References
Almeida Silva, L., Reschke, C., Nguyen, N., Langa, E., Sanz-Rodriguez, A., Gerbatin, R., et al. (2020). Genetic deletion of microRNA-22 blunts the inflammatory transcriptional response to status epilepticus and exacerbates epilepsy in mice. Molecular brain 13(1),114. doi: 10.1186/s13041-020-00653-x.
Alsharafi, W., and Xiao, B. (2015). Dynamic Expression of MicroRNAs (183, 135a, 125b, 128, 30c and 27a) in the Rat Pilocarpine Model and Temporal Lobe Epilepsy Patients. CNS & neurological disorders drug targets 14(8), 1096-1102. doi: 10.2174/1871527314666150317225945.
Alsharafi, W., Xiao, B., and Li, J. (2016). MicroRNA-139-5p negatively regulates NR2A-containing NMDA receptor in the rat pilocarpine model and patients with temporal lobe epilepsy. Epilepsia 57(11),1931-1940. doi: 10.1111/epi.13568.
Andrés, M., Burger, C., Peral-Rubio, M., Battaglioli, E., Anderson, M., Grimes, J., et al. (1999). CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proceedings of the National Academy of Sciences of the United States of America96(17), 9873-9878. doi: 10.1073/pnas.96.17.9873.
Aronica, E., Fluiter, K., Iyer, A., Zurolo, E., Vreijling, J., van Vliet, E., et al. (2010). Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. The European journal of neuroscience31(6), 1100-1107. doi: 10.1111/j.1460-9568.2010.07122.x.
Barry, G., Briggs, J., Hwang, D., Nayler, S., Fortuna, P., Jonkhout, N., et al. (2017). The long non-coding RNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states.Scientific reports 7, 40127. doi: 10.1038/srep40127.
Bassuk, A., Wallace, R., Buhr, A., Buller, A., Afawi, Z., Shimojo, M., et al. (2008). A homozygous mutation in human PRICKLE1 causes an autosomal-recessive progressive myoclonus epilepsy-ataxia syndrome.American journal of human genetics 83(5), 572-581. doi: 10.1016/j.ajhg.2008.10.003.
Basu, T., O’Riordan, K., Schoenike, B., Khan, N., Wallace, E., Rodriguez, G., et al. (2019). Histone deacetylase inhibitors restore normal hippocampal synaptic plasticity and seizure threshold in a mouse model of Tuberous Sclerosis Complex. Scientific reports9(1), 5266. doi: 10.1038/s41598-019-41744-7.
Bayraktar, G., Yuanxiang, P., Confettura, A., Gomes, G., Raza, S., Stork, O., et al. (2020). Synaptic control of DNA methylation involves activity-dependent degradation of DNMT3A1 in the nucleus.Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 45(12), 2120-2130. doi: 10.1038/s41386-020-0780-2.
Beamer, E., Jurado-Arjona, J., Jimenez-Mateos, E., Morgan, J., Reschke, C., Kenny, A., et al. (2018). MicroRNA-22 Controls Aberrant Neurogenesis and Changes in Neuronal Morphology After Status Epilepticus.Frontiers in molecular neuroscience 11, 442. doi: 10.3389/fnmol.2018.00442.
Bekenstein, U., Mishra, N., Milikovsky, D., Hanin, G., Zelig, D., Sheintuch, L., et al. (2017). Dynamic changes in murine forebrain miR-211 expression associate with cholinergic imbalances and epileptiform activity. Proceedings of the National Academy of Sciences of the United States of America 114(25), E4996-E5005. doi: 10.1073/pnas.1701201114.
Berger, T., Vigeland, M., Hjorthaug, H., Nome, C., Taubøll, E., Selmer, K., et al. (2020). Differential Glial Activation in Early Epileptogenesis-Insights From Cell-Specific Analysis of DNA Methylation and Gene Expression in the Contralateral Hippocampus. Frontiers in neurology 11, 573575. doi: 10.3389/fneur.2020.573575.
Blaauboer, A., van Koetsveld, P., Mustafa, D., Dumas, J., Dogan, F., van Zwienen, S., et al. (2022). The Class I HDAC Inhibitor Valproic Acid Strongly Potentiates Gemcitabine Efficacy in Pancreatic Cancer by Immune System Activation. Biomedicines 10(3). doi: 10.3390/biomedicines10030517.
Boison, D., and Rho, J. (2020). Epigenetics and epilepsy prevention: The therapeutic potential of adenosine and metabolic therapies.Neuropharmacology 167, 107741. doi: 10.1016/j.neuropharm.2019.107741.
Boyault, C., Sadoul, K., Pabion, M., and Khochbin, S. (2007). HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene 26(37), 5468-5476. doi: 10.1038/sj.onc.1210614.
Brennan, G., Dey, D., Chen, Y., Patterson, K., Magnetta, E., Hall, A., et al. (2016). Dual and Opposing Roles of MicroRNA-124 in Epilepsy Are Mediated through Inflammatory and NRSF-Dependent Gene Networks.Cell reports 14(10), 2402-2412. doi: 10.1016/j.celrep.2016.02.042.
Broekaart, D., van Scheppingen, J., Anink, J., Wierts, L., van Het Hof, B., Jansen, F., et al. (2020). Increased matrix metalloproteinases expression in tuberous sclerosis complex: modulation by microRNA 146a and 147b in vitro. Neuropathology and applied neurobiology46(2), 142-159. doi: 10.1111/nan.12572.
Butler-Ryan, R., and Wood, I. (2021). The functions of repressor element 1-silencing transcription factor in models of epileptogenesis and post-ischemia. Metabolic brain disease 36(6), 1135-1150. doi: 10.1007/s11011-021-00719-2.
Cai, X., Long, L., Zeng, C., Ni, G., Meng, Y., Guo, Q., et al. (2020). LncRNA ILF3-AS1 mediated the occurrence of epilepsy through suppressing hippocampal miR-212 expression. Aging 12(9), 8413-8422. doi: 10.18632/aging.103148.
Cai, Z., Li, S., Li, S., Song, F., Zhang, Z., Qi, G., et al. (2016). Antagonist Targeting microRNA-155 Protects against Lithium-Pilocarpine-Induced Status Epilepticus in C57BL/6 Mice by Activating Brain-Derived Neurotrophic Factor. Frontiers in pharmacology 7, 129. doi: 10.3389/fphar.2016.00129.
Caramaschi, D., Hatcher, C., Mulder, R., Felix, J., Cecil, C., Relton, C., et al. (2020). Epigenome-wide association study of seizures in childhood and adolescence. Clinical epigenetics 12(1),8. doi: 10.1186/s13148-019-0793-z.
Carminati, E., Buffolo, F., Rocchi, A., Michetti, C., Cesca, F., and Benfenati, F. (2019). Mild Inactivation of RE-1 Silencing Transcription Factor (REST) Reduces Susceptibility to Kainic Acid-Induced Seizures.Frontiers in cellular neuroscience 13, 580. doi: 10.3389/fncel.2019.00580.
Cattani, A., Allene, C., Seifert, V., Rosenow, F., Henshall, D., and Freiman, T. (2016). Involvement of microRNAs in epileptogenesis.Epilepsia 57(7), 1015-1026. doi: 10.1111/epi.13404.
Chen, D., Wang, W., Chen, Y., Yang, X., Zhao, M., and Yang, Y. (2019). miR‑128 is upregulated in epilepsy and promotes apoptosis through the SIRT1 cascade. International journal of molecular medicine44(2), 694-704. doi: 10.3892/ijmm.2019.4223.
Chen, M., Lai, X., Wang, X., Ying, J., Zhang, L., Zhou, B., et al. (2021a). Long Non-coding RNAs and Circular RNAs: Insights Into Microglia and Astrocyte Mediated Neurological Diseases. Frontiers in molecular neuroscience 14, 745066. doi: 10.3389/fnmol.2021.745066.
Chen, S., Chen, Y., Zhang, Y., Kuang, X., Liu, Y., Guo, M., et al. (2020). Iron Metabolism and Ferroptosis in Epilepsy. Frontiers in neuroscience 14, 601193. doi: 10.3389/fnins.2020.601193.
Chen, S., Xu, D., Fan, L., Fang, Z., Wang, X., and Li, M. (2021b). Roles of N-Methyl-D-Aspartate Receptors (NMDARs) in Epilepsy. Frontiers in molecular neuroscience 14, 797253. doi: 10.3389/fnmol.2021.797253.
Chen, S., Ye, J., Chen, X., Shi, J., Wu, W., Lin, W., et al. (2018). Valproic acid attenuates traumatic spinal cord injury-induced inflammation via STAT1 and NF-κB pathway dependent of HDAC3.Journal of neuroinflammation 15(1), 150. doi: 10.1186/s12974-018-1193-6.
Chen, X., Peng, X., Wang, L., Fu, X., Zhou, J., Zhu, B., et al. (2017). Association of RASgrf1 methylation with epileptic seizures.Oncotarget 8(28), 46286-46297. doi: 10.18632/oncotarget.18000.
Chmielewska, N., Wawer, A., Maciejak, P., Turzyńska, D., Sobolewska, A., Skórzewska, A., et al. (2020). The role of REST/NRSF, TrkB and BDNF in neurobiological mechanisms of different susceptibility to seizure in a PTZ model of epilepsy. Brain research bulletin 158,108-115. doi: 10.1016/j.brainresbull.2020.03.007.
Citraro, R., Leo, A., De Caro, C., Nesci, V., Gallo Cantafio, M., Amodio, N., et al. (2020). Effects of Histone Deacetylase Inhibitors on the Development of Epilepsy and Psychiatric Comorbidity in WAG/Rij Rats.Molecular neurobiology 57(1), 408-421. doi: 10.1007/s12035-019-01712-8.
Citraro, R., Leo, A., Santoro, M., D’agostino, G., Constanti, A., and Russo, E. (2017). Role of Histone Deacetylases (HDACs) in Epilepsy and Epileptogenesis. Current pharmaceutical design 23(37),5546-5562. doi: 10.2174/1381612823666171024130001.
Cui, H., and Zhang, W. (2022). βThe Neuroprotective Effect of miR-136 on Pilocarpine-Induced Temporal Lobe Epilepsy Rats by Inhibiting Wnt/-Catenin Signaling Pathway. Computational and mathematical methods in medicine 2022, 1938205. doi: 10.1155/2022/1938205.
D’Aiuto, L., Di Maio, R., Mohan, K., Minervini, C., Saporiti, F., Soreca, I., et al. (2011). Mouse ES cells overexpressing DNMT1 produce abnormal neurons with upregulated NMDA/NR1 subunit.Differentiation; research in biological diversity 82(1),9-17. doi: 10.1016/j.diff.2011.03.003.
d’Ydewalle, C., Bogaert, E., and Van Den Bosch, L. (2012). HDAC6 at the Intersection of Neuroprotection and Neurodegeneration. Traffic (Copenhagen, Denmark) 13(6), 771-779. doi: 10.1111/j.1600-0854.2012.01347.x.
Dash, P., Orsi, S., and Moore, A. (2009). Histone deactylase inhibition combined with behavioral therapy enhances learning and memory following traumatic brain injury. Neuroscience 163(1), 1-8. doi: 10.1016/j.neuroscience.2009.06.028.
De Benedittis, S., Fortunato, F., Cava, C., Gallivanone, F., Iaccino, E., Caligiuri, M., et al. (2021). Circulating microRNA: The Potential Novel Diagnostic Biomarkers to Predict Drug Resistance in Temporal Lobe Epilepsy, a Pilot Study. International journal of molecular sciences 22(2). doi: 10.3390/ijms22020702.
de Nijs, L., Choe, K., Steinbusch, H., Schijns, O., Dings, J., van den Hove, D., et al. (2019). DNA methyltransferase isoforms expression in the temporal lobe of epilepsy patients with a history of febrile seizures. Clinical epigenetics 11(1), 118. doi: 10.1186/s13148-019-0721-2.
de Sousa Maciel, I., Sales, A., Casarotto, P., Castrén, E., Biojone, C., and Joca, S. (2020). Nitric Oxide Synthase inhibition counteracts the stress-induced DNA methyltransferase 3b expression in the hippocampus of rats. The European journal of neuroscience . doi: 10.1111/ejn.15042.
Dębski, K., Pitkanen, A., Puhakka, N., Bot, A., Khurana, I., Harikrishnan, K., et al. (2016). Etiology matters - Genomic DNA Methylation Patterns in Three Rat Models of Acquired Epilepsy.Scientific reports 6, 25668. doi: 10.1038/srep25668.
Dedoni, S., Marras, L., Olianas, M., Ingianni, A., and Onali, P. (2019). Downregulation of TrkB Expression and Signaling by Valproic Acid and Other Histone Deacetylase Inhibitors. The Journal of pharmacology and experimental therapeutics 370(3), 490-503. doi: 10.1124/jpet.119.258129.
Deutsch, S., Mastropaolo, J., Burket, J., and Rosse, R. (2009). An epigenetic intervention interacts with genetic strain differences to modulate the stress-induced reduction of flurazepam’s antiseizure efficacy in the mouse. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology19(6), 398-401. doi: 10.1016/j.euroneuro.2008.12.011.
Deutsch, S., Rosse, R., Long, K., Gaskins, B., Burket, J., and Mastropaolo, J. (2008). Sodium butyrate, an epigenetic interventional strategy, attenuates a stress-induced alteration of MK-801’s pharmacologic action. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology18(8), 565-568. doi: 10.1016/j.euroneuro.2007.11.004.
Diao, L., Yu, H., Li, H., Hu, Y., Li, M., He, Q., et al. (2021). LncRNA UCA1 alleviates aberrant hippocampal neurogenesis through regulating miR-375/SFRP1-mediated WNT/β-catenin pathway in kainic acid-induced epilepsy. Acta biochimica Polonica 68(2), 159-167. doi: 10.18388/abp.2020_5448.
Dixit, A., Sharma, D., Tripathi, M., Srivastava, A., Paul, D., Prakash, D., et al. (2018). Genome-wide DNA Methylation and RNAseq Analyses Identify Aberrant Signalling Pathways in Focal Cortical Dysplasia (FCD) Type II. Scientific reports 8(1), 17976. doi: 10.1038/s41598-018-35892-5.
Du, Y., Chi, X., and An, W. (2019). Downregulation of microRNA-200c-3p reduces damage of hippocampal neurons in epileptic rats by upregulating expression of RECK and inactivating the AKT signaling pathway.Chemico-biological interactions 307, 223-233. doi: 10.1016/j.cbi.2019.04.027.
Duan, W., Chen, Y., and Wang, X. (2018). MicroRNA‑155 contributes to the occurrence of epilepsy through the PI3K/Akt/mTOR signaling pathway.International journal of molecular medicine 42(3),1577-1584. doi: 10.3892/ijmm.2018.3711.
Fachim, H., Loureiro, C., Corsi-Zuelli, F., Shuhama, R., Louzada-Junior, P., Menezes, P., et al. (2019). GRIN2B promoter methylation deficits in early-onset schizophrenia and its association with cognitive function.Epigenomics 11(4), 401-410. doi: 10.2217/epi-2018-0127.
Fan, Y., Wang, W., Li, W., and Li, X. (2020). miR‑15a inhibits cell apoptosis and inflammation in a temporal lobe epilepsy model by downregulating GFAP. Molecular medicine reports 22(4),3504-3512. doi: 10.3892/mmr.2020.11388.
Feng, H., Gui, Q., Wu, G., Zhu, W., Dong, X., Shen, M., et al. (2021). Long noncoding RNA Nespas inhibits apoptosis of epileptiform hippocampal neurons by inhibiting the PI3K/Akt/mTOR pathway. Experimental cell research 398(1), 112384. doi: 10.1016/j.yexcr.2020.112384.
Feng, X., Xiong, W., Yuan, M., Zhan, J., Zhu, X., Wei, Z., et al. (2019). Down-regulated microRNA-183 mediates the Jak/Stat signaling pathway to attenuate hippocampal neuron injury in epilepsy rats by targeting Foxp1. Cell cycle (Georgetown, Tex.) 18(22),3206-3222. doi: 10.1080/15384101.2019.1671717.
Feng, Y., Duan, C., Luo, Z., Xiao, W., and Tian, F. (2020). Silencing miR-20a-5p inhibits axonal growth and neuronal branching and prevents epileptogenesis through RGMa-RhoA-mediated synaptic plasticity.Journal of cellular and molecular medicine 24(18),10573-10588. doi: 10.1111/jcmm.15677.
Fernandes, J., Acuña, S., Aoki, J., Floeter-Winter, L., and Muxel, S. (2019). Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Non-coding RNA 5(1). doi: 10.3390/ncrna5010017.
Fonseca-Barriendos, D., Frías-Soria, C., Pérez-Pérez, D., Gómez-López, R., Borroto Escuela, D., and Rocha, L. (2021). Drug-Resistant Epilepsy: drug target hypothesis and beyond the receptors. Epilepsia open . doi: 10.1002/epi4.12539.
Fu, H., Cheng, Y., Luo, H., Rong, Z., Li, Y., Lu, P., et al. (2019). Silencing MicroRNA-155 Attenuates Kainic Acid-Induced Seizure by Inhibiting Microglia Activation. Neuroimmunomodulation26(2), 67-76. doi: 10.1159/000496344.
Fu, M., Tao, J., Wang, D., Zhang, Z., Wang, X., Ji, Y., et al. (2020). Downregulation of MicroRNA-34c-5p facilitated neuroinflammation in drug-resistant epilepsy. Brain research 1749, 147130. doi: 10.1016/j.brainres.2020.147130.
Fu, M., Zhu, Y., Zhang, J., Wu, W., Sun, Y., Zhang, X., et al. (2021). MicroRNA-221-3p Suppresses the Microglia Activation and Seizures by Inhibiting of HIF-1α in Valproic Acid-Resistant Epilepsy.Frontiers in pharmacology 12, 714556. doi: 10.3389/fphar.2021.714556.
Gan, J., Qu, Y., Li, J., Zhao, F., and Mu, D. (2015). An evaluation of the links between microRNA, autophagy, and epilepsy. Reviews in the neurosciences 26(2), 225-237. doi: 10.1515/revneuro-2014-0062.
Gattás, D., Neto, F., Freitas-Lima, P., Bonfim-Silva, R., de Almeida, S., de Assis Cirino, M., et al. (2022). MicroRNAs miR-629-3p, miR-1202 and miR-1225-5p as potential diagnostic and surgery outcome biomarkers for mesial temporal lobe epilepsy with hippocampal sclerosis.Neuro-Chirurgie . doi: 10.1016/j.neuchi.2022.06.002.
Geng, J., Liu, X., Zhao, H., Fan, W., Geng, J., and Liu, X. (2018). LncRNA UCA1 inhibits epilepsy and seizure-induced brain injury by regulating miR-495/Nrf2-ARE signal pathway. The international journal of biochemistry & cell biology 99, 133-139. doi: 10.1016/j.biocel.2018.03.021.
Geng, J., Zhao, H., Liu, X., Geng, J., Gao, Y., and He, B. (2021). MiR-101a-3p Attenuated Pilocarpine-Induced Epilepsy by Downregulating c-FOS. Neurochemical research 46(5), 1119-1128. doi: 10.1007/s11064-021-03245-w.
Ghiglieri, V., Sgobio, C., Patassini, S., Bagetta, V., Fejtova, A., Giampà, C., et al. (2010). TrkB/BDNF-dependent striatal plasticity and behavior in a genetic model of epilepsy: modulation by valproic acid.Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 35(7), 1531-1540. doi: 10.1038/npp.2010.23.
Ghosh, I., Liu, C., Swardfager, W., Lanctôt, K., and Anderson, N. (2021). The potential roles of excitatory-inhibitory imbalances and the repressor element-1 silencing transcription factor in aging and aging-associated diseases. Molecular and cellular neurosciences117, 103683. doi: 10.1016/j.mcn.2021.103683.
Gillies, S., Haddley, K., Vasiliou, S., Bubb, V., and Quinn, J. (2009). The human neurokinin B gene, TAC3, and its promoter are regulated by Neuron Restrictive Silencing Factor (NRSF) transcription factor family.Neuropeptides 43(4), 333-340. doi: 10.1016/j.npep.2009.05.004.
Gregoretti, I., Lee, Y., and Goodson, H. (2004). Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. Journal of molecular biology 338(1), 17-31. doi: 10.1016/j.jmb.2004.02.006.
Haenisch, S., von Rüden, E., Wahmkow, H., Rettenbeck, M., Michler, C., Russmann, V., et al. (2016). miRNA-187-3p-Mediated Regulation of the KCNK10/TREK-2 Potassium Channel in a Rat Epilepsy Model. ACS chemical neuroscience 7(11), 1585-1594. doi: 10.1021/acschemneuro.6b00222.
Hamamoto, O., Tirapelli, D., Lizarte Neto, F., Freitas-Lima, P., Saggioro, F., Cirino, M., et al. (2020). Modulation of NMDA receptor by miR-219 in the amygdala and hippocampus of patients with mesial temporal lobe epilepsy. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia 74, 180-186. doi: 10.1016/j.jocn.2020.02.024.
Han, C., Ge, M., Liu, Y., Zhao, X., Wang, K., Chen, N., et al. (2018a). Long non-coding RNA H19 contributes to apoptosis of hippocampal neurons by inhibiting let-7b in a rat model of temporal lobe epilepsy.Cell death & disease 9(6), 617. doi: 10.1038/s41419-018-0496-y.
Han, C., Ge, M., Liu, Y., Zhao, X., Wang, K., Chen, N., et al. (2018b). LncRNA H19 contributes to hippocampal glial cell activation via JAK/STAT signaling in a rat model of temporal lobe epilepsy. Journal of neuroinflammation 15(1), 103. doi: 10.1186/s12974-018-1139-z.
Han, D., Huang, M., Wang, T., Li, Z., Chen, Y., Liu, C., et al. (2019). Lysine methylation of transcription factors in cancer. Cell death & disease 10(4), 290. doi: 10.1038/s41419-019-1524-2.
Hauser, R., Henshall, D., and Lubin, F. (2018). The Epigenetics of Epilepsy and Its Progression. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry 24(2),186-200. doi: 10.1177/1073858417705840.
He, C., Su, C., Zhang, W., Zhou, Q., Shen, X., Yang, J., et al. (2021a). Modulatory Potential of LncRNA Zfas1 for Inflammation and Neuronal Apoptosis in Temporal Lobe Epilepsy. Yonsei medical journal62(3), 215-223. doi: 10.3349/ymj.2021.62.3.215.
He, Z., Chen, H., Zhong, Y., Yang, Q., Wang, X., Chen, R., et al. (2021b). MicroRNA 223 Targeting ATG16L1 Affects Microglial Autophagy in the Kainic Acid Model of Temporal Lobe Epilepsy. Frontiers in neurology 12, 704550. doi: 10.3389/fneur.2021.704550.
Heikkinen, A., Bollepalli, S., and Ollikainen, M. (2022). The potential of DNA methylation as a biomarker for obesity and smoking. Journal of internal medicine . doi: 10.1111/joim.13496.
Henshall, D. (2018). Epigenetic changes in status epilepticus.Epilepsia , 82-86. doi: 10.1111/epi.14502.
Henshall, D., and Kobow, K. (2015). Epigenetics and Epilepsy. Cold Spring Harbor perspectives in medicine 5(12). doi: 10.1101/cshperspect.a022731.
Hiraide, T., Nakashima, M., Yamoto, K., Fukuda, T., Kato, M., Ikeda, H., et al. (2018). De novo variants in SETD1B are associated with intellectual disability, epilepsy and autism. Human genetics137(1), 95-104. doi: 10.1007/s00439-017-1863-y.
Hon, G., Hawkins, R., and Ren, B. (2009). Predictive chromatin signatures in the mammalian genome. Human molecular genetics18, R195-201. doi: 10.1093/hmg/ddp409.
Hu, F., Shao, L., Zhang, J., Zhang, H., Wen, A., and Zhang, P. (2020a). Knockdown of ZFAS1 Inhibits Hippocampal Neurons Apoptosis and Autophagy by Activating the PI3K/AKT Pathway via Up-regulating miR-421 in Epilepsy. Neurochemical research 45(10), 2433-2441. doi: 10.1007/s11064-020-03103-1.
Hu, G., Niu, F., Humburg, B., Liao, K., Bendi, S., Callen, S., et al. (2018). Molecular mechanisms of long noncoding RNAs and their role in disease pathogenesis. Oncotarget 9(26), 18648-18663. doi: 10.18632/oncotarget.24307.
Hu, T., Chung, H., Ping, L., Hsu, S., Tsai, H., Chen, S., et al. (2020b). Differential Expression of Multiple Disease-Related Protein Groups Induced by Valproic Acid in Human SH-SY5Y Neuroblastoma Cells.Brain sciences 10(8). doi: 10.3390/brainsci10080545.
Hu, X., Cheng, X., Cai, L., Tan, G., Xu, L., Feng, X., et al. (2011). Conditional deletion of NRSF in forebrain neurons accelerates epileptogenesis in the kindling model. Cerebral cortex (New York, N.Y. : 1991) 21(9), 2158-2165. doi: 10.1093/cercor/bhq284.
Huang, G., Chen, J., Zhou, J., Xiao, S., Zeng, W., Xia, J., et al. (2021). Epigenetic modification and BRAF gene mutation in thyroid carcinoma. Cancer cell international 21(1), 687. doi: 10.1186/s12935-021-02405-w.
Huang, H., Camats-Perna, J., Medeiros, R., Anggono, V., and Widagdo, J. (2020). Altered Expression of the m6A Methyltransferase METTL3 in Alzheimer’s Disease. eNeuro 7(5). doi: 10.1523/eneuro.0125-20.2020.
Huang, Y., Doherty, J., and Dingledine, R. (2002). Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus.The Journal of neuroscience : the official journal of the Society for Neuroscience 22(19), 8422-8428. doi: 10.1523/jneurosci.22-19-08422.2002.
Huang, Y., Liu, X., Liao, Y., Liao, Y., Zou, D., Wei, X., et al. (2018). Role of miR-34c in the cognitive function of epileptic rats induced by pentylenetetrazol. Molecular medicine reports 17(3),4173-4180. doi: 10.3892/mmr.2018.8441.
Huang, Y., Myers, S., and Dingledine, R. (1999). Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes. Nature neuroscience 2(10), 867-872. doi: 10.1038/13165.
Irwin, A., Bahabry, R., and Lubin, F. (2021). A putative role for lncRNAs in epigenetic regulation of memory. Neurochemistry international , 105184. doi: 10.1016/j.neuint.2021.105184.
Jang, Y., Moon, J., Lee, S., Jun, J., Kim, T., Lim, J., et al. (2018). Dysregulated long non-coding RNAs in the temporal lobe epilepsy mouse model. Seizure 58, 110-119. doi: 10.1016/j.seizure.2018.04.010.
Jiang, Y., Jakovcevski, M., Bharadwaj, R., Connor, C., Schroeder, F., Lin, C., et al. (2010). Setdb1 histone methyltransferase regulates mood-related behaviors and expression of the NMDA receptor subunit NR2B.The Journal of neuroscience : the official journal of the Society for Neuroscience 30(21), 7152-7167. doi: 10.1523/jneurosci.1314-10.2010.
Jimenez-Mateos, E., Arribas-Blazquez, M., Sanz-Rodriguez, A., Concannon, C., Olivos-Ore, L., Reschke, C., et al. (2015). microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Scientific reports 5, 17486. doi: 10.1038/srep17486.
Jimenez-Mateos, E., Bray, I., Sanz-Rodriguez, A., Engel, T., McKiernan, R., Mouri, G., et al. (2011). miRNA Expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132.The American journal of pathology 179(5), 2519-2532. doi: 10.1016/j.ajpath.2011.07.036.
Jimenez-Mateos, E., Engel, T., Merino-Serrais, P., McKiernan, R., Tanaka, K., Mouri, G., et al. (2012). Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nature medicine 18(7), 1087-1094. doi: 10.1038/nm.2834.
Jin, Y., Liu, T., Luo, H., Liu, Y., and Liu, D. (2022). Targeting Epigenetic Regulatory Enzymes for Cancer Therapeutics: Novel Small-Molecule Epidrug Development. Frontiers in oncology12, 848221. doi: 10.3389/fonc.2022.848221.
Kiese, K., Jablonski, J., Hackenbracht, J., Wrosch, J., Groemer, T., Kornhuber, J., et al. (2017). Epigenetic control of epilepsy target genes contributes to a cellular memory of epileptogenesis in cultured rat hippocampal neurons. Acta neuropathologica communications5(1), 79. doi: 10.1186/s40478-017-0485-x.
Kobow, K., Ziemann, M., Kaipananickal, H., Khurana, I., Mühlebner, A., Feucht, M., et al. (2019). Genomic DNA methylation distinguishes subtypes of human focal cortical dysplasia. Epilepsia60(6), 1091-1103. doi: 10.1111/epi.14934.
Kong, H., Wang, H., Zhuo, Z., Li, Z., Tian, P., Wu, J., et al. (2020). Inhibition of miR-181a-5p reduces astrocyte and microglia activation and oxidative stress by activating SIRT1 in immature rats with epilepsy.Laboratory investigation; a journal of technical methods and pathology 100(9), 1223-1237. doi: 10.1038/s41374-020-0444-1.
Korotkov, A., Broekaart, D., Banchaewa, L., Pustjens, B., van Scheppingen, J., Anink, J., et al. (2020). microRNA-132 is overexpressed in glia in temporal lobe epilepsy and reduces the expression of pro-epileptogenic factors in human cultured astrocytes. Glia68(1), 60-75. doi: 10.1002/glia.23700.
Korotkov, A., Broekaart, D., van Scheppingen, J., Anink, J., Baayen, J., Idema, S., et al. (2018). Increased expression of matrix metalloproteinase 3 can be attenuated by inhibition of microRNA-155 in cultured human astrocytes. Journal of neuroinflammation15(1), 211. doi: 10.1186/s12974-018-1245-y.
Korotkov, A., Sim, N., Luinenburg, M., Anink, J., van Scheppingen, J., Zimmer, T., et al. (2021). MicroRNA-34a activation in tuberous sclerosis complex during early brain development may lead to impaired corticogenesis. Neuropathology and applied neurobiology47(6), 796-811. doi: 10.1111/nan.12717.
Krzyzewska, I., Maas, S., Henneman, P., Lip, K., Venema, A., Baranano, K., et al. (2019). A genome-wide DNA methylation signature for SETD1B-related syndrome. Clinical epigenetics 11(1),156. doi: 10.1186/s13148-019-0749-3.
Labbé, R., Holowatyj, A., and Yang, Z. (2013). Histone lysine demethylase (KDM) subfamily 4: structures, functions and therapeutic potential. American journal of translational research6(1), 1-15.
Laherty, C., Yang, W., Sun, J., Davie, J., Seto, E., and Eisenman, R. (1997). Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89(3),349-356. doi: 10.1016/s0092-8674(00)80215-9.
Leduc, C., Chemin, G., Puget, N., Sawan, C., Moutahir, M., Herceg, Z., et al. (2014). Tissue-specific inactivation of HAT cofactor TRRAP reveals its essential role in B cells. Cell cycle (Georgetown, Tex.) 13(10), 1583-1589. doi: 10.4161/cc.28560.
Lee, D., Moon, J., Lee, S., Jung, K., Park, D., Yoo, J., et al. (2015). Dysregulation of long non-coding RNAs in mouse models of localization-related epilepsy. Biochemical and biophysical research communications 462(4), 433-440. doi: 10.1016/j.bbrc.2015.04.149.
Lee, S., Jeon, D., Chu, K., Jung, K., Moon, J., Sunwoo, J., et al. (2017). Inhibition of miR-203 Reduces Spontaneous Recurrent Seizures in Mice. Molecular neurobiology 54(5), 3300-3308. doi: 10.1007/s12035-016-9901-7.
Lei, C., and Wang, Q. (2022). The Progression of N6-methyladenosine Study and Its Role in Neuropsychiatric Disorders. International journal of molecular sciences 23(11). doi: 10.3390/ijms23115922.
Li, B., Wu, W., Zheng, H., Yang, H., Zuo, Y., and Cui, X. (2019a). Long noncoding RNA GAS5 silencing inhibits the expression of KCNQ3 by sponging miR-135a-5p to prevent the progression of epilepsy. The Kaohsiung journal of medical sciences 35(9), 527-534. doi: 10.1002/kjm2.12102.
Li, C., Zheng, X., Liu, P., and Li, M. (2021). Clinical value of lncRNA TUG1 in temporal lobe epilepsy and its role in the proliferation of hippocampus neuron via sponging miR-199a-3p. Bioengineered12(2), 10666-10673. doi: 10.1080/21655979.2021.2001904.
Li, H., Ren, Y., Mao, K., Hua, F., Yang, Y., Wei, N., et al. (2018a). FTO is involved in Alzheimer’s disease by targeting TSC1-mTOR-Tau signaling. Biochemical and biophysical research communications498(1), 234-239. doi: 10.1016/j.bbrc.2018.02.201.
Li, J., Lin, H., Sun, Z., Kong, G., Yan, X., Wang, Y., et al. (2018b). High-Throughput Data of Circular RNA Profiles in Human Temporal Cortex Tissue Reveals Novel Insights into Temporal Lobe Epilepsy.Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology45(2), 677-691. doi: 10.1159/000487161.
Li, R., Wen, Y., Wu, B., He, M., Zhang, P., Zhang, Q., et al. (2020). MicroRNA-25-3p suppresses epileptiform discharges through inhibiting oxidative stress and apoptosis via targeting OXSR1 in neurons.Biochemical and biophysical research communications523(4), 859-866. doi: 10.1016/j.bbrc.2020.01.050.
Li, T., Jia, Y., Ma, C., Qiu, W., Wang, Q., Shao, X., et al. (2018c). The role of the microRNA-146a/complement factor H/interleukin-1β-mediated inflammatory loop circuit in the perpetuate inflammation of chronic temporal lobe epilepsy. Disease models & mechanisms 11(3). doi: 10.1242/dmm.031708.
Li, X., Gao, Z., Ma, M., Li, L., and Guo, S. (2022). Identification of serum miR-378 and miR-575 as diagnostic indicators and predicting surgical prognosis in human epilepsy. Journal of medical biochemistry 41(2), 184-190. doi: 10.5937/jomb0-32988.
Li, X., Giri, V., Cui, Y., Yin, M., Xian, Z., and Li, J. (2019b). LncRNA FTX inhibits hippocampal neuron apoptosis by regulating miR-21-5p/SOX7 axis in a rat model of temporal lobe epilepsy. Biochemical and biophysical research communications 512(1), 79-86. doi: 10.1016/j.bbrc.2019.03.019.
Li, Y., Huang, C., Feng, P., Jiang, Y., Wang, W., Zhou, D., et al. (2016). Aberrant expression of miR-153 is associated with overexpression of hypoxia-inducible factor-1α in refractory epilepsy. Scientific reports 6, 32091. doi: 10.1038/srep32091.
Lin, Q., Chen, J., Zheng, X., Zhang, Y., Tao, X., and Ye, J. (2020). Circular RNA Circ_ANKMY2 Regulates Temporal Lobe Epilepsy Progression via the miR-106b-5p/FOXP1 Axis. Neurochemical research45(12), 3034-3044. doi: 10.1007/s11064-020-03151-7.
Lipovich, L., Dachet, F., Cai, J., Bagla, S., Balan, K., Jia, H., et al. (2012). Activity-dependent human brain coding/noncoding gene regulatory networks. Genetics 192(3), 1133-1148. doi: 10.1534/genetics.112.145128.
Liu, A., Wu, Y., and Wang, Y. (2017a). MicroRNA-129-5p inhibits the development of autoimmune encephalomyelitis-related epilepsy by targeting HMGB1 through the TLR4/NF-kB signaling pathway. Brain research bulletin 132, 139-149. doi: 10.1016/j.brainresbull.2017.05.004.
Liu, D., Li, S., Gong, L., Yang, Y., Han, Y., Xie, M., et al. (2019a). Suppression of microRNA-141 suppressed p53 to protect against neural apoptosis in epilepsy by SIRT1 expression. Journal of cellular biochemistry 120(6), 9409-9420. doi: 10.1002/jcb.28216.
Liu, Q., Wang, L., Yan, G., Zhang, W., Huan, Z., and Li, J. (2019b). MiR-125a-5p Alleviates Dysfunction and Inflammation of Pentylenetetrazol- induced Epilepsy Through Targeting Calmodulin-dependent Protein Kinase IV (CAMK4). Current neurovascular research 16(4), 365-372. doi: 10.2174/1567202616666190906125444.
Liu, X., Geng, J., Guo, H., Zhao, H., and Ai, Y. (2020). Propofol inhibited apoptosis of hippocampal neurons in status epilepticus through miR-15a-5p/NR2B/ERK1/2 pathway. Cell cycle (Georgetown, Tex.)19(9), 1000-1011. doi: 10.1080/15384101.2020.1743909.
Liu, X., Liao, Y., Wang, X., Zou, D., Luo, C., Jian, C., et al. (2017b). MicroRNA expression profiles in chronic epilepsy rats and neuroprotection from seizures by targeting miR-344a.Neuropsychiatric disease and treatment 13, 2037-2044. doi: 10.2147/ndt.s141062.
Livneh, I., Moshitch-Moshkovitz, S., Amariglio, N., Rechavi, G., and Dominissini, D. (2020). The mA epitranscriptome: transcriptome plasticity in brain development and function. Nature reviews. Neuroscience 21(1), 36-51. doi: 10.1038/s41583-019-0244-z.
Longo, R., Peri, C., Cricrì, D., Coppi, L., Caruso, D., Mitro, N., et al. (2019). Ketogenic Diet: A New Light Shining on Old but Gold Biochemistry. Nutrients 11(10). doi: 10.3390/nu11102497.
Lu, J., Zhou, N., Yang, P., Deng, L., and Liu, G. (2019). MicroRNA-27a-3p Downregulation Inhibits Inflammatory Response and Hippocampal Neuronal Cell Apoptosis by Upregulating Mitogen-Activated Protein Kinase 4 (MAP2K4) Expression in Epilepsy: In Vivo and In Vitro Studies. Medical science monitor : international medical journal of experimental and clinical research 25, 8499-8508. doi: 10.12659/msm.916458.
Lunke, S., Maxwell, S., Khurana, I., K N, H., Okabe, J., Al-Hasani, K., et al. (2021). Epigenetic evidence of an Ac/Dc axis by VPA and SAHA.Clinical epigenetics 13(1), 58. doi: 10.1186/s13148-021-01050-4.
Lunyak, V., Burgess, R., Prefontaine, G., Nelson, C., Sze, S., Chenoweth, J., et al. (2002). Corepressor-dependent silencing of chromosomal regions encoding neuronal genes. Science (New York, N.Y.) 298(5599), 1747-1752. doi: 10.1126/science.1076469.
Lusardi, T., Akula, K., Coffman, S., Ruskin, D., Masino, S., and Boison, D. (2015). Ketogenic diet prevents epileptogenesis and disease progression in adult mice and rats. Neuropharmacology99, 500-509. doi: 10.1016/j.neuropharm.2015.08.007.
Lv, Y., Zheng, X., Shi, M., Wang, Z., and Cui, L. (2019). Different EPHX1 methylation levels in promoter area between carbamazepine-resistant epilepsy group and carbamazepine-sensitive epilepsy group in Chinese population. BMC neurology19(1), 114. doi: 10.1186/s12883-019-1308-4.
Ma, C., Chang, M., Lv, H., Zhang, Z., Zhang, W., He, X., et al. (2018). RNA mA methylation participates in regulation of postnatal development of the mouse cerebellum. Genome biology 19(1), 68. doi: 10.1186/s13059-018-1435-z.
Martins-Ferreira, R., Leal, B., Chaves, J., Li, T., Ciudad, L., Rangel, R., et al. (2021). Epilepsy progression is associated with cumulative DNA methylation changes in inflammatory genes. Progress in neurobiology 209, 102207. doi: 10.1016/j.pneurobio.2021.102207.
McClelland, S., Brennan, G., Dubé, C., Rajpara, S., Iyer, S., Richichi, C., et al. (2014). The transcription factor NRSF contributes to epileptogenesis by selective repression of a subset of target genes.eLife 3, e01267. doi: 10.7554/eLife.01267.
McClelland, S., Flynn, C., Dubé, C., Richichi, C., Zha, Q., Ghestem, A., et al. (2011). Neuron-restrictive silencer factor-mediated hyperpolarization-activated cyclic nucleotide gated channelopathy in experimental temporal lobe epilepsy. Annals of neurology70(3), 454-464. doi: 10.1002/ana.22479.
Merkurjev, D., Hong, W., Iida, K., Oomoto, I., Goldie, B., Yamaguti, H., et al. (2018). Synaptic N-methyladenosine (mA) epitranscriptome reveals functional partitioning of localized transcripts. Nature neuroscience 21(7), 1004-1014. doi: 10.1038/s41593-018-0173-6.
Metzger, E., Wissmann, M., Yin, N., Müller, J., Schneider, R., Peters, A., et al. (2005). LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature437(7057), 436-439. doi: 10.1038/nature04020.
Miller-Delaney, S., Bryan, K., Das, S., McKiernan, R., Bray, I., Reynolds, J., et al. (2015). Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain : a journal of neurology138, 616-631. doi: 10.1093/brain/awu373.
Modarresi, F., Faghihi, M., Lopez-Toledano, M., Fatemi, R., Magistri, M., Brothers, S., et al. (2012). Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nature biotechnology 30(5), 453-459. doi: 10.1038/nbt.2158.
Mooney, C., Becker, B., Raoof, R., and Henshall, D. (2016). EpimiRBase: a comprehensive database of microRNA-epilepsy associations.Bioinformatics (Oxford, England) 32(9), 1436-1438. doi: 10.1093/bioinformatics/btw008.
Morris, G., O’Brien, D., and Henshall, D. (2021). Opportunities and challenges for microRNA-targeting therapeutics for epilepsy.Trends in pharmacological sciences 42(7), 605-616. doi: 10.1016/j.tips.2021.04.007.
Morris, G., Reschke, C., and Henshall, D. (2019). Targeting microRNA-134 for seizure control and disease modification in epilepsy.EBioMedicine 45, 646-654. doi: 10.1016/j.ebiom.2019.07.008.
Moshé, S., Perucca, E., Ryvlin, P., and Tomson, T. (2015). Epilepsy: new advances. Lancet (London, England) 385(9971), 884-898. doi: 10.1016/s0140-6736(14)60456-6.
Mucha, M., Ooi, L., Linley, J., Mordaka, P., Dalle, C., Robertson, B., et al. (2010). Transcriptional control of KCNQ channel genes and the regulation of neuronal excitability. The Journal of neuroscience : the official journal of the Society for Neuroscience 30(40),13235-13245. doi: 10.1523/jneurosci.1981-10.2010.
Mulligan, P., Westbrook, T., Ottinger, M., Pavlova, N., Chang, B., Macia, E., et al. (2008). CDYL bridges REST and histone methyltransferases for gene repression and suppression of cellular transformation. Molecular cell 32(5), 718-726. doi: 10.1016/j.molcel.2008.10.025.
Muraoka, Y., Nikaido, A., Kowada, R., Kimura, H., Yamaguchi, M., and Yoshida, H. (2021). Identification of Rpd3 as a novel epigenetic regulator of Drosophila FIG 4, a Charcot-Marie-Tooth disease-causing gene. Neuroreport 32(7), 562-568. doi: 10.1097/wnr.0000000000001636.
Murugan, M., and Boison, D. (2020). Ketogenic diet, neuroprotection, and antiepileptogenesis. Epilepsy research 167, 106444. doi: 10.1016/j.eplepsyres.2020.106444.
Navarrete-Modesto, V., Orozco-Suárez, S., Alonso-Vanegas, M., Feria-Romero, I., and Rocha, L. (2019). REST/NRSF transcription factor is overexpressed in hippocampus of patients with drug-resistant mesial temporal lobe epilepsy. Epilepsy & behavior : E&B 94,118-123. doi: 10.1016/j.yebeh.2019.02.012.
Nishiyama, A., and Nakanishi, M. (2021). Navigating the DNA methylation landscape of cancer. Trends in genetics : TIG 37(11),1012-1027. doi: 10.1016/j.tig.2021.05.002.
Niu, J., Wang, B., Wang, T., and Zhou, T. (2022). Mechanism of METTL3-mediated m6A modification in depression-induced cognitive deficits. American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 189, 86-99. doi: 10.1002/ajmg.b.32892.
Niu, X., Zhu, H., Liu, Q., Yan, J., and Li, M. (2021). MiR-194-5p serves as a potential biomarker and regulates the proliferation and apoptosis of hippocampus neuron in children with temporal lobe epilepsy.Journal of the Chinese Medical Association : JCMA 84(5),510-516. doi: 10.1097/jcma.0000000000000518.
Nomura, M., Uda-Tochio, H., Murai, K., Mori, N., and Nishimura, Y. (2005). The neural repressor NRSF/REST binds the PAH1 domain of the Sin3 corepressor by using its distinct short hydrophobic helix. Journal of molecular biology 354(4), 903-915. doi: 10.1016/j.jmb.2005.10.008.
Patterson, K., Barry, J., Curran, M., Singh-Taylor, A., Brennan, G., Rismanchi, N., et al. (2017). Enduring Memory Impairments Provoked by Developmental Febrile Seizures Are Mediated by Functional and Structural Effects of Neuronal Restrictive Silencing Factor. The Journal of neuroscience : the official journal of the Society for Neuroscience37(14), 3799-3812. doi: 10.1523/jneurosci.3748-16.2017.
Pensold, D., Reichard, J., Van Loo, K., Ciganok, N., Hahn, A., Bayer, C., et al. (2020). DNA Methylation-Mediated Modulation of Endocytosis as Potential Mechanism for Synaptic Function Regulation in Murine Inhibitory Cortical Interneurons. Cerebral cortex (New York, N.Y. : 1991) 30(7), 3921-3937. doi: 10.1093/cercor/bhaa009.
Phiel, C., Zhang, F., Huang, E., Guenther, M., Lazar, M., and Klein, P. (2001). Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. The Journal of biological chemistry 276(39), 36734-36741. doi: 10.1074/jbc.M101287200.
Poeta, L., Padula, A., Lioi, M., van Bokhoven, H., and Miano, M. (2021). Analysis of a Set of KDM5C Regulatory Genes Mutated in Neurodevelopmental Disorders Identifies Temporal Coexpression Brain Signatures. Genes 12(7). doi: 10.3390/genes12071088.
Portales-Casamar, E., Lussier, A., Jones, M., MacIsaac, J., Edgar, R., Mah, S., et al. (2016). DNA methylation signature of human fetal alcohol spectrum disorder. Epigenetics & chromatin 9, 25. doi: 10.1186/s13072-016-0074-4.
Qi, Y., Qian, R., Jia, L., Fei, X., Zhang, D., Zhang, Y., et al. (2020). Overexpressed microRNA-494 represses RIPK1 to attenuate hippocampal neuron injury in epilepsy rats by inactivating the NF-κB signaling pathway. Cell cycle (Georgetown, Tex.) 19(11),1298-1313. doi: 10.1080/15384101.2020.1749472.
Reddy, S., Clossen, B., and Reddy, D. (2018). Epigenetic Histone Deacetylation Inhibition Prevents the Development and Persistence of Temporal Lobe Epilepsy. The Journal of pharmacology and experimental therapeutics 364(1), 97-109. doi: 10.1124/jpet.117.244939.
Riaz, S., Saeed, M., and Malik, M. (2015). Clinical and Therapeutic Implications of Histone Acetylation in Breast Cancer. The West Indian medical journal 65(2), 337-344. doi: 10.7727/wimj.2014.297.
Roopra, A., Qazi, R., Schoenike, B., Daley, T., and Morrison, J. (2004). Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes. Molecular cell 14(6),727-738. doi: 10.1016/j.molcel.2004.05.026.
Rowles, J., Wong, M., Powers, R., and Olsen, M. (2012). FTO, RNA epigenetics and epilepsy. Epigenetics 7(10), 1094-1097. doi: 10.4161/epi.21977.
Rusconi, F., Paganini, L., Braida, D., Ponzoni, L., Toffolo, E., Maroli, A., et al. (2015). LSD1 Neurospecific Alternative Splicing Controls Neuronal Excitability in Mouse Models of Epilepsy. Cerebral cortex (New York, N.Y. : 1991) 25(9), 2729-2740. doi: 10.1093/cercor/bhu070.
Ryley Parrish, R., Albertson, A., Buckingham, S., Hablitz, J., Mascia, K., Davis Haselden, W., et al. (2013). Status epilepticus triggers early and late alterations in brain-derived neurotrophic factor and NMDA glutamate receptor Grin2b DNA methylation levels in the hippocampus.Neuroscience 248, 602-619. doi: 10.1016/j.neuroscience.2013.06.029.
Sáez, M., Fernández-Rodríguez, J., Moutinho, C., Sanchez-Mut, J., Gomez, A., Vidal, E., et al. (2016). Mutations in JMJD1C are involved in Rett syndrome and intellectual disability. Genetics in medicine : official journal of the American College of Medical Genetics18(4), 378-385. doi: 10.1038/gim.2015.100.
Shein, N., Grigoriadis, N., Alexandrovich, A., Simeonidou, C., Lourbopoulos, A., Polyzoidou, E., et al. (2009). Histone deacetylase inhibitor ITF2357 is neuroprotective, improves functional recovery, and induces glial apoptosis following experimental traumatic brain injury.FASEB journal : official publication of the Federation of American Societies for Experimental Biology 23(12), 4266-4275. doi: 10.1096/fj.09-134700.
Shen, T., Ji, F., Yuan, Z., and Jiao, J. (2015). CHD2 is Required for Embryonic Neurogenesis in the Developing Cerebral Cortex. Stem cells (Dayton, Ohio) 33(6), 1794-1806. doi: 10.1002/stem.2001.
Shi, H., Zhang, X., Weng, Y., Lu, Z., Liu, Y., Lu, Z., et al. (2018). mA facilitates hippocampus-dependent learning and memory through YTHDF1.Nature 563(7730), 249-253. doi: 10.1038/s41586-018-0666-1.
Shimojo, M., and Hersh, L. (2006). Characterization of the REST/NRSF-interacting LIM domain protein (RILP): localization and interaction with REST/NRSF. Journal of neurochemistry96(4), 1130-1138. doi: 10.1111/j.1471-4159.2005.03608.x.
Sng, J., Taniura, H., and Yoneda, Y. (2006). Histone modifications in kainate-induced status epilepticus. The European journal of neuroscience 23(5), 1269-1282. doi: 10.1111/j.1460-9568.2006.04641.x.
Soga, T., Nakajima, S., Kawaguchi, M., and Parhar, I. (2021). Repressor element 1 silencing transcription factor /neuron-restrictive silencing factor (REST/NRSF) in social stress and depression. Progress in neuro-psychopharmacology & biological psychiatry 104, 110053. doi: 10.1016/j.pnpbp.2020.110053.
Spencer, E., Chandler, K., Haddley, K., Howard, M., Hughes, D., Belyaev, N., et al. (2006). Regulation and role of REST and REST4 variants in modulation of gene expression in in vivo and in vitro in epilepsy models. Neurobiology of disease 24(1), 41-52. doi: 10.1016/j.nbd.2006.04.020.
Su, W., Aloi, M., and Garden, G. (2016). MicroRNAs mediating CNS inflammation: Small regulators with powerful potential. Brain, behavior, and immunity 52, 1-8. doi: 10.1016/j.bbi.2015.07.003.
Su, X., Shen, B., Wang, K., Song, Q., Yang, X., Wu, D., et al. (2022a). Roles of the Neuron-Restrictive Silencer Factor in the Pathophysiological Process of the Central Nervous System.Frontiers in cell and developmental biology 10, 834620. doi: 10.3389/fcell.2022.834620.
Su, Z., Li, Y., Chen, S., Liu, X., Zhao, K., Peng, Y., et al. (2022b). Identification of Ion Channel-Related Genes and miRNA-mRNA Networks in Mesial Temporal Lobe Epilepsy. Frontiers in genetics 13,853529. doi: 10.3389/fgene.2022.853529.
Tan, C., Plotkin, J., Venø, M., von Schimmelmann, M., Feinberg, P., Mann, S., et al. (2013). MicroRNA-128 governs neuronal excitability and motor behavior in mice. Science (New York, N.Y.)342(6163), 1254-1258. doi: 10.1126/science.1244193.
Tan, N., Tang, H., Lin, G., Chen, Y., Lu, P., Li, H., et al. (2017). Epigenetic Downregulation of Scn3a Expression by Valproate: a Possible Role in Its Anticonvulsant Activity. Molecular neurobiology54(4), 2831-2842. doi: 10.1007/s12035-016-9871-9.
Tang, C., Gu, Y., Wang, H., Wu, H., Wang, Y., Meng, Y., et al. (2018). Targeting of microRNA-21-5p protects against seizure damage in a kainic acid-induced status epilepticus model via PTEN-mTOR. Epilepsy research 144, 34-42. doi: 10.1016/j.eplepsyres.2018.05.001.
Tao, N., Wen, T., Li, T., Luan, L., Pan, H., and Wang, Y. (2022). Interaction between m6A methylation and noncoding RNA in glioma.Cell death discovery 8(1), 283. doi: 10.1038/s41420-022-01075-5.
Tapias, A., Lázaro, D., Yin, B., Rasa, S., Krepelova, A., Kelmer Sacramento, E., et al. (2021). HAT cofactor TRRAP modulates microtubule dynamics via SP1 signaling to prevent neurodegeneration. eLife10. doi: 10.7554/eLife.61531.
Tapias, A., Zhou, Z., Shi, Y., Chong, Z., Wang, P., Groth, M., et al. (2014). Trrap-dependent histone acetylation specifically regulates cell-cycle gene transcription to control neural progenitor fate decisions. Cell stem cell 14(5), 632-643. doi: 10.1016/j.stem.2014.04.001.
Thompson, R., and Chan, C. (2018). NRSF and Its Epigenetic Effectors: New Treatments for Neurological Disease. Brain sciences 8(12). doi: 10.3390/brainsci8120226.
Tsankova, N., Kumar, A., and Nestler, E. (2004). Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. The Journal of neuroscience : the official journal of the Society for Neuroscience 24(24),5603-5610. doi: 10.1523/jneurosci.0589-04.2004.
Ünalp, A., Coskunpinar, E., Gunduz, K., Pekuz, S., Baysal, B., Edizer, S., et al. (2022). Detection of Deregulated miRNAs in Childhood Epileptic Encephalopathies. Journal of molecular neuroscience : MN 72(6), 1234-1242. doi: 10.1007/s12031-022-02001-1.
Vangoor, V., Reschke, C., Senthilkumar, K., van de Haar, L., de Wit, M., Giuliani, G., et al. (2019). miR-135aAntagonizing Increased Levels at the Chronic Stage of Experimental TLE Reduces Spontaneous Recurrent Seizures. The Journal of neuroscience : the official journal of the Society for Neuroscience 39(26), 5064-5079. doi: 10.1523/jneurosci.3014-18.2019.
Vermeulen, M., Eberl, H., Matarese, F., Marks, H., Denissov, S., Butter, F., et al. (2010). Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell142(6), 967-980. doi: 10.1016/j.cell.2010.08.020.
Villa, C., Lavitrano, M., and Combi, R. (2019). Long Non-Coding RNAs and Related Molecular Pathways in the Pathogenesis of Epilepsy.International journal of molecular sciences 20(19). doi: 10.3390/ijms20194898.
Walters, B., Mercaldo, V., Gillon, C., Yip, M., Neve, R., Boyce, F., et al. (2017). The Role of The RNA Demethylase FTO (Fat Mass and Obesity-Associated) and mRNA Methylation in Hippocampal Memory Formation. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 42(7), 1502-1510. doi: 10.1038/npp.2017.31.
Wan, Y., and Yang, Z. (2020). LncRNA NEAT1 affects inflammatory response by targeting miR-129-5p and regulating Notch signaling pathway in epilepsy. Cell cycle (Georgetown, Tex.) 19(4), 419-431. doi: 10.1080/15384101.2020.1711578.
Wang, C., Cui, G., Liu, X., Xu, K., Wang, M., Zhang, X., et al. (2018a). METTL3-mediated m6A modification is required for cerebellar development.PLoS biology 16(6), e2004880. doi: 10.1371/journal.pbio.2004880.
Wang, D., Li, Z., Zhang, Y., Wang, G., Wei, M., Hu, Y., et al. (2016a). Targeting of microRNA-199a-5p protects against pilocarpine-induced status epilepticus and seizure damage via SIRT1-p53 cascade.Epilepsia 57(5), 706-716. doi: 10.1111/epi.13348.
Wang, G., Luan, Z., Che, N., Yan, D., Sun, X., Zhang, C., et al. (2021a). Inhibition of microRNA-129-2-3p protects against refractory temporal lobe epilepsy by regulating GABRA1. Brain and behavior11(7), e02195. doi: 10.1002/brb3.2195.
Wang, H., Yan, H., Wang, K., and Wang, J. (2017). Dynamic regulation effect of long non-coding RNA-UCA1 on NF-kB in hippocampus of epilepsy rats. European review for medical and pharmacological sciences21(13), 3113-3119.
Wang, J., Zheng, Y., Cheng, X., Xu, F., Zhang, P., Zhou, X., et al. (2019a). Inhibition of microRNA-34a Suppresses Epileptiform Discharges Through Regulating Notch Signaling and Apoptosis in Cultured Hippocampal Neurons. Neurochemical research 44(5), 1252-1261. doi: 10.1007/s11064-019-02772-x.
Wang, L., Fu, X., Peng, X., Xiao, Z., Li, Z., Chen, G., et al. (2016b). DNA Methylation Profiling Reveals Correlation of Differential Methylation Patterns with Gene Expression in Human Epilepsy.Journal of molecular neuroscience : MN 59(1), 68-77. doi: 10.1007/s12031-016-0735-6.
Wang, L., Song, L., Chen, X., Ma, Y., Suo, J., Shi, J., et al. (2019b). MiR-181b inhibits P38/JNK signaling pathway to attenuate autophagy and apoptosis in juvenile rats with kainic acid-induced epilepsy via targeting TLR4. CNS neuroscience & therapeutics 25(1),112-122. doi: 10.1111/cns.12991.
Wang, P., Zhang, Y., Wang, Z., Yang, A., Li, Y., and Zhang, Q. (2021b). miR-128 regulates epilepsy sensitivity in mice by suppressing SNAP-25 and SYT1 expression in the hippocampus. Biochemical and biophysical research communications 545, 195-202. doi: 10.1016/j.bbrc.2021.01.079.
Wang, W., Guo, Y., He, L., Chen, C., Luo, J., Ma, Y., et al. (2018b). Overexpression of miRNA-137 in the brain suppresses seizure activity and neuronal excitability: A new potential therapeutic strategy for epilepsy. Neuropharmacology 138, 170-181. doi: 10.1016/j.neuropharm.2018.06.010.
Wang, W., Wang, X., Chen, L., Zhang, Y., Xu, Z., Liu, J., et al. (2016c). The microRNA miR-124 suppresses seizure activity and regulates CREB1 activity. Expert reviews in molecular medicine 18,e4. doi: 10.1017/erm.2016.3.
Wang, Y., Yang, Z., Zhang, K., Wan, Y., Zhou, Y., and Yang, Z. (2021c). miR-135a-5p inhibitor protects glial cells against apoptosis via targeting SIRT1 in epilepsy. Experimental and therapeutic medicine 21(5), 431. doi: 10.3892/etm.2021.9848.
Wang, Z., Qu, J., Yang, Z., Liu, D., Jiang, S., Zhang, Y., et al. (2022). Integrated Analysis of Expression Profile and Potential Pathogenic Mechanism of Temporal Lobe Epilepsy With Hippocampal Sclerosis. Frontiers in neuroscience 16, 892022. doi: 10.3389/fnins.2022.892022.
Wawruszak, A., Halasa, M., Okon, E., Kukula-Koch, W., and Stepulak, A. (2021). Valproic Acid and Breast Cancer: State of the Art in 2021.Cancers 13(14). doi: 10.3390/cancers13143409.
Weerts, M., Lanko, K., Guzmán-Vega, F., Jackson, A., Ramakrishnan, R., Cardona-Londoño, K., et al. (2021). Delineating the molecular and phenotypic spectrum of the SETD1B-related syndrome. Genetics in medicine : official journal of the American College of Medical Genetics23(11), 2122-2137. doi: 10.1038/s41436-021-01246-2.
Wei, G., Deng, X., Agarwal, S., Iwase, S., Disteche, C., and Xu, J. (2016). Patient Mutations of the Intellectual Disability Gene KDM5C Downregulate Netrin G2 and Suppress Neurite Growth in Neuro2a Cells.Journal of molecular neuroscience : MN 60(1), 33-45. doi: 10.1007/s12031-016-0770-3.
Weng, N., Sun, J., Kuang, S., Lan, H., He, Q., Yang, H., et al. (2020). MicroRNA-451 Aggravates Kainic Acid-induced Seizure and Neuronal Apoptosis by Targeting GDNF. Current neurovascular research17(1), 50-57. doi: 10.2174/1567202617666191223150510.
Westbrook, T., Hu, G., Ang, X., Mulligan, P., Pavlova, N., Liang, A., et al. (2008). SCFbeta-TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature452(7185), 370-374. doi: 10.1038/nature06780.
Whittle, J., Powell, M., Popov, V., Shirley, L., Wang, C., and Pestell, R. (2007). Sirtuins, nuclear hormone receptor acetylation and transcriptional regulation. Trends in endocrinology and metabolism: TEM 18(9), 356-364. doi: 10.1016/j.tem.2007.07.007.
Williams-Karnesky, R., Sandau, U., Lusardi, T., Lytle, N., Farrell, J., Pritchard, E., et al. (2013). Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. The Journal of clinical investigation 123(8), 3552-3563. doi: 10.1172/jci65636.
Wilson, M., Henshall, D., Byrne, S., and Brennan, G. (2021). CHD2-Related CNS Pathologies. International journal of molecular sciences 22(2). doi: 10.3390/ijms22020588.
Wu, J., and Xie, X. (2006). Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome biology 7(9), R85. doi: 10.1186/gb-2006-7-9-r85.
Wu, P., Zuo, X., Deng, H., Liu, X., Liu, L., and Ji, A. (2013). Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain research bulletin 97,69-80. doi: 10.1016/j.brainresbull.2013.06.001.
Wu, Q., and Yi, X. (2018). Down-regulation of Long Noncoding RNA MALAT1 Protects Hippocampal Neurons Against Excessive Autophagy and Apoptosis via the PI3K/Akt Signaling Pathway in Rats with Epilepsy. Journal of molecular neuroscience : MN 65(2), 234-245. doi: 10.1007/s12031-018-1093-3.
Wu, Y., Zhang, Y., Zhu, S., Tian, C., and Zhang, Y. (2021). MiRNA-29a serves as a promising diagnostic biomarker in children with temporal lobe epilepsy and regulates seizure-induced cell death and inflammation in hippocampal neurons. Epileptic disorders : international epilepsy journal with videotape 23(6), 823-832. doi: 10.1684/epd.2021.1331.
Xiang, L., Ren, Y., Cai, H., Zhao, W., and Song, Y. (2015). MicroRNA-132 aggravates epileptiform discharges via suppression of BDNF/TrkB signaling in cultured hippocampal neurons. Brain research1622, 484-495. doi: 10.1016/j.brainres.2015.06.046.
Xiang, L., Ren, Y., Li, X., Zhao, W., and Song, Y. (2016). MicroRNA-204 suppresses epileptiform discharges through regulating TrkB-ERK1/2-CREB signaling in cultured hippocampal neurons. Brain research1639, 99-107. doi: 10.1016/j.brainres.2016.02.045.
Xiao, D., Lv, J., Zheng, Z., Liu, Y., Zhang, Y., Luo, C., et al. (2021). Mechanisms of microRNA‑142 in mitochondrial autophagy and hippocampal damage in a rat model of epilepsy. International journal of molecular medicine 47(6). doi: 10.3892/ijmm.2021.4931.
Xiao, W., Cao, Y., Long, H., Luo, Z., Li, S., Deng, N., et al. (2018). Genome-Wide DNA Methylation Patterns Analysis of Noncoding RNAs in Temporal Lobe Epilepsy Patients. Molecular neurobiology55(1), 793-803. doi: 10.1007/s12035-016-0353-x.
Xiaoying, G., Guo, M., Jie, L., Yanmei, Z., Ying, C., Shengjie, S., et al. (2020). CircHivep2 contributes to microglia activation and inflammation via miR-181a-5p/SOCS2 signalling in mice with kainic acid-induced epileptic seizures. Journal of cellular and molecular medicine 24(22), 12980-12993. doi: 10.1111/jcmm.15894.
Xie, H., Liu, X., Zhou, Q., Huang, T., Zhang, L., Gao, J., et al. (2022). DNA Methylation Modulates Aging Process in Adipocytes.Aging and disease 13(2), 433-446. doi: 10.14336/ad.2021.0904.
Xu, Y., Wang, Y., Yan, S., Yang, Q., Zhou, Y., Zeng, X., et al. (2017). Regulation of endothelial intracellular adenosine via adenosine kinase epigenetically modulates vascular inflammation. Nature communications 8(1), 943. doi: 10.1038/s41467-017-00986-7.
Yan, Y., Xia, H., Hu, J., and Zhang, B. (2019). MicroRNA-542-3p Regulates P-glycoprotein Expression in Rat Epilepsy via the Toll-like Receptor 4/Nuclear Factor-kappaB Signaling Pathway. Current neurovascular research 16(5), 433-440. doi: 10.2174/1567202616666191023160201.
Yang, M., Gocke, C., Luo, X., Borek, D., Tomchick, D., Machius, M., et al. (2006). Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase. Molecular cell23(3), 377-387. doi: 10.1016/j.molcel.2006.07.012.
Yang, Y., Shuai, P., Li, X., Sun, K., Jiang, X., Liu, W., et al. (2022). Mettl14-mediated m6A modification is essential for visual function and retinal photoreceptor survival. BMC biology 20(1), 140. doi: 10.1186/s12915-022-01335-x.
Yao, R., Wang, Y., and Chen, L. (2019). Cellular functions of long noncoding RNAs. Nature cell biology 21(5), 542-551. doi: 10.1038/s41556-019-0311-8.
You, Y., Fu, Y., Huang, M., Shen, D., Zhao, B., Liu, H., et al. (2022). Recent Advances of m6A Demethylases Inhibitors and Their Biological Functions in Human Diseases. International journal of molecular sciences 23(10). doi: 10.3390/ijms23105815.
Younus, I., and Reddy, D. (2017). Epigenetic interventions for epileptogenesis: A new frontier for curing epilepsy. Pharmacology & therapeutics 177, 108-122. doi: 10.1016/j.pharmthera.2017.03.002.
Yu, J., Chen, M., Huang, H., Zhu, J., Song, H., Zhu, J., et al. (2018). Dynamic m6A modification regulates local translation of mRNA in axons.Nucleic acids research 46(3), 1412-1423. doi: 10.1093/nar/gkx1182.
Yu, Q., Zhao, M., and Yang, P. (2020). LncRNA UCA1 Suppresses the Inflammation Via Modulating miR-203-Mediated Regulation of MEF2C/NF-κB Signaling Pathway in Epilepsy. Neurochemical research45(4), 783-795. doi: 10.1007/s11064-019-02952-9.
Yu, Y., Du, L., and Zhang, J. (2021). Febrile Seizure-Related miR-148a-3p Exerts Neuroprotection by Promoting the Proliferation of Hippocampal Neurons in Children with Temporal Lobe Epilepsy.Developmental neuroscience 43(5), 312-320. doi: 10.1159/000518352.
Zhang, B., West, E., Van, K., Gurkoff, G., Zhou, J., Zhang, X., et al. (2008). HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain research 1226, 181-191. doi: 10.1016/j.brainres.2008.05.085.
Zhang, H., Qu, Y., and Wang, A. (2018a). Antagonist targeting microRNA-146a protects against lithium-pilocarpine-induced status epilepticus in rats by nuclear factor-κB pathway. Molecular medicine reports 17(4), 5356-5361. doi: 10.3892/mmr.2018.8465.
Zhang, L., Li, Y., Ye, X., and Bian, L. (2018b). Bioinformatics Analysis of Microarray Profiling Identifies That the miR-203-3p Target Ppp2ca Aggravates Seizure Activity in Mice. Journal of molecular neuroscience : MN 66(1), 146-154. doi: 10.1007/s12031-018-1145-8.
Zhang, M., Yang, H., Chen, Z., Hu, X., Wu, T., and Liu, W. (2021). Long Noncoding RNA X-Inactive-Specific Transcript Promotes the Secretion of Inflammatory Cytokines in LPS Stimulated Astrocyte Cell Via Sponging miR-29c-3p and Regulating Nuclear Factor of Activated T cell 5 Expression. Frontiers in endocrinology 12, 573143. doi: 10.3389/fendo.2021.573143.
Zhang, S., Zhang, M., Tao, H., Luo, Y., He, T., Wang, C., et al. (2018c). Dimethylation of Histone 3 Lysine 9 is sensitive to the epileptic activity, and affects the transcriptional regulation of the potassium channel Kcnj10 gene in epileptic rats. Molecular medicine reports 17(1), 1368-1374. doi: 10.3892/mmr.2017.7942.
Zhang, X., Li, X., Li, B., Sun, C., and Zhang, P. (2020). miR-21-5p protects hippocampal neurons of epileptic rats via inhibiting STAT3 expression. Advances in clinical and experimental medicine : official organ Wroclaw Medical University 29(7), 793-801. doi: 10.17219/acem/121929.
Zhang, Z., Wang, M., Xie, D., Huang, Z., Zhang, L., Yang, Y., et al. (2018d). METTL3-mediated N-methyladenosine mRNA modification enhances long-term memory consolidation. Cell research 28(11),1050-1061. doi: 10.1038/s41422-018-0092-9.
Zhao, C., Liu, D., Fan, Y., and Wu, J. (2022). LncRNA GAS5 promotes epilepsy progression through the epigenetic repression of miR-219, in turn affecting CaMKIIγ/NMDAR pathway. Journal of neurogenetics36(1), 32-42. doi: 10.1080/01677063.2022.2067536.
Zhao, C., Yang, F., Wei, X., and Zhang, J. (2021). miR-139-5p upregulation alleviated spontaneous recurrent epileptiform discharge-induced oxidative stress and apoptosis in rat hippocampal neurons via regulating the Notch pathway. Cell biology international 45(2), 463-476. doi: 10.1002/cbin.11509.
Zhao, M., Qiu, W., and Yang, P. (2020). SP1 activated-lncRNA SNHG1 mediates the development of epilepsy via miR-154-5p/TLR5 axis.Epilepsy research 168, 106476. doi: 10.1016/j.eplepsyres.2020.106476.
Zhao, Q., Yin, C., Yuan, Y., Zhang, H., and Teng, L. (2019a). Down-Regulation of Mir-145 Improves Learning and Memory Abilities in Epileptic Rats by Regulating Hippocampal Neuron Apoptosis. World neurosurgery 122, e1432-e1438. doi: 10.1016/j.wneu.2018.11.080.
Zhao, T., Ding, Y., Li, M., Zhou, C., and Lin, W. (2019b). Silencing lncRNA PVT1 inhibits activation of astrocytes and increases BDNF expression in hippocampus tissues of rats with epilepsy by downregulating the Wnt signaling pathway. Journal of cellular physiology . doi: 10.1002/jcp.28264.
Zheng, D., Li, M., Li, G., Hu, J., Jiang, X., Wang, Y., et al. (2021). Circular RNA circ_DROSHA alleviates the neural damage in a cell model of temporal lobe epilepsy through regulating miR-106b-5p/MEF2C axis.Cellular signalling 80, 109901. doi: 10.1016/j.cellsig.2020.109901.
Zheng, H., Tang, R., Yao, Y., Ji, Z., Cao, Y., Liu, Z., et al. (2016). MiR-219 Protects Against Seizure in the Kainic Acid Model of Epilepsy.Molecular neurobiology 53(1), 1-7. doi: 10.1007/s12035-014-8981-5.
Zheng, P., Bin, H., and Chen, W. (2019). Inhibition of microRNA-103a inhibits the activation of astrocytes in hippocampus tissues and improves the pathological injury of neurons of epilepsy rats by regulating BDNF. Cancer cell international 19(1), 109. doi: 10.1186/s12935-019-0821-2.
Zhou, Q., Wang, Q., He, B., Kong, H., Luo, H., Wang, X., et al. (2022). MicroRNA 322-5p reduced neuronal inflammation via the TLR4/TRAF6/NF-κB axis in a rat epilepsy model. Open medicine (Warsaw, Poland)17(1), 907-914. doi: 10.1515/med-2022-0485.
Zhu, Q., Wang, L., Zhang, Y., Zhao, F., Luo, J., Xiao, Z., et al. (2012). Increased expression of DNA methyltransferase 1 and 3a in human temporal lobe epilepsy. Journal of molecular neuroscience : MN46(2), 420-426. doi: 10.1007/s12031-011-9602-7.
Zhu, X., Yao, Y., Liu, Y., Zhou, R., Zhang, W., Hu, Q., et al. (2019a). Regulation of ADAM10 by MicroRNA-23a Contributes to Epileptogenesis in Pilocarpine-Induced Status Epilepticus Mice. Frontiers in cellular neuroscience 13, 180. doi: 10.3389/fncel.2019.00180.
Zhu, X., Zhang, A., Dong, J., Yao, Y., Zhu, M., Xu, K., et al. (2019b). MicroRNA-23a contributes to hippocampal neuronal injuries and spatial memory impairment in an experimental model of temporal lobe epilepsy.Brain research bulletin 152, 175-183. doi: 10.1016/j.brainresbull.2019.07.021.
Zhu, Y., Li, C., Wang, Y., and Zhou, S. (2015). Change of MicroRNA-134, CREB and p-CREB expression in epileptic rat. Asian Pacific journal of tropical medicine 8(4), 292-298. doi: 10.1016/s1995-7645(14)60333-3.
Zhu, Z., Wang, S., Cao, Q., and Li, G. (2021). CircUBQLN1 Promotes Proliferation but Inhibits Apoptosis and Oxidative Stress of Hippocampal Neurons in Epilepsy via the miR-155-Mediated SOX7 Upregulation.Journal of molecular neuroscience : MN 71(9), 1933-1943. doi: 10.1007/s12031-021-01838-2.
Zybura-Broda, K., Amborska, R., Ambrozek-Latecka, M., Wilemska, J., Bogusz, A., Bucko, J., et al. (2016). Epigenetics of Epileptogenesis-Evoked Upregulation of Matrix Metalloproteinase-9 in Hippocampus. PloS one 11(8), e0159745. doi: 10.1371/journal.pone.0159745.