on the environment, and level to which they apply. a. Based on the measures for quantification, trade-offs can be classified into linear, quantified by the Pearson correlation coefficient, or non-linear (convex or concave), quantified by the Spearman or Kendall correlation coefficient. Negative correlations are indicative of trade-offs, irrespective of the coefficients used. b. Trade-offs are referred to as absolute if they persists over all considered environments (e.g. black and red line show negative correlations; they are denoted as relative if they are manifested over a subset of environments. For instance, environments in the dependence reaction norm depicted in red can either lead to zero correlation (full line) or even positive correlation (dotted line). c. Trade-offs can be revealed by using data from a single individual over multiple environments or from populations, either within or between generations. d. Three types of trade-offs have been distinguished based on the biological process involved, namely: resource allocation, resource acquisition, and specialization in a biological function. In majority of applications, trade-offs are identified based on phenotypic, between-individual, or genetic correlations, which depend on each other as depicted by the rectangles surrounding the concept of trade-off.
Figure 3. Trade-offs inference from principal component analysis. Each point in the space determined by the first two principal components (axes) corresponds to an individual. The individuals that are vertices of the convex hull (here triangle) enclosing all points are referred to as archetypes (a1 – a3). Each point inside the triangle can be represented as a linear combination of the archetypes – seen to specialize for a particular task.  
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