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Abstract. In this paper, we consider a coupled system of two biharmonic
equations with damping and source terms of variable-exponents nonlin-
earities, supplemented with initial and mixed boundary conditions. We
establish an existence and uniqueness result of a weak solution, under
suitable assumptions on the variable exponents. Then, we show that so-
lutions with negative-initial energy blow up in finite time. To illustrate
our theoritical findings, we present two numerical examples.
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1. Introduction

In this work, we study the following biharmonic (or Petrovsky) coupled sys-
tem with initial and boundary conditions:

utt + ∆2u+ |ut|m(x)−2
ut = f1 (x, u, v) in Ω× (0, T ) ,

vtt + ∆2v + |vt|r(x)−2
vt = f2 (x, u, v) in Ω× (0, T ) ,

u = v = 0 on ∂Ω× (0, T ) ,
∂u
∂η = ∂v

∂η = 0 on ∂Ω× (0, T ) ,

(u(0), v(0)) = (u0, v0) and (ut(0), vt(0)) = (u1, v1) in Ω× Ω,
(1.1)

where T > 0,Ω is a smooth and bounded domain of Rn,
(
n = 1, 6

)
, the

exponents m and r are continuous functions on Ω satisfying some conditions
to be specified later, ∂u

∂η and ∂v
∂η denote the external normal derivatives of u
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and v, respectively, on the boundary ∂Ω and the coupling terms f1 and f2

are given as follows: for all x ∈ Ω and (u, v) ∈ R2,

f1 (x, u, v) =
∂

∂u
F (x, u, v) and f2 (x, u, v) =

∂

∂v
F (x, u, v) , (1.2)

with

F (x, u, v) = a |u+ v|p(x)+1
+ 2b |uv|

p(x)+1
2 , (1.3)

where a, b > 0 are two positive constants and p is a given continuous function
on Ω satisfying the condition (H.3) bellow.

The fourth single-order nonlinear equations arise in various physical
phenomena such as the study of travelling waves in suspnssion bridges [21],
micro electro mechanical systems [33], bending behaviour of a thin elastic
rectangular plate [35], geometric and functional design [9], radar imaging
[3],..., etc.

Other physical phenomena like flows of electro-rheological fluids, fluids
with temperature dependent viscocity, filtration processes through a porous
media, image processing and thermorheological fluids give rise to mathemat-
ical models of hyperbolic, parabolic and biharmonic equations with variable
exponents of nonlinearity. See [4, 5, 34] for more details.

Recently, the hyperbolic equations with nonlinearties of variable expo-
nents type had received a considerable amount of attention. Treating this
class of problems, the researchers in [16, 27, 28, 31, 30, 32] investigated the
local existence and blow up of solutions, whereas in [13, 22, 26, 36, 17], they
estabilshed several uniform estimates of decay rates of the solution energy.

Concerning coupled systems of wave equations in the variable-exponents
case, we have only few works. In [10], Bouhoufani and Hamchi obtained the
global existence of a weak solution and established decay rates of the solu-
tion in a bounded domain. Messaoudi et al. [27] studied the same system and
proved a theorem of existence and uniqueness of a weak solution, established
a blow-up result for certain solutions with positive-initial energy and gave
some numerical applications for their theoritical resuls. Also, Messaoudi and
Talahmeh [29] treated a system of hyperbolic equations with variable expo-
nents in the damping and source terms, and established a blow-up result for
solutions with negative initial energy. In [30], Messaoudi et al. considered the
following system{

utt −∆u+ |ut|m(x)−2ut + f1(u, v) = 0 in Ω× (0, T ) ,
vtt −∆v + |vt|r(x)−2vt + f2(u, v) = 0 in Ω× (0, T ) ,

(1.4)

with initial and Dirichlet-boundary conditions (here f1 and f2 are the cou-
pling terms introduced in (1.2)). The authors proved the existence of global
solutions, obtained explicit decay rate estimates, under suitable assumptions
on the variable exponents m, r and p and presented some numrical tests.
Recently, Bouhoufani et al. [11] treated a similar system to (1.4), where

f1(u, v) = |u|p(x)−2u|v|p(x) and f2(u, v) = |v|p(x)−2v|u|p(x)
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and the damping term, in each equation, is modilated by a time-dependent
coefficients α(t) and β(t). They established decay rate results, under appro-
priate assumptions on the coefficient functions and the variable exponents
and illustrated their results by some examples and numerical tests.

For equations and systems with biharmonic operator and constant ex-
ponents of nonlinearity, we mention the work by Komornik [18], in which he
proved the well-posedness for a Petrovsky equation, by using the nonlinear
semigroup theory, and established the energy decay estimates for a weak so-
lutions. Guesmia [14] used the same approach to obtain a global existence,
uniqueness and regularity results for Petrovsky equation, in a more general
setting. He, established decay estimates of weak, as well as strong solutions,
under suitable conditions on the damping term. In [15], the same author
proved the well-posedness and uniform stabilisation for a damped nonlinear
coupled system of two Petrovsky equations, under appropriate assumptions.
After that, Assila and Guesmia [7] considered the following problem utt + k1∆2u+ k2∆2ut + ∆g(∆u) = 0 in Ω× R+,

u = ∂ηu = 0 on ∂Ω× R+,
u(0) = u0 and ut(0) = u1 on Ω,

where k1 and k2 are two positive constants, and g is C2-class real valued
function. By invoking an important Lemma of Komornik [19], they showed
that the solution energy decays exponentially. The well-posedness of this type
of problems has been studied in many papers; the reader can see, for example,
the work by Banks et al. [8]. For the Petrovsky equation with nonlinear source
term, we have the work of Messaoudi [25], in which he studied the problem: utt + ∆2u+ aut |ut|m−2

= bu |u|ρ−2
in Ω× R+,

u = ∂ηu = 0 on ∂Ω× R+,
u(0) = u0 and ut(0) = u1 on Ω,

where a is a positive constant and m > 2. He obtained an existence result
and showed that the solution blows up, in finite time, if m < P and exists
globally otherwise.

Very recently, Antontsev and al. [6] studied the following Petrovsky
equation

utt + ∆2u−∆ut + |ut|m(x)−2
ut = |u|p(x)−2

u. (1.5)

They proved the existence of local weak solutions by using the Banach fixed-
point theorem, and gave a blow-up result for negative-initial-energy solu-
tions, under suitable assumptions. In [23], Liao and Tan treated a similar

system with M(‖∇u‖22)∆u in the left-hand side of the equation (1.5), where
M(s) = a + bsγ is a positive C1-function, a > 0, b > 0, γ ≥ 1, and m, p
are given measurable functions. The upper and lower bounds of the blow-up
time, as well as some uniform decay rates have been established.

To the best of our knowledge, the Petrovsky (or biharmonic) coupled
system with variable exponents of nonlinearty given by (1.2) and (1.3), has
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never been studied. Our aim in this work is to prove the existence and unique-
ness of a weak solution to the Petrovsky system (1.1), by using the Faedo-
Galerkin method, together with a fixed-point principle. We also establish a
blow-up result for negative-initial-energy solutions, under appropriate con-
ditions on the variable exponents. We note here that the well-posedness is
established only for n ≤ 6. For dimensions higher than 6, the problem re-
mains open, see Remark 3.4 below.

The paper is devided into three sections, in addition to the introduction.
In Section 2, we present some notations, definitions and important properties
and tools of the variable-exponent Lebesgue and Sobolev spaces. We also
introduce our assumptions. Section 3 is devoted to the statement and proof
of the well-posedness. Our blow-up result will be given in Section 4. Finally,
some numerical tests to verfy the finite time blow-up result, are presented in
Section 5.

2. Preliminaries

In this section, we define the variable-exponent Lebesgue and Sobolev spaces
and, then, present some of their propereties and facts. For more details, see
[5, 12, 20].
Let q : Ω −→ [1,∞) be a measurable function. We define the Lebesgue space
with a variable exponent by

Lq(.)(Ω) =
{
f : Ω −→ R measurable in Ω : %q(.)(λf) < +∞, for some λ > 0

}
,

where

%q(.)(f) =

∫
Ω

|f(x)|q(x)dx.

Lq(.)(Ω) is a Banach space with respect to the following Luxembourg-type
norm

‖f‖q(.) := inf

{
λ > 0 :

∫
Ω

∣∣∣∣f(x)

λ

∣∣∣∣q(x)

dx ≤ 1

}
.

Let k ∈ N. We define the variable exponent Sobolev space W k,p(.)(Ω) as
follows:

W k,q(.)(Ω) =
{
u ∈ Lq(.)(Ω) : ∂|α|u ∈ Lq(.)(Ω), with |α| ≤ k

}
.

W k,q(.)(Ω) is a Banach space equipped with the following norm

‖u‖Wk,q(.)(Ω) :=
∑

0≤|α|≤k

‖∂αu‖q(.) ,

where |α| = α1 + ...+ αn.

Lemma 2.1. (Young’s Inequality [5, 20])
Let r, q, s ≥ 1 be measurable functions defined on Ω, such that

1

s(y)
=

1

r(y)
+

1

q(y)
, for a.e y ∈ Ω.
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Then, for all a, b ≥ 0, we have

(ab)s(.)

s(.)
≤ (a)r(.)

r(.)
+

(b)q(.)

q(.)
.

Lemma 2.2. (Hölder’s Inequality [5, 20]) Let r, q, s : Ω −→ [1,∞) be measur-
able functions, such that

1

s(y)
=

1

r(y)
+

1

q(y)
, for a.e. y ∈ Ω.

If f ∈ Lr(.)(Ω) and g ∈ Lq(.)(Ω), then fg ∈ Ls(.)(Ω), with

‖fg‖s(.) ≤ 2‖f‖r(.)‖g‖q(.).

Lemma 2.3. [5, 20] If 1 < q− ≤ q(x) ≤ q+ < +∞ holds then, for any
f ∈ Lq(.)(Ω),

min
{
‖f‖q

−

q(.), ‖f‖
q+

q(.)

}
≤ %q(.)(f) ≤ max

{
‖f‖q

−

q(.), ‖f‖
q+

q(.)

}
,

where

q− = ess inf
x∈Ω

q(x) and q+ = ess sup
x∈Ω

q(x).

Lemma 2.4. [20] If q+ < +∞, then C∞0 (Ω) is dense in Lq(.)(Ω).

Definition 2.5. We say that a function q : Ω −→ R is log-Hölder continuous
on Ω, if there exists constant θ > 0 such that for all 0 < δ < 1, we have

|q(x)− q(y)| ≤ − θ

log|x− y|
, for a.e. x, y ∈ Ω, with |x− y| < δ.

Remark 2.6. The log-Hölder continuity condition on q can be replaced by
q ∈ C(Ω), if Ω is bounded.

Definition 2.7. The closure of the set of W k,q(.)(Ω)-functions with compact

support in W k,q(.)(Ω) is the Sobolev space W
k,q(.)
0 (Ω) ”with zero boundary

trace”,
i.e.,

W
k,q(.)
0 (Ω) = {u ∈W k,q(.)(Ω) : u = uχK for a compact K ⊂ Ω}.

Furtheremore, we denote by H
k,q(.)
0 (Ω) the closure of C∞0 (Ω) in W k,q(.)(Ω)

and by W−k,q
′(.)(Ω) the dual space of W

k,q(.)
0 (Ω), in the same way as the

usual Sobolev spaces, where 1
q(.) + 1

q′(.) = 1.

Lemma 2.8. (Embedding Property [12]) Let q : Ω −→ [1,∞) be a measurable
function and k ≥ 1 be an integer. Suppose that r is a log-Hölder continuous
function on Ω, such that, for all x ∈ Ω, we have{

k ≤ q− ≤ q(x) ≤ q+ < nr(x)
n−kr(x) , if r+ < n

k ,

k ≤ q− ≤ q+ <∞, if r+ ≥ n
k .

Then, the embedding W
k,r(.)
0 (Ω) ↪→ Lq(.)(Ω) is continuous and compact.
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Throughout this paper, we denote by V the following space

V = {u ∈ H2(Ω) : u =
∂u

∂η
= 0 on ∂Ω} = H2

0 (Ω).

So, V is a separable Hilbert space endowed with the inner product and norm,
respectively,

(u, v)V =

∫
Ω

∆u∆vdx and ‖u‖V = ‖∆u‖2 ,

where ‖∆u‖k = ‖∆u‖Lk(Ω) .

Now, we present our assumptions on the variable exponents m, r and p,
that will be used in the sequel. So, for all x ∈ Ω, we assume that∣∣∣∣∣∣

2 ≤ m−, if n ≤ 4,
2 ≤ m− ≤ m(x) ≤ m+ ≤ 10, if n = 5,
2 ≤ m− ≤ m(x) ≤ m+ ≤ 6, if n = 6,

(H.1)

∣∣∣∣∣∣
2 ≤ r−, if n ≤ 4,
2 ≤ r− ≤ r(x) ≤ r+ ≤ 10, if n = 5,
2 ≤ r− ≤ r(x) ≤ r+ ≤ 6, if n = 6

(H.2)

and ∣∣∣∣∣∣
3 ≤ p−, if n ≤ 4,
3 ≤ p− ≤ p(x) ≤ p+ ≤ 5, if n = 5,
p(x) = 3, if n = 6,

(H.3)

where

m− = inf
x∈Ω

m (x) , m+ = sup
x∈Ω

m (x) ,

r− = inf
x∈Ω

r (x) , r+ = sup
x∈Ω

r (x) ,

p− = inf
x∈Ω

p (x) and p+ = sup
x∈Ω

p (x) .

3. Existence of weak solution

Before starting our study, we introduce the definition of a weak solution for
system (1.1). We multiply the first equation in (1.1) by Φ ∈ C∞0 (Ω) and the
second equation by Ψ ∈ C∞0 (Ω), integrate each result over Ω, use of Green’s
formula and the boundary conditions to obtain the following.

Definition 3.1. (Weak Solution of (1.1))
Let (u0, u1), (v0, v1) ∈ V × L2(Ω). Any pair of functions (u, v), such that∣∣∣∣∣∣

u, v ∈ L∞ ([0, T );V) ,
ut ∈ L∞

(
[0, T );L2(Ω)

)
∩ Lm(.) (Ω× (0, T )) ,

vt ∈ L∞
(
[0, T );L2(Ω)

)
∩ Lr(.) (Ω× (0, T ))

(3.1)
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is called a weak solution of (1.1) on [0, T ), if
d
dt

∫
Ω
utΦdx+

∫
Ω

∆u∆Φdx+
∫

Ω
|ut|m(x)−2utΦdx

=
∫

Ω
f1Φdx,

d
dt

∫
Ω
vtΨdx+

∫
Ω

∆v∆Ψdx+
∫

Ω
|vt|r(x)−2utΨdx

=
∫

Ω
f2Ψdx,

u(0) = u0, ut(0) = u1, v(0) = v0, vt(0) = v1,

for a.e. t ∈ (0, T ) and all test functions Φ,Ψ ∈ V.
Note that C∞0 (Ω) is dense in V and V ⊂ Lm(.)(Ω) ∩ Lr(.)(Ω).

In order to establish an existence result of a local weak solution for
system (1.1), we, first, consider the following initial-boundary-value problem:

utt + ∆2u+ ut |ut|m(x)−2
= f (x, t) in Ω× (0, T ) ,

vtt + ∆2v + vt |vt|r(x)−2
= g (x, t) in Ω× (0, T ) ,

u = v = ∂u
∂η = ∂v

∂η = 0 on ∂Ω× (0, T ) ,

u(0) = u0, ut(0) = u1, v(0) = v0, vt(0) = v1 in Ω,

(S)

for given f, g ∈ L2 (Ω× (0, T )) and T > 0.

We have the following theorem of existence and uniqueness for problem
(S).

Theorem 3.2. Let n = 1, 6 and (u0, u1), (v0, v1) ∈ V × L2(Ω). Assume that
assumptions (H.1)-(H.2) hold. Then, the problem (S) admits a unique weak
solution on [0, T ), in the sense of Definition 3.1, having the regularity (3.1).

Proof. UNIQUENESS

Suppose that (S) has two weak solutions (u1, v1) and (u2, v2), in the sense
of Definition 3.1. Taking, (Φ,Ψ) = (u1t − u2t, v1t − v2t), in this definition, it
follows that (u, v) = (u1−u2, v1− v2) satisfies the following identities, for all
t ∈ (0, T ) ,

d

dt

[∫
Ω

(
|ut|2 + (∆u)2

)
dx

]
+ 2

∫
Ω

(
|u1t|m(x)−2

u1t − |u2t|m(x)−2
u2t

)
(u1t − u2t)dx = 0 (3.2)

and

d

dt

[∫
Ω

(
|vt|2 + (∆v)2

)
dx

]
+ 2

∫
Ω

(
|v1t|r(x)−2

v1t − |v2t|r(x)−2
v2t

)
(v1t − v2t)dx = 0. (3.3)

Integrating (3.2) and (3.3) over (0, t), with t ≤ T, we obtain

‖ut‖22 + ‖u‖2V + 2

∫ t

0

∫
Ω

(
|u1t|m(x)−2

u1t − |u2t|m(x)−2
u2t

)
(u1t − u2t)dxdτ = 0

(3.4)



8 O. Bouhoufani, S. A. Messaoudi and M. Alahyane

and

‖vt‖22 + ‖v‖2V + 2

∫ t

0

∫
Ω

(
|v1t|r(x)−2

v1t − |v2t|r(x)−2
v2t

)
(v1t − v2t)dxdτ = 0.

(3.5)

But we have, for all x ∈ Ω, Y, Z ∈ R and q(x) ≥ 2,(
|Y |q(x)−2

Y − |Z|Z
)q(x)

(Y − Z) ≥ 0, (3.6)

then, estimates (3.4) and (3.5) yield

‖ut‖2 + ‖u‖2V = ‖vt‖2 + ‖v‖2V = 0.

Thus, ut(., t) = vt(., t) = 0 and u(., t) = v(., t) = 0, for all t ∈ (0, T ). Thanks
to the boundary conditions, we conclude u = v = 0 on Ω × (0, T ), which
proves the uniqueness of the solution.
EXISTENCE:
To prove the existence of the solution for (S), we use the Faedo-Galerkin
method. It will be carried out in the following steps.
Approximate Problem. Consider {ωj}∞j=1 an orthonormal basis of V and de-

fine, for all k ≥ 1, (uk, vk) a sequence in Vk = span {ω1, ω2, ..., ωk} ⊂ V, given
by

uk(x, t) = Σkj=1aj(t)ωj(x) and vk(t) = Σkj=1bj(t)ωj(x)

for all x ∈ Ω and t ∈ (0, T ) and solves the following approximate problem:
∫

Ω
uktt(x, t)ωjdx+

∫
Ω

∆uk(x, t)∆ωjdx+
∫

Ω

∣∣ukt (x, t)
∣∣m(x)−2

ukt (x, t)ωjdx
=
∫

Ω
f(x, t)ωj ,∫

Ω
vktt(x, t)ωjdx+

∫
Ω

∆vk(x, t)∆ωjdx+
∫

Ω

∣∣vkt (x, t)
∣∣r(x)−2

vkt (x, t)ωjdx
=
∫

Ω
g(x, t)ωj ,

(Sk)
for all j = 1, 2, ..., k, with∣∣∣∣ uk(0) = uk0 = Σki=1 〈u0, ωi〉ωi, ukt (0) = uk1 = Σki=1 〈u1, ωi〉ωi

vk(0) = vk0 = Σki=1 〈v0, ωi〉ωi, vkt (0) = vk1 = Σki=1 〈v1, ωi〉ωi,
(3.7)

such that ∣∣∣∣ uk0 −→ u0 and vk0 −→ v0 in H1
0 (Ω),

uk1 −→ u1 and vk1 −→ v1 in L2(Ω)
(3.8)

For any k ≥ 1, problem (Sk) generates a system of k nonlinear ordinary
differential equations. The ODE’s standard existence theory assures the ex-
istence of a unique local solution (uk, vk) for (Sk) on [0, Tk), with 0 < Tk ≤ T.

Next, we have to show, by a priory estimates, that Tk = T, ∀k ≥ 1.

A Priori Estimates. Multiplying (Sk)1 and (Sk)2 by a′j(t) and b′j(t),
respectively, using Green’s formula and the boundary conditions, and then
summing each result over j = 1, k, we obtain, for all 0 < t ≤ Tk,
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1

2

d

dt

[∫
Ω

(
|ukt (x, t)|2 + (∆uk)2(x, t)

)
dx

]
+

∫
Ω

∣∣ukt (x, t)
∣∣m(x)

dx

=

∫
Ω

f(x, t)ukt (x, t)dx (3.9)

and

1

2

d

dt

[∫
Ω

(
|vkt (x, t)|2 + (∆vk)2(x, t)

)
dx

]
+

∫ t

0

∫
Ω

∣∣vkt (x, t)
∣∣r(x)

dx

=

∫
Ω

g(x, t)vkt (x, t)dx. (3.10)

The addition of (3.9) and (3.10), and then the integration of the result, over
(0, t), lead to

1

2

[
‖ukt (t)‖22 + ‖uk(t)‖2V + ‖vkt (t)‖22 + ‖vk(t)‖2V

]
+

∫ t

0

∫
Ω

(∣∣ukt (x, s)
∣∣m(x)

+
∣∣vkt (x, s)

∣∣r(x)
)
dxds

=
1

2

[
‖uk1‖22 + ‖uk0‖2V + ‖vk1‖22 + ‖vk0‖2V

]
+

∫ t

0

∫
Ω

[
f(x, s)ukt (x, s) + g(x, s)vkt (x, s)

]
dxds.

From the convergences (3.8) and exploiting Young’s inequality, this gives, for
some C > 0,

1

2

[
‖ukt (t)‖22 + ‖vkt (t)‖22 + ‖uk(t)‖2V + ‖vk(t)‖2V

]
+

∫ Tk

0

∫
Ω

(∣∣ukt (x, s)
∣∣m(x)

+
∣∣vkt (x, s)

∣∣r(x)
)
dxds

≤ C + ε

∫ Tk

0

(∥∥ukt (s)
∥∥2

2
+
∥∥vkt (s)

∥∥2

2

)
ds

+ Cε

∫ T

0

∫
Ω

(
|f(x, s)|2 + |g(x, s)|2

)
dxds.

In fact that f, g ∈ L2 (Ω× (0, T )) , we infer

1

2
sup

(0,Tk)

[
‖ukt ‖22 + ‖vkt ‖22 + ‖uk‖2V + ‖vk‖2V

]
+

∫ Tk

0

∫
Ω

(∣∣ukt (x, s)
∣∣m(x)

+
∣∣vkt (x, s)

∣∣r(x)
)

≤ Cε + Tε sup
(0,Tk)

(
‖ukt ‖22 + ‖vkt ‖22

)
. (3.11)

Choosing ε = 1
4T , estimate (3.11) yields, for all Tk ≤ T,

1

2
sup

(0,Tk)

[
‖ukt ‖22 + ‖vkt ‖22 + ‖uk‖2V + ‖vk‖2V

]
+

∫ Tk

0

∫
Ω

(∣∣ukt (x, s)
∣∣m(x)

+
∣∣vkt (x, s)

∣∣r(x)
)

≤ CT ,
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where CT > 0 is a constant depending on T only. Consequently, the solution
(uk, vk) can be extended to (0, T ), for any k ≥ 1. In addition, we have∣∣∣∣∣∣

(uk)k, (v
k)k are bounded in L∞((0, T ),V),

(ukt )k is bounded in L∞((0, T ), L2(Ω)) ∩ Lm(.)(Ω× (0, T )),
(vkt )k is bounded in L∞((0, T ), L2(Ω)) ∩ Lr(.)(Ω× (0, T )).

Therefore, we can extract two subsequences, denoted by (ul)l and (vl)l, re-
spectively, such that, when l→∞, we have∣∣∣∣∣∣
ul → u and vl → v weakly * in L∞((0, T ),V),
ult → ut weakly * in L∞((0, T ), L2(Ω)) and weakly in Lm(.)(Ω× (0, T )),
vlt → vt weakly * in L∞((0, T ), L2(Ω)) and weakly in Lr(.)(Ω× (0, T )).

Passage to the limit in the Nonlinear Terms. Under the assumptions (H.1)-
(H.2) and using symilar ideas and arguments as in [[27], Theorem 3.2, p. 6],
one can see that

| ult |m(.)−2 ult → | ut |m(.)−2 ut weakly in L
m(.)
m(.)−1 (Ω× (0, T )),

| vlt |r(.)−2 vlt → | vt |r(.)−2 vt weakly in L
r(.)
r(.)−1 (Ω× (0, T ))

and establish that (u, v) satisfies the two differential equations in (S), on
Ω× (0, T ).
The Initial Conditions. By repeating the same steps of [27], we easily conclude
that (u,v) satisfies the initial conditions.
Therefore, (u, v) is the unique local solution of (S), in the sense of Definition
3.1, having the regularity (3.1). �

Now, we state and prove our main result of existence related to system
(1.1).

Theorem 3.3. Let n = 1, 6. Under the assumptions (H.1)-(H.3) and for any
(u0, u1) and (v0, v1) in V × L2(Ω), the problem (1.1) admits a unique weak
solution (u, v), in the sense of Definition 3.1, having the regularity (3.1), for
T small enough.

Proof. From (1.2) and (1.3), we have, for all x ∈ Ω and (u, v) ∈ R2,

f1(x, u, v) = (p(x) + 1)
[
a |u+ v|p(x)−1

(u+ v) + bu |u|
p(x)−3

2 |v|
p(x)+1

2

]
(3.12)

and

f2 (x, u, v) = (p(x) + 1)
[
a |u+ v|p(x)−1

(u+ v) + bv |v|
p(x)−3

2 |u|
p(x)+1

2

]
.

(3.13)

Let y, z ∈ L∞ ((0, T ),V) . In what follows, our task is to show that

f1(y, z), f2(y, z) ∈ L2(Ω× (0, T )).

Applying Young’s inequality (Lemma 2.1) and the Sobolev embeddings
(Lemma 2.8), we obtain, for all t ∈ (0, T ) and some C1, C2 > 0, the following
results:
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• When n = 5 and 3 ≤ p(x) ≤ 5 on Ω, we have∫
Ω

|f1(x, y, z)|2 dx ≤ 2(p+ + 1)

[
a2

∫
Ω

|y + z|2p(x)
dx+ b2

∫
Ω

|y|p(x)−1 |z|p(x)+1
dx

]
≤ C1

[∫
Ω

|y + z|2p
−
dx+

∫
Ω

|y + z|2p
+

dx+

∫
Ω

|y|
5
2 (p(x)−1)

dx+

∫
Ω

|z|
5
3 (p(x)+1)

dx

]
≤ C1Ce

[
‖y + z‖2p

−

V + ‖y + z‖2p
+

V + ‖y‖
5
2 (p−−1)

V

]
+ C1Ce

[
‖y‖

5
2 (p+−1)

V + ‖z‖
5
3 (p−+1)

V + ‖z‖
5
3 (p++1)

V

]
<∞, (3.14)

since

2 <
5

2
(p− − 1) ≤ 5

2
(p+ − 1) ≤ 2p− ≤ 2p+ ≤ 5

3
(p− + 1) ≤ 5

3
(p+ + 1) ≤ 10.

• If n = 6 and p− = p+ = 3. Then,∫
Ω

|f1(x, y, z)|2 dx ≤ 2(p+ + 1)

[
a2

∫
Ω

|y + z|6 dx+ b2
∫

Ω

|y|2 |z|4 dx
]

≤ C2

[
‖y + z‖6V +

(∫
Ω

|y|6 dx
) 1

3

x+

(∫
Ω

|z|6 dx
) 2

3

]
≤ C2Ce

[
‖y + z‖6V + ‖y‖2V + ‖z‖4V

]
<∞. (3.15)

Remark 3.4. The above embeddings remain valid even for n ≤ 4, however,

they will no longer be satisfied when n ≥ 7, since V is not embed in L
n
2 (p+−1)(Ω)

and in L
n
n−2 (p++1)(Ω) when p− ≥ 3.

So, under the assumption (H.3), we have∫
Ω

|f1(x, y, z)|2 dx <∞

and similarly, ∫
Ω

|f1(x, y, z)|2 dx <∞,

for all t ∈ (0, T ). Thus, the claim is immediate.
Therefore, by invoking Theorem 3.2, there exists a unique (u, v) solution of
the problem:

utt + ∆2u+ |ut|m(x)−2
ut = f1(y, z), in Ω× (0, T ) ,

vtt + ∆2v + |vt|r(x)−2
vt = f2(y, z), in Ω× (0, T ) ,

u = v = 0, on ∂Ω× (0, T )
u (0) = u0 and ut (0) = u1 in Ω,
v (0) = v0 and vt (0) = v1, in Ω,

(R)

in the sense of Definition 3.1 and having the regularity 3.1. Now, consider
the following Banach space

AT =
{
w ∈ L∞((0, T ),V)/wt ∈ L∞((0, T ), L2(Ω))

}
,
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equipped with the norm:

‖w‖2AT = sup
(0,T )

‖w‖2V + sup
(0,T )

‖wt‖22

and define a map F : AT ×AT :−→ AT ×AT by F (y, z) = (u, v).
For d > 0 sufficiently large and T ≤ T0 (T0 to be fixed later), our goal is to
prove that F is a contraction mapping from D(0, d) into itself, where D(0, d)
is the set of (w, w̃) ∈ AT ×AT , such that

‖(w, w̃)‖AT×AT ≤ d.

F maps D(0,d) into itself:

Let (y, z) be in D(0, d) and (u, v) be the corresponding solution of problem
(Q) (i.e. F (y, z) = (u, v)). Taking (Φ,Ψ) = (ut, vt) in Definition 3.1 and
integrating each identity over (0, t), we obtain, for all t ≤ T,

1

2

[
‖ut‖22 − ‖u1‖22 + ‖∆u‖22 − ‖∆u0‖22

]
+

∫ t

0

∫
Ω

|ut(x, t)|m(x)

=

∫ t

0

∫
Ω

utf1(y, z)dxds (3.16)

and

1

2

[
‖vt‖22 − ‖v1‖22 + ‖∆v‖22 − ‖∆v0‖22

]
+

∫ t

0

∫
Ω

|vt(x, t)|r(x)

=

∫ t

0

∫
Ω

vtf2(y, z)dxds. (3.17)

The addition of (3.16) and (3.17) lead to

1

2

[
‖ut‖22 + ‖vt‖22 + ‖∆u‖22 + ‖∆v‖22

]
≤ 1

2

[
‖u1‖22 + ‖v1‖22 + ‖∆u0‖22 + ‖∆v0‖22

]
+

∫ t

0

(∣∣∣∣∫
Ω

utf1(y, z)dx

∣∣∣∣+

∣∣∣∣∫
Ω

vtf2(y, z)dx

∣∣∣∣) ds.
for all t ∈ (0, T ). Therefore,

sup
0≤t≤T

(
‖ut‖22 + ‖vt‖22 + ‖u‖2V + ‖v‖2V

)
≤ γ + 2 sup

0≤t≤T

∫ t

0

(∣∣∣∣∫
Ω

utf1(y, z)dx

∣∣∣∣+

∣∣∣∣∫
Ω

vtf2(y, z)dx

∣∣∣∣) dτ, (3.18)

where γ = ‖u1‖22 + ‖v1‖22 + ‖u0‖2V + ‖v0‖2V . We have to handle the last term
in (3.18). From the restrictions (H.3), on p and n, and using the same argu-
ments as those used to establish (3.14) and (3.15), we get, for all t ∈ [0, T ] ,
the following,
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• If n = 5, then∣∣∣∣∫
Ω

utf1(y, z)dx

∣∣∣∣ ≤ (p+ + 1)

[
a

∫
Ω

|ut| |y + z|p(x)
dx+ b

∫
Ω

|ut| . |y|
p(x)−1

2 |z|
p(x)+1

2 dx

]
≤ C3

[
ε ‖ut‖22 + Cε

(
‖y‖2p

−

V + ‖z‖2p
−

V + ‖y‖2p
+

V + ‖z‖2p
+

V

)]
+ Cε

[
‖y‖

5
2 (p−−1)

V + ‖y‖
5
2 (p+−1)

V + ‖z‖
5
3 (p−+1)

V + ‖z‖
5
3 (p++1)

V

]
, C3 > 0.

(3.19)

The fact that (y, z) ∈ D(0, d) yields

max{‖y‖αV , ‖z‖
α
V} ≤ ‖(y, z)‖

α
V×V ≤ d

α, ∀α ≥ 0.

Thus, for d large enough, estimates (3.19) leads to∣∣∣∣∫
Ω

utf1(y, z)dx

∣∣∣∣ ≤ εC3 ‖ut‖22 + Cεd
5
3 (p++1).

• When n = 6, it comes, for some C4 > 0,∣∣∣∣∫
Ω

utf1(y, z)dx

∣∣∣∣ ≤ 4

[
a

∫
Ω

|ut| |y + z|3 dx+ b

∫
Ω

|ut| . |y| |z|2 dx
]

≤ C4

[
ε ‖ut‖22 + Cε

(
‖y‖6V + ‖z‖6V + ‖y‖2V + ‖z‖4V

)]
≤ εC4 ‖ut‖22 + Cεd

6

≤ εC4 ‖ut‖22 + Cεd
5
3 (p++1).

Consequently, when n ∈ {5, 6} (and also for n = 1, 4), we have∣∣∣∣∫
Ω

utf1(y, z)dx

∣∣∣∣ ≤ εC5 ‖ut‖22 + Cεd
5
3 (p++1) (3.20)

and similarly, ∣∣∣∣∫
Ω

vtf2(y, z)dx

∣∣∣∣ ≤ εC5 ‖vt‖22 + Cεd
5
3 (p++1), (3.21)

for some C5 > 0 and all t ∈ [0, T ] . Thus, by combining (3.20) and (3.21), it
results

sup
0≤t≤T

∫ t

0

(∣∣∣∣∫
Ω

utf1(y, z)dx

∣∣∣∣+

∣∣∣∣∫
Ω

vtf2(y, z)dx

∣∣∣∣) ds
≤ T

(
εC5 sup

0≤t≤T

(
‖ut‖22 + ‖vt‖22

)
+ Cεd

5
3 (p++1)

)
. (3.22)

Now, inserting (3.22) into (3.18), we arrive at

sup
0≤t≤T

(
‖ut‖22 + ‖vt‖22 + ‖u‖2V + ‖v‖2V

)
≤ γ + 2T

(
εC5 sup

0≤t≤T

(
‖ut‖22 + ‖vt‖22

)
+ Cεd

5
3 (p++1)

)
. (3.23)
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By taking ε = 1
4TC5

, estimate (3.23) leads to, for some C6 > 0,

‖(u, v)‖2AT×AT ≤ 2γ + 4TC6d
5
3 (p++1)

≤ 2γ + 4T0C6d
5
3 (p++1).

So, if we take (d, T0) such that d2 >> 2γ and T0 ≤ 1
4

(
d2−2γ

C6d
5
3
(p++1)

)
, it yields

‖(u, v)‖2AT×AT ≤ d
2,

which means that (u, v) belongs to D(0, d). Consequently, F maps D(0, d)
into itself.

F : D(0,d) −→ D(0,d) is a contraction:

Let (y1, z1) and (y2, z2) be inD(0, d) and set (u1, v1) = F (y1, z1) and (u2, v2) =
F (y2, z2). Clearely, (U, V ) = (u1 − u2, v1 − v2) is a weak solution of the fol-
lowing system

Utt + ∆2U + |u1t|m(x)−2
u1t − |u2t|m(x)−2

u2t

= f1(y1, z1)− f1(y2, z2) in Ω× (0, T ) ,

Vtt + ∆2V + |v1t|r(x)−2
v1t − |v2t|r(x)−2

v2t

= f2(y1, z1)− f2(y2, z2) in Ω× (0, T ) ,
U = V = 0 on ∂Ω× (0, T ) ,
(U (0) , V (0)) = (Ut (0) , Vt (0)) = (0, 0) in Ω.

(S)

in the sense of Definition 3.1. So, taking (Φ,Ψ) = (Ut, Vt), in this defini-
tion, using Green’s formula together with the boundary conditions and then,
integrating each result over (0, t), we obtain, for a.e. t ≤ T,

1

2

(
‖Ut‖22 + ‖∆U‖22

)
+

∫ t

0

∫
Ω

(
u1t |u1t|m(x)−2 − u2t |u2t|m(x)−2

)
Utdxds

≤
∫ t

0

∫
Ω

|f1(y1, z1)− f1(y2, z2)| |Ut|dxds

and

1

2

(
‖Vt‖22 + ‖∆V ‖22

)
+

∫ t

0

∫
Ω

(
v1t |v1t|r(x)−2 − v2t |v2t|r(x)−2

)
Vtdxds

≤
∫ t

0

∫
Ω

|f2 (y1, z1)− f2 (y2, z2)| |Vt|dxds.

Under the condition (H.3), using Hölder’s inequality (Lemma 2.2) and in-
equality (3.6), these two estimates give, for n = 1, 6 ,

‖Ut‖22 + ‖U‖2V ≤ 4

∫ t

0

‖Ut‖2‖f1(y1, z1)− f1(y2, z2)‖2ds (3.24)

and

‖Vt‖22 + ‖V ‖2V ≤ 4

∫ t

0

‖Vt‖2‖f2 (y1, z1)− f2 (y2, z2) ‖2ds. (3.25)
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Tha addition of (3.24) and (3.25) imply

‖Ut‖22 + ‖Vt‖22 + ‖U‖2V + ‖V ‖2V ≤ 4

∫ t

0

‖Ut‖2‖f1(y1, z1)− f1(y2, z2)‖2ds

+ 4

∫ t

0

‖Vt‖2‖f2 (y1, z1)− f2 (y2, z2) ‖2ds, (3.26)

for all t ∈ (0, T ). Now, we estimate the terms:

‖f1(y1, z1)− f1(y2, z2)‖2 and ‖f2 (y1, z1)− f2 (y2, z2) ‖2.

Using an appropriate algebric inequalities (see [1]), we obtain for two con-
stants C1, C2 > 0 and for all x ∈ Ω and t ∈ (0, T ),∫

Ω

|f1(y1, z1)− f1(y2, z2)|2 dx ≤ I1 + I2 + I3 + I4, (3.27)

where

I1 = C1

∫
Ω

|y1 − y2|2(|y1|2(p(x)−1) + |z1|2(p(x)−1))dx

+ C1

∫
Ω

|y1 − y2|2(|y2|2(p(x)−1) + |z2|2(p(x)−1))dx,

I2 = C1

∫
Ω

|z1 − z2|2(|y1|2(p(x)−1) + |z1|2(p(x)−1))dx

+ C1

∫
Ω

|z1 − z2|2(|y1|2(p(x)−1) + |z2|2(p(x)−1))dx,

I3 = C2

∫
Ω

|z1 − z2|2|y1|p(x)−1
(
|z1|p(x)−1 + |z2|p(x)−1

)
dx,

I4 = C2

∫
Ω

|y1 − y2|2|z2|p(x)+1
(
|y1|p(x)−3 + |y2|p(x)−3

)
dx.

As in above, from assumption (H.3) and Remark 3.4, we get the following
estimate for a typical term in I1 and I2, when n ∈ {5, 6},∫

Ω

|y1 − y2|2 |y1|2(p(x)−1)
dx

≤ 2

(∫
Ω

|y1 − y2|
2n
n−4 dx

)n−4
n
(∫

Ω

|y1|
n
2 (p(x)−1)dx

) 4
n

≤ C||y1 − y2||22n
n−4

[(∫
Ω

|y1|
n
2 (p+−1)dx

) 4
n

+

(∫
Ω

|y1|
n
2 (p−−1)dx

) 4
n

]
≤ C||∆(y1 − y2)||22

(
||∆y1||2(p+−1)

2 + ||∆y1||2(p−−1)
2

)
≤ C||∆Y ||22

(
||(y1, z1)||2(p+−1)

AT×BT + ||(y1, z1)||2(p−−1)
AT×BT

)
≤ C||∆Y ||22,
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where C > 0 is, from now on, used to denote a positive generic constant,
Y = y1 − y2 and Z = z1 − z2. In a similar way, we find∫

Ω

|z1 − z2|2 |y2|2(p(x)−1)
dx ≤ C||∆Z||22

(
||∆y2||2(p+−1)

2 + ||∆y2||2(p−−1)
2

)
≤ C||∆Z||22

(
||(y2, z2)||2(p+−1)

AT×BT + ||(y2, z2)||2(p−−1)
AT×BT

)
≤ C||∆Z||22.

We conclude that, for n ∈ {5, 6} and all t ∈ (0, T ),

I1 + I2 ≤ C||∆Y ||22
(
||(y1, z1)||2(p+−1)

AT×BT + ||(y1, z1)||2(p−−1)
AT×BT

)
+ C||∆Z||22

(
||(y2, z2)||2(p+−1)

AT×BT + ||(y2, z2)||2(p−−1)
AT×BT

)
≤ C

(
||∆Y ||22 + ||∆Z||22

)
. (3.28)

Using the same arguments, also, when n ∈ {5, 6}, a typical term in I3 can be
handled as follows:∫

Ω

|z1 − z2|2 |y1|p(x)−1 |z1|p(x)−1
dx

≤ 2

(∫
Ω

|z1 − z2|
2n
n−4 dx

)n−4
n
(∫

Ω

|y1|
n
2 (p(x)−1)dx

) 2
n
(∫

Ω

|z1|
n
2 (p(x)−1)dx

) 2
n

≤ C||z1 − z2||22n
n−4

(
||y1||p

+−1
n
2 (p+−1) + ||y1||p

−−1
n
2 (p−−1)

)(
||z1||p

+−1
n
2 (p+−1) + ||z1||p

−−1)
n
2 (p−−1)

)
≤ C||∆(z1 − z2)||22

(
||∆y1||p

+−1
2 + ||∆y1||p

−−1
2

)(
||∆z1||p

+−1
2 + ||∆z1||p

−−1)
2

)
≤ C||∆Z||22.

Thus,

I3 ≤ C
(
||∆Y ||22 + ||∆Z||22

)
. (3.29)

Next, we estimate a typical term in I4:
Case 1: If n = 5, we have 3 ≤ p− ≤ p+ ≤ 5 (by (H.3)). Therefore,∫

Ω

|y1 − y2|2 |z2|p(x)+1 |y1|p(x)−3
dx

≤ 2

(∫
Ω

|y1 − y2|10dx

) 1
5
(∫

Ω

|z2|
5
4 (p(x)+1)|y1|

5
4 (p(x)−3)

) 4
5

≤ C||y1 − y2||210

(∫
Ω

|z2|
5
3 (p(x)+1)dx

) 3
5
(∫

Ω

|y1|5(p(x)−3)dx

) 1
5

≤ C||Y ||210

(
||z2||p

++1
5
3 (p++1)

+ ||z2||p
−+1

5
3 (p−+1)

)(
||y1||p

+−3
5(p+−3) + ||y1||p

−−3
5(p−−3)

)
≤ C||∆Y ||22

(
||∆z2||p

++1
2 + ||∆z2||p

−+1
2

)(
||∆y1||p

+−3
2 + ||∆y1||p

−−3
2

)
≤ C||∆Y ||22.
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Case 2: If n = 6, p(x) = 3 on Ω (by (H.3)). Then,∫
Ω

|y1 − y2|2 |z2|p(x)+1 |y1|p(x)−3
dx =

∫
Ω

|y1 − y2|2 |z2|4 dx

≤ C
(∫

Ω

|y1 − y2|6 dx
) 1

3
(∫

Ω

|z2|6 dx
) 2

3

≤ C||y1 − y2||26||z2||46
≤ C||∆Y ||22||∆z2||42
≤ C||∆Y ||22.

Consequently, for n ∈ {5, 6} and all t ∈ (0, T ), we have

I4 ≤ C||∆Y ||22. (3.30)

Remark 3.5. By looking carefully at the above calculations, one can easily
obtain the previous estimates of Ii (i = 1, 4), for n ≤ 4, since p is bounded
on Ω and p− ≥ 3.

By inserting (3.28), (3.29) and (3.30) into (3.27), we obtain∫
Ω

|f1(y1, z1)− f1(y2, z2)|2 dx ≤ C
(
||∆Y ||22 + ||∆Z||22

)
(3.31)

and likewise,∫
Ω

|f2(y1, z1)− f2(y2, z2)|2 dx ≤ C
(
||∆Y ||22 + ||∆Z||22

)
, (3.32)

for all t ∈ (0, T ). The substitution of (3.31) and (3.32) into (3.26) yields

‖Ut‖22 + ‖Vt‖22 + ‖U‖2V + ‖V ‖2V ≤ C
∫ t

0

‖Ut‖2
(
||∆Y ||22 + ||∆Z||22

) 1
2 ds

+ C

∫ t

0

‖Vt‖2
(
||∆Y ||22 + ||∆Z||22

) 1
2 ds.

Exploiting Young’s inequality, this latter estimate gives

‖Ut‖22 + ‖Vt‖22 + ‖U‖2V + ‖V ‖2V

≤ εC
∫ t

0

(
‖Ut‖22 + ‖Vt‖22

)
ds+ Cε

∫ t

0

(
||∆Y ||22 + ||∆Z||22

)
ds,

for all t ∈ [0, T ) . Therefore,

sup
0≤t≤T

(
‖Ut‖22 + ‖Vt‖22 + ‖U‖2V + ‖V ‖2V

)
≤ εCT sup

0≤t≤T

(
‖Ut‖22 + ‖Vt‖22

)
+ CεT sup

0≤t≤T

(
||∆Y ||22 + ||∆Z||22

)
.

Thus, by choosing ε such that εCT = 1
2 , we arrive at

‖(U, V )‖2AT×AT ≤ CT‖(Y,Z)‖2AT×AT
≤ CT0‖(Y, Z)‖2AT×AT
≤ k ‖(Y,Z)‖2AT×BT , (3.33)
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with k = CT0. So, by taking T0 so small that 0 < k < 1, inquality (3.33)
shows that F is a contraction mapping from D(0, d) into itself. Therefore, the
fixed-point theorem assures the existence of a unique (u, v) ∈ D(0, d), such
that F (u, v) = (u, v). Hence, (u, v) is, obviously, a weak solution of system
(1.1), in the sense of Definition 3.1, satisfying (3.1).
The uniqueness of this solution can be obtained by applying the energy
method. �

4. Blow up of Negative Initial Energy Solution

In this Section, we show that any solution (u, v) of problem (1.1) blows up
in finite time, i.e, there exists T ∗ ∈ (0, T ), such that

limt→T∗
(
‖ut (t)‖22 + ‖vt (t)‖22 + ‖∆u (t)‖22 + ‖∆v (t)‖22

)
= +∞,

if

E(0) < 0 and max {m+ − 1, r+ − 1} < p−, (H.4)

in addition to the assumptions (H.1)-(H.3), where E is the energy functional
associated to system (P ) defined, for all t ∈ [0, T ) , by

E(t) =
1

2

(
‖ut‖22 + ‖vt‖22 + ‖∆u‖22 + ‖∆v‖22

)
−
∫

Ω

F (x, u, v) dx. (4.1)

A simple computation shows that E is a decreasing function, with

E
′
(t) = −

∫
Ω

|ut|m(x)
dx−

∫
Ω

|vt|r(x)
dx, (4.2)

for all t ∈ [0, T ), thanks to Green’s formula and the boundary conditions in
(1.1).

Lemma 4.1. [2]
1- There exist C1, C2 > 0 such that, for all x ∈ Ω and (u, v) ∈ R2 we have

C1

(
|u|

p(x)+1

+ |v|
p(x)+1

)
≤ F (x, u, v) ≤ C2

(
|u|

p(x)+1

+ |v|
p(x)+1

)
. (4.3)

2- For all x ∈ Ω and (u, v) ∈ R2, we have

u f1 (x, u, v) + vf2 (x, u, v) = (p (x) + 1)F (x, u, v) , (4.4)

where f1 and f2 are defined by (3.1) and F by (3.2).

Let us define H by

H (t) = −E (t) , for all t ∈ [0, T ) . (4.5)

Remark 4.2. 1. From (4.1, (4.2, (4.3 and (4.4, we have

0 < H (0) ≤ H (t) ≤ C3 (ρ (u) + ρ (v)) , for all t ∈ [0, T ) , (4.6)

where C3 > 0 is a constant and

ρ (u) =

∫
Ω

|u |
p(x)+1

dx and ρ (v) =

∫
Ω

|v |
p(x)+1

dx.
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2.

H ′(t) ≥ max

{∫
Ω

|ut|m(x)
dx,

∫
Ω

|vt|r(x)
dx

}
. (4.7)

Hence, we can establish the following result.

Lemma 4.3. [27] There exists C4 > 0 such that

‖u‖
p−+1

p−+1
+ ‖v‖

p−+1

p−+1
≤ C4 (ρ (u) + ρ (v)) . (4.8)

Consequently and in fact that max {m+ − 1, r+ − 1} < p−, it yields

Corollary 4.4. There exist two constants C5, C6 > 0 such that∫
Ω

|u|m(x)
dx ≤ C5

[
(ρ (u) + ρ (v))

m+

p−+1 + (ρ (u) + ρ (v))
m−

p−+1

]
, (4.9)

and ∫
Ω

|v|r(x)
dx ≤ C6

[
(ρ (u) + ρ (v))

r+

p−+1 + (ρ (u) + ρ (v))
r−

p−+1

]
. (4.10)

Now, we present and prove the blow-up result.

Theorem 4.5. Suppose that assumptions (H.1)-(H.4) hold. Then, the solution
of system (1.1) blows up in finite time.

Proof. For small ε > 0 to be fixed later, we define the following functional

L (t) = H1−σ (t) + ε

∫
Ω

(uut + vvt) dx, for all t ∈ [0, T ) ,

where

0 < σ ≤ min

{
p− −m+ + 1

(p− + 1) (m+ − 1)
,

p− − r+ + 1

(p− + 1) (r+ − 1)
,

p− − 1

2 (p− + 1)

}
. (4.11)

Our goal is to show that L satisfies a differential inequality which leads
to a blow up in finite time. So, we will prove that, for some C > 0,

L′ (t) ≥ CL
1/(1−σ)

(t) , for all t ∈ [0, T ) . (4.12)

Step 1. We estimate L′ (t) :

Using (1.1) and Green’s formula, we obtain for all t ∈ (0, T ),

L′ (t) = (1− σ)H−σ (t)H ′ (t) + ε
(
‖ut‖22 + ‖vt‖22

)
+ ε

∫
Ω

(uf1 (x, u, v) + vf2 (x, u, v)) dx− ε
(
‖∆u‖22 + ‖∆v‖22

)
− ε

∫
Ω

(
|ut|m(x)−2

utu+ |vt|r(x)−2
vtv
)
dx. (4.13)

By the definitions of E and H, we have

‖∆u‖22 + ‖∆v‖22 = 2

∫
Ω

F (x, u, v) dx−
[
‖ut‖22 + ‖vt‖22 + 2H (t)

]
. (4.14)
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Thanks to (4.3), (4.4) and (4.14), identity (4.13) leads to

L′ (t) ≥ (1− σ)H−σ (t)H ′ (t) + 2ε
(
‖ut‖22 + ‖vt‖22

)
+ εc1 (ρ (u) + ρ (v))

+ 2εH (t)− ε
∫

Ω

(
|u| |ut|m(x)−1

+ |v| |vt|r(x)−1
)
dx, (4.15)

where c1 = C2(p−−1) > 0. Next, we estimate the last two terms in the right
hand-side of (4.15); namely

I1 :=

∫
Ω

|u| |ut|m(x)−1
dx and I2 :=

∫
Ω

|v| |vt|r(x)−1
dx.

Exploiting the following Young inequality

XY ≤ δλ

λ
Xλ +

δ−β

β
Y β , X, Y ≥ 0, δ > 0 and

1

λ
+

1

β
= 1,

with

X = |u| , Y = |ut|m(x)−1
, λ = m (x) , β =

m (x)

m (x)− 1
and δ > 0,

we find

I1 ≤
∫

Ω

δm(x)

m (x)
|u|m(x)

dx

+

∫
Ω

m (x)− 1

m (x)
δ−m(x)/(m(x)−1) |ut|m(x)

dx. (4.16)

Taking

δ =
[
KH−σ (t)

] 1−m(x)
m(x) ,

where K is a large constant, estimates (4.16) becomes

I1 ≤
K1−m−

m−

∫
Ω

[H (t)]
σ(m(x)−1) |u|m(x)

dx

+
m+ − 1

m−
KH−σ (t)

∫
Ω

|ut|m(x)
dx.

By virtue of Remark 4.2 and since m is bounded on Ω, this gives, for some
c2 > 0,

I1 ≤ c2
K1−m−

m−
[H (t)]

σ(m+−1)
∫

Ω

|u|m(x)
dx

+
m+ − 1

m−
KH−σ (t)H ′ (t) . (4.17)

Similarly and since r is bounded in Ω, we have, for some c3 > 0,

I2 ≤ c3
K1−r−

r−
[H (t)]

σ(r+−1)
∫

Ω

|v|r(x)
dx

+
r+ − 1

r−
KH−σ (t)H ′ (t) . (4.18)
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On the other hand, estimate (4.9), implies, for some c4 > 0,

[H (t)]
σ(m+−1)

∫
Ω

|u|m(x)
dx ≤ c4 (ρ (u) + ρ (v))

σ(m+−1)+ m+

p−+1

+ c4 (ρ (u) + ρ (v))
σ(m+−1)+ m−

p−+1

. (4.19)

From the conditions on σ and using the following algebraic inequality

zτ ≤ z + 1 ≤
(

1 +
1

a

)
(z + a) , for all z ≥ 0, 0 < τ ≤ 1, a > 0, (4.20)

with

z = ρ (u) + ρ (v) , a = H (0) , τ = σ
(
m+ − 1

)
+

m+

p− + 1

and then with τ = σ (m+ − 1) + m−

p−+1 , respectively, we get

(ρ (u) + ρ (v))
σ(m+−1)+ m+

p−+1 ≤
[
1 +

1

H (0)

]
(ρ (u) + ρ (v) +H (0))

≤ γ (ρ (u) + ρ (v) +H (t)) (4.21)

and

(ρ (u) + ρ (v))
σ(m+−1)+ m−

p−+1 ≤ γ (ρ (u) + ρ (v) +H (t)) , (4.22)

where γ = 1 + 1
H(0) . By adding (4.21) and (4.22), estimate (4.19) takes the

form

[H (t)]
σ(m+−1)

∫
Ω

|u|m(x)
dx ≤ c5 (ρ (u) + ρ (v) +H (t)) , (4.23)

where c5 > 0 is a constant. Likewise, we obtain, for some c6 > 0,

[H (t)]
σ(r+−1)

∫
Ω

|v|r(x)
dx ≤ c6 (ρ (u) + ρ (v) +H (t)) . (4.24)

By inserting (4.23) into (4.17), and (4.24) into (4.18), respectively, we find
for some c7, c8 > 0,

I1 ≤ c7
K1−m−

m−
(ρ (u) + ρ (v) +H (t)) +

m+ − 1

m−
KH−σ (t)H ′ (t) . (4.25)

and

I2 ≤ c8
K1−r−

r−
(ρ (u) + ρ (v) +H (t)) +

r+ − 1

r−
KH−σ (t)H ′ (t) . (4.26)

So, the substitution of (4.25) and (4.26) into (4.15) yields

L′ (t) ≥ (1− σ − εM)H−σ (t)H ′ (t) + 2ε
(
‖ut‖22 + ‖vt‖22

)
+ 2εH (t)

+ εc1 (ρ (u) + ρ (v))− εc9
K1−m−

m−
[ρ (u) + ρ (v) +H (t)]

− εc10
K1−r−

r−
[ρ (u) + ρ (v) +H (t)] , (4.27)
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for some c9, c10 > 0 and M = K
(
m+−1
m− + r+−1

r−

)
. Therefore,

L′ (t) ≥ (1− σ − εM)H−σ (t)H ′ (t) + 2ε
(
‖ut‖22 + ‖vt‖22

)
+ ε

(
2− K1−m−

m−
c9 −

K1−r−

r−
c10

)
H (t)

+ ε

(
c1 −

K1−m−

m−
c9 −

K1−r−

r−
c10

)
(ρ (u) + ρ (v)) . (4.28)

For large value of K, we can find c11 > 0, such that

L′ (t) ≥ (1− σ − εM)H−σ (t)H ′ (t)

+ εc11

(
‖ut‖22 + ‖vt‖22 +H(t) + ρ(u) + ρ(v)

)
. (4.29)

Once K is fixed, we pick ε sufficiently small so that

1− σ − εM ≥ 0 and L (0) = H1−σ (0) + ε

∫
Ω

(u0u1 + v0v1) dx > 0.

By recalling that H ′ (t) ≥ 0, then there exists Υ > 0 such that

L′ (t) ≥ εΥ
(
H (t) + ‖ut‖22 + ‖vt‖22 + ρ (u) + ρ (v)

)
. (4.30)

Consequently,

L (t) ≥ L (0) > 0, for all t ∈ [0, T ) .

Step 2. We estimate L1/(1−σ) (t) :
By the definition of L, we have, for some c12 > 0,

L
1/(1−σ)

(t) ≤
(
H

1−σ
(t) + ε

∫
Ω

|uut + vvt| dx
)1/(1−σ)

≤ 2
σ/(1−σ)

(
H (t) +

(
ε

∫
Ω

(|uut|+ |vvt|) dx
)1/(1−σ)

)

≤ c12

(
H (t) +

(∫
Ω

(|u| |ut|+ |v| |vt|) dx
)1/(1−σ)

)
, (4.31)

since

(X + Y )
δ ≤ 2δ−1

(
Xδ + Y δ

)
, for all X,Y ≥ 0 and δ > 1. (4.32)

Also, we have(∫
Ω

(|u| |ut|+ |v| |vt|) dx
)1/(1−σ)

≤ 2
σ/(1−σ)

(∫
Ω

|u| |ut| dx
)1/(1−σ)

+ 2
σ/(1−σ)

(∫
Ω

|v| |vt| dx
)1/(1−σ)

. (4.33)
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From the conditions on p, Hölder’s and Young’s inequalities imply, for some
c13, c14 > 0,(∫

Ω

|u| |ut| dx
)1/(1−σ)

≤ ‖u‖1/(1−σ)
2 ‖ut‖1/(1−σ)

2

≤ c13 ‖u‖1/(1−σ)
p−+1 ‖ut‖1/(1−σ)

2

≤ c14

(
‖u‖µ/(1−σ)

p−+1 + ‖ut‖β/(1−σ)
2

)
, (4.34)

where 1
µ + 1

β = 1. By taking β = 2 (1− σ), then µ/ (1− σ) = 2/ (1− 2σ) and

hence, inequality (4.34) becomes(∫
Ω

|u| |ut| dx
)1/(1−σ)

≤ c14

(
‖u‖

2/(1−2σ)

p−+1 + ‖ut‖
2

2

)
. (4.35)

Invoking Lemma 4.3, estimate (4.35) leads to(∫
Ω

|u| |ut| dx
)1/(1−σ)

≤ c15

(
(ρ (u) + ρ (v))

τ
+ ‖ut‖22

)
,

where c15 > 0 and τ = 2/ (p− + 1) (1− 2σ) . Again, by using (4.11) and
(4.20), we get, for some c16 > 0,(∫

Ω

|u| |ut| dx
)1/(1−σ)

≤ c16

(
ρ (u) + ρ (v) +H (t) + ‖ut‖

2

2

)
(4.36)

and (∫
Ω

|v| |vt| dx
)1/(1−σ)

≤ c16

(
ρ (v) + ρ (v) +H (t) + ‖vt‖

2

2

)
. (4.37)

By substituting (4.37) and (4.36) into (4.33), it results, for some c17 > 0,(∫
Ω

(|u| |ut|+ |v| |vt|) dx
)1/(1−σ)

≤ c17

(
ρ (u) + ρ (v) + ‖ut‖

2

2 + ‖vt‖
2

2 +H (t)
)
.

Hence, inequality (4.31) becomes, for some c18 > 0,

L
1/(1−σ)

(t) ≤ c18

(
ρ (u) + ρ (v) +H (t) + ‖ut‖

2

2 + ‖vt‖
2

2

)
. (4.38)

Finally, by combining (4.38) and (4.30), we infer that, for all t ∈ [0, T ) ,

L′ (t) ≥ CL
1/(1−σ)

(t) , C > 0.

A simple integration over (0, t) gives

Lσ/(1−σ) (t) ≥ 1

L
−σ
1−σ (0)− σCt

1−σ

.

Therefore,

lim
t−→T∗

L(t) = +∞, T ∗ ≤ 1− σ

σC
[
L

σ
(1−σ) (0)

] .
This completes the proof. �
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5. Numerical Tests

In this section, some numerical experiments are performed to illustrate the
theoretical results in Theorem 4.5. We solve the system (1.1) under the as-
sumptions (H.1)−(H.4), using a numerical scheme based on the finite element
method in space and the Newmark method in time.

For the numerical tests, we consider the system (1.1) in two-dimension
space and take the functions m, r and p as follows:

m(x, y) = 2 +
1

1 + x2
, r(x, y) = 2 +

1

1 + y2
, p(x, y) = 3 +

1

1 + x2 + y2
,

and the source terms f1 and f2 are given by 1.2 and 1.3 with a = b = 1.
Since we are dealing here with a higher order term, which is the bi-

Laplacian ∆2u, it is impossible to solve the problem by using linear finite
elements. Using quadratic triangular elements [37], the discretized system is
written as: MÜh +RUh +M

∣∣∣Üh∣∣∣m(x)−2

Üh = MF1 (Uh, Vh) ,

MV̈h +RVh +M
∣∣∣V̈h∣∣∣r(x)−2

V̈h = MF2 (Uh, Vh) ,
(5.1)

where M , R are the mass and the stiffness matrices, respectively, (Uh, Vh) is
the approximate solution of the system (1.1), and F1, F2 are the approximate
source terms.

We perform two tests by running our code with a time step ∆t = 5·10−4,
which is small enough to catch the blow-up behavior.

Test 1: For the first test, we consider a rectangular domain

Ω1 = {(x, y)/− 1 < x < 1 and 0 < y < 1}
with a triangulation discretization (see the mesh-grid in Figure 1), which

consists of 3766 nodes and 1819 elements, and take the following initial con-
ditions:

u0(x, y) = y2(1− y)2(1−x2)2, v0(x, y) =
3

2
y2(1− y)2(1−x2)2, u1 = v1 = 0.

Figure 2 shows the approximate numerical results of the solution (u, v)
at different time iterations t = 0, t = 0.025, t = 0.043 and t = 0.0445, where
the left column shows the approximate values of u and the right column shows
the approximate values of v.

Figure 3 presents the numerical values of the functional H(t) defined
by (4.5) during the time iterations. It shows the blow-up of the energy of the
system (1.1). Notice that the blow-up is occurring at instant t = 0.0425.
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Figure 1. Uniform mesh grid of Ω1.

(a) t = 0

(b) t = 0.025

(c) t = 0.043

(d) t = 0.0445

Figure 2. The numerical results of Test 1 at different times.
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Figure 3. Test 1: The blow-up of H in finite time.

Test 2: For the second test, we consider an elliptical domain

Ω2 =

{
(x, y)/

x2

4
+ y2 < 1

}
with a triangulation discretization (see the mesh-grid in Figure 4), which
consists of 2792 nodes and 1349 elements, and take the following initial con-
ditions:

u0(x, y) = 2(1− x2

4
− y2), v0(x, y) = 3(1− x2

4
− y2), u1 = v1 = 0.

Figure 4. Uniform mesh grid of Ω2.

For Test 2, Figure 5 presents the approximate numerical results of the
solution (u, v) at different time iterations t = 0, t = 0.018, t = 0.0185 and
t = 0.019, where the left column shows the approximate values of u and the
right column shows the approximate values of v. The numerical values of the
functional H(t) are presented in Figure 6. We observe the blow-up of the
energy from t = 0.0175.
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(a) t = 0

(b) t = 0.018

(c) t = 0.0185

(d) t = 0.019

Figure 5. The numerical results of Test 2 at different times.

Figure 6. Test 2: The blow-up of H in finite time.
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As a conclusion, the computational simulations show the blow-up of the
solution of system (1.1) at finite time, which is compatible with the theoretical
results.
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