References
Alam, M. A., Gauslaa, Y., & Solhaug, K. A. (2015). Soluble
carbohydrates and relative growth rates in chloro-, cyano- and
cephalolichens: Effects of temperature and nocturnal hydration.New Phytologist, 208 (3), 750-762.
doi:https://doi.org/10.1111/nph.13484
Alexa, A., & Rahnenführer, J. (2018). topGO: Enrichment Analysis for
Gene Ontology. R package version 2.34.0.
Allakhverdiev, S., Kreslavskii, V., Fomina, I., Los, D., Klimov, V.,
Mimuro, M., Mohanty, P. & Carpentier, R. (2012). Inactivation and
repair of photosynthetic machinery under heat stress. In S. Itoh, P.
Mohanty, & K. N. Guruprasad (Eds.), Photosynthesis: Overviews on
Recent Progress and Future Perspective (pp. 187-214). New Delhi:
International Publishing House Pvt. Ltd.
Almendras, K., García, J., Carú, M., & Orlando, J. (2018).
Nitrogen-fixing bacteria associated with Peltigera cyanolichens
and Cladonia chlorolichens. Molecules, 23 (12), 3077.
doi:10.3390/molecules23123077
Anders, S., & Huber, W. (2010). Differential expression analysis for
sequence count data. Genome Biology, 11 (10), R106.
doi:10.1186/gb-2010-11-10-r106
Armaleo, D., & Clerc, P. (1991). Lichen chimeras: DNA analysis suggests
that one fungus forms two morphotypes. Experimental Mycology,
15 (1), 1-10. doi:https://doi.org/10.1016/0147-5975(91)90002-U
Barati, B., Gan, S. Y., Lim, P. E., Beardall, J., & Phang, S. M.
(2019). Green algal molecular responses to temperature stress.Acta Physiologiae Plantarum, 41 (2), 26.
doi:10.1007/s11738-019-2813-1
Beck, A., Kasalicky, T., & Rambold, G. (2002). Myco-photobiontal
selection in a Mediterranean cryptogam community with Fulgensia
fulgida . New Phytologist, 153 (2), 317-326.
doi:https://doi.org/10.1046/j.0028-646X.2001.00315.x
Blot, M., Meyer, J., & Arber, W. (1991). Bleomycin-resistance gene
derived from the transposon Tn5 confers selective advantage toEscherichia coli K-12. Proceedings of the National Academy
of Sciences, 88 (20), 9112-9116.
Bowman, S. M., & Free, S. J. (2006). The structure and synthesis of the
fungal cell wall. BioEssays, 28 (8), 799-808.
doi:https://doi.org/10.1002/bies.20441
Bray, N. L., Pimentel, H., Melsted, P., & Pachter, L. (2016).
Near-optimal probabilistic RNA-seq quantification. Nature
Biotechnology, 34 (5), 525-527. doi:10.1038/nbt.3519
Calhoun, L. N., & Kwon, Y. M. (2011). Structure, function and
regulation of the DNA-binding protein Dps and its role in acid and
oxidative stress resistance in Escherichia coli : a review.Journal of Applied Microbiology, 110 (2), 375-386.
doi:10.1111/j.1365-2672.2010.04890.x
Calzadilla, P. I., Vilas, J. M., Escaray, F. J., Unrein, F., Carrasco,
P., & Ruiz, O. A. (2019). The increase of photosynthetic carbon
assimilation as a mechanism of adaptation to low temperature inLotus japonicus . Scientific Reports, 9 (1), 863.
doi:10.1038/s41598-018-37165-7
Casano, L. M., del Campo, E. M., García-Breijo, F. J., Reig-Armiñana,
J., Gasulla, F., Del Hoyo, A., Guéra, A. & Barreno, E. (2011). Two
Trebouxia algae with different physiological performances are
ever-present in lichen thalli of Ramalina farinacea . Coexistence
versus competition? Environmental Microbiology, 13 (3), 806-818.
doi:10.1111/j.1462-2920.2010.02386.x
Chavarria-Pizarro, T., Resl, P., Janjic, A., & Werth, S. (2022). Gene
expression responses to thermal shifts in the endangered lichenLobaria pulmonaria . Molecular Ecology, 31 (3), 839-858.
doi:https://doi.org/10.1111/mec.16281
Cornejo, C., Derr, C., & Dillman, K. (2017). Ricasolia
amplissima (Lobariaceae): one species, three genotypes and a new taxon
from south-eastern Alaska. The Lichenologist, 49 (6), 579-596.
doi:10.1017/S002428291700041X
Cruz-Loya, M., Kang, T. M., Lozano, N. A., Watanabe, R., Tekin, E.,
Damoiseaux, R., Savage V. M. & Yeh, P. J. (2019). Stressor interaction
networks suggest antibiotic resistance co-opted from stress responses to
temperature. The ISME Journal, 13 (1), 12-23.
doi:10.1038/s41396-018-0241-7
Culberson, W. L. (1986). Chemistry and sibling speciation in the
lichen-forming fungi: Ecological and biological considerations.The Bryologist, 89 (2), 123-131. doi:10.2307/3242752
del Hoyo, A., Álvarez, R., del Campo, E. M., Gasulla, F., Barreno, E.,
& Casano, L. M. (2011). Oxidative stress induces distinct physiological
responses in the two Trebouxia phycobionts of the lichenRamalina farinacea . Annals of Botany, 107 (1), 109-118.
doi:10.1093/aob/mcq206
Demmig-Adams, B., Adams, W. W., Green, T. G. A., Czygan, F.-C., &
Lange, O. L. (1990). Differences in the susceptibility to light stress
in two lichens forming a phycosymbiodeme, one partner possessing and one
lacking the xanthophyll cycle. Oecologia, 84 (4), 451-456.
Domozych, D., Ciancia, M., Fangel, J., Mikkelsen, M., Ulvskov, P., &
Willats, W. (2012). The cell walls of green algae: A journey through
evolution and diversity. Frontiers in Plant Science, 3 , 82.
Dubin, M. J., Mittelsten Scheid, O., & Becker, C. (2018). Transposons:
A blessing curse. Current Opinion in Plant Biology, 42 , 23-29.
doi:10.1016/j.pbi.2018.01.003
Dumas, P., Bergdoll, M., Cagnon, C., & Masson, J.-M. (1994). Crystal
structure and site-directed mutagenesis of a bleomycin resistance
protein and their significance for drug sequestering. The EMBO
Journal, 13 (11), 2483-2492.
Elliott, T. (1998). Stress Proteins. In P. J. Delves (Ed.),Encyclopedia of Immunology (Second Edition) (pp. 2228-2232).
Oxford: Elsevier.
Elvebakk, A., Papaefthimiou, D., Robertsen, E. H., & Liaimer, A.
(2008). Phylogenetic patterns among Nostoc cyanobionts within bi-
and tripartite lichens of the genus Pannaria . Journal of
Phycology, 44 (4), 1049-1059.
doi:https://doi.org/10.1111/j.1529-8817.2008.00556.x
Ertz, D., Guzow-Krzemińska, B., Thor, G., Łubek, A., & Kukwa, M.
(2018). Photobiont switching causes changes in the reproduction strategy
and phenotypic dimorphism in the Arthoniomycetes. Scientific
Reports, 8 (1), 4952. doi:10.1038/s41598-018-23219-3
Farrar, J. F. (1976). Ecological physiology of the lichenHypogymnia physodes . II. Effects of wetting and drying cycles and
the concept of ’physiological buffering’. New Phytologist, 77 (1),
105-113.
Fontaniella, B., Vicente, C., & Legaz, M.-E. (2000). The cryoprotective
role of polyols in lichens: Effects on the redistribution of RNase inEvernia prunastri thallus during freezing. Plant Physiology
and Biochemistry, 38 (7), 621-627.
doi:https://doi.org/10.1016/S0981-9428(00)00780-4
Fürtauer, L., Weiszmann, J., Weckwerth, W., & Nägele, T. (2019).
Dynamics of plant metabolism during cold acclimation.International Journal of Molecular Sciences, 20 (21), 5411.
doi:10.3390/ijms20215411
Gagunashvili, A. N., & Andrésson, Ó. S. (2018). Distinctive characters
of Nostoc genomes in cyanolichens. BMC Genomics, 19 (1),
434. doi:10.1186/s12864-018-4743-5
Garcia-Rubio, R., de Oliveira, H. C., Rivera, J., & Trevijano-Contador,
N. (2020). The fungal cell wall: Candida , Cryptococcus ,
and Aspergillus species. Frontiers in Microbiology, 10 .
doi:10.3389/fmicb.2019.02993
Gastebois, A., Aimanianda, V., Bachellier-Bassi, S., Nesseir, A., Firon,
A., Beauvais, A., . . . Mouyna, I. (2013). SUN proteins belong to a
novel family of β-(1,3)-glucan-modifying enzymes involved in fungal
morphogenesis. The Journal of Biological Chemistry, 288 (19),
13387-13396. doi:10.1074/jbc.M112.440172
Gauslaa, Y., Coxson, D. S., & Solhaug, K. A. (2012). The paradox of
higher light tolerance during desiccation in rare old forest
cyanolichens than in more widespread co-occurring chloro- and
cephalolichens. New Phytologist, 195 (4), 812-822.
doi:https://doi.org/10.1111/j.1469-8137.2012.04221.x
Gazzano, C., Favero-Longo, S. E., Iacomussi, P., & Piervittori, R.
(2013). Biocidal effect of lichen secondary metabolites against
rock-dwelling microcolonial fungi, cyanobacteria and green algae.International Biodeterioration & Biodegradation, 84 , 300-306.
doi:https://doi.org/10.1016/j.ibiod.2012.05.033
Geoghegan, I., Steinberg, G., & Gurr, S. (2017). The role of the fungal
cell wall in the infection of plants. Trends in Microbiology,
25 (12), 957-967. doi:10.1016/j.tim.2017.05.015
Ghimire, S., Tang, X., Zhang, N., Liu, W., Qi, X., Fu, X., & Si, H.
(2020). Genomic analysis of the SUMO-conjugating enzyme and genes under
abiotic stress in potato (Solanum tuberosum L.).International Journal of Genomics, 2020 , 9703638.
doi:10.1155/2020/9703638
Goffinet, B., & Hastings, R. I. (1994). The Lichen Genus
Peltigera (Lichenized Ascomycetes) in Alberta . Edmonton, Alberta:
Provincial Museum of Alberta.
Goward, T., Goffinet, B., & Vitikainen, O. (1995). Synopsis of the
genus Peltigera (lichenized Ascomycetes) in British Columbia,
with a key to the North American species. Canadian Journal of
Botany, 73 (1), 91-111. doi:10.1139/b95-012
Green, T. G. A., Büdel, B., Heber, U., Meyer, A., Zellner, H., & Lange,
O. L. (1993). Differences in photosynthetic performance between
cyanobacterial and green algal components of lichen photosymbiodemes
measured in the field. New Phytologist, 125 (4), 723-731.
doi:https://doi.org/10.1111/j.1469-8137.1993.tb03921.x
Green, T. G. A., Schlensog, M., Sancho, L. G., Winkler, J. B., Broom, F.
D., & Schroeter, B. (2002). The photobiont determines the pattern of
photosynthetic activity within a single lichen thallus containing
cyanobacterial and green algal sectors (photosymbiodeme).Oecologia, 130 (2), 191-198. doi:10.1007/s004420100800
Grzesiak, J., Woltyńska, A., Zdanowski, M. K., Górniak, D., Świątecki,
A., Olech, M. A., & Aleksandrzak-Piekarczyk, T. (2021). Metabolic
fingerprinting of the Antarctic cyanolichen Leptogium
puberulum –associated bacterial community (Western Shore of Admiralty
Bay, King George Island, Maritime Antarctica). Microbial Ecology,
82 (3), 818-829. doi:10.1007/s00248-021-01701-2
Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D.,
Bowden, J., . . . Regev, A. (2013). De novo transcript sequence
reconstruction from RNA-seq using the Trinity platform for reference
generation and analysis. Nature Protocols, 8 (8), 1494-1512.
doi:10.1038/nprot.2013.084
Hájek, J., Váczi, P., Barták, M., Smejkal, L., & Lipavská, H. (2009).
Cryoproective role of ribitol in Xanthoparmelia somloensis .Biologia Plantarum, 53 (4), 677-684. doi:10.1007/s10535-009-0122-z
Hale, M. E. (1957). The Lobaria amplissima -L. quercizanscomplex in Europe and North America. The Bryologist, 60 (1),
35-39. doi:10.2307/3240051
hbctraining, DGE_workshop (2022). GitHub repository , [accessed
05.04.2022]; https://github.com/hbctraining/DGE_workshop.
Henskens, F. L., Green, T. G. A., & Wilkins, A. (2012). Cyanolichens
can have both cyanobacteria and green algae in a common layer as major
contributors to photosynthesis. Annals of Botany, 110 (3),
555-563. doi:10.1093/aob/mcs108
Hill, D. J. (1972). The movement of carbohydrate from the alga to the
fungus in the lichen Peltigera polydactyla . New
Phytologist, 71 (1), 31-39.
Hill, D. J. (1985). Changes in Photobiont Dimensions and Numbers During
Co-Development of Lichen Symbionts. In D. H. Brown (Ed.), Lichen
Physiology and Cell Biology (pp. 303-317). Boston, MA: Springer US.
Hill, D. J., & Ahmadjian, V. (1972). Relationship between carbohydrate
movement and the symbiosis in lichens with green algae. Planta,
103 (3), 267-277.
Hitch, C. J. B., & Millbank, J. W. (1975). Nitrogen metabolism in
lichens. VII. Nitrogenase activity and heterocyst frequency in lichens
with blue-green phycobionts. New Phytologist, 75 (2), 239-244.
Hoiczyk, E., & Hansel, A. (2000). Cyanobacterial cell walls: news from
an unusual prokaryotic envelope. Journal of Bacteriology, 182 (5),
1191-1199. doi:10.1128/JB.182.5.1191-1199.2000
Holtan-Hartwig, J. (1993). The lichen genus Peltigera , exclusive
of the P. canina group, in Norway. Sommerfeltia, 15 .
doi:10.1017/S0024282994000150
Holtman, D. F. (1947). Antibiotic products of fungi. The Botanical
Review, 13 (2), 59-91. doi:10.1007/BF02861543
Holzinger, A., & Karsten, U. (2013). Desiccation stress and tolerance
in green algae: consequences for ultrastructure, physiological and
molecular mechanisms. Frontiers in Plant Science, 4 , 327.
Honegger, R. (1984). Cytological aspects of the mycobiont–phycobiont
relationship in lichens: Haustorial types, phycobiont cell wall types,
and the ultrastructure of the cell surface layers in some cultured and
symbiotic myco-and phycobionts. The Lichenologist, 16 (2),
111-127. doi:10.1017/S0024282984000293
Honegger, R. (1985). Fine Structure of Different Types of Symbiotic
Relationships in Lichens. In D. H. Brown (Ed.), Lichen Physiology
and Cell Biology (pp. 287-302). Boston, MA: Springer US.
Honegger, R. (1986). Ultrastructural studies in lichens. II. Mycobiont
and photobiont cell wall surface layers and adhering crystalline lichen
products in four Parmeliaceae. New Phytologist, 103 (4), 797-808.
Honegger, R. (2012). 15 The symbiotic phenotype of lichen-forming
ascomycetes and their endo- and epibionts. In B. Hock (Ed.),Fungal Associations (pp. 287-339). Berlin, Heidelberg: Springer
Berlin Heidelberg.
Honegger, R., & Brunner, U. (1981). Sporopollenin in the cell walls ofCoccomyxa and Myrmecia phycobionts of various lichens: An
ultrastructural and chemical investigation. Canadian Journal of
Botany, 59 , 2713-2734. doi:10.1139/b81-322
Hopke, A., Brown, A. J. P., Hall, R. A., & Wheeler, R. T. (2018).
Dynamic fungal cell wall architecture in stress adaptation and immune
evasion. Trends in Microbiology, 26 (4), 284-295.
doi:10.1016/j.tim.2018.01.007
Hu, X., Lu, Z., Shen, Y.-M., Tao, Y., & Song, S.-Y. (2019).
Para-aminobenzoic acid synthase from mushroom Agaricus bisporusenhances UV-C tolerance in Arabidopsis by reducing oxidative DNA
damage. Acta Physiologiae Plantarum, 41 (9), 160.
doi:10.1007/s11738-019-2936-4
Huang, B.-H., Lin, Y.-C., Huang, C.-W., Lu, H.-P., Luo, M.-X., & Liao,
P.-C. (2018). Differential genetic responses to the stress revealed the
mutation-order adaptive divergence between two sympatric ginger species.BMC Genomics, 19 (1), 692. doi:10.1186/s12864-018-5081-3
Huson, D. H., Auch, A. F., Qi, J., & Schuster, S. C. (2007). MEGAN
analysis of metagenomic data. Genome Research, 17 (3), 377-386.
doi:10.1101/gr.5969107
Hyvärinen, M., Härdling, R., & Tuomi, J. (2002). Cyanobacterial lichen
symbiosis: The fungal partner as an optimal harvester. Oikos,
98 (3), 498-504. doi:https://doi.org/10.1034/j.1600-0706.2002.980314.x
Ikeda, K., Nakayashiki, H., Takagi, M., Tosa, Y., & Mayama, S. (2001).
Heat shock, copper sulfate and oxidative stress activate the
retrotransposon MAGGY resident in the plant pathogenic fungusMagnaporthe grisea . Molecular Genetics and Genomics,
266 (2), 318-325. doi:10.1007/s004380100560
Insarova, I. D., & Blagoveshchenskaya, E. Y. (2016). Lichen symbiosis:
Search and recognition of partners. Biology Bulletin, 43 (5),
408-418. doi:10.1134/S1062359016040038
Ivanov, A. G., Velitchkova, M. Y., Allakhverdiev, S. I., & Huner, N. P.
A. (2017). Heat stress-induced effects of photosystem I: An overview of
structural and functional responses. Photosynthesis Research,
133 (1), 17-30. doi:10.1007/s11120-017-0383-x
Ivanov, D., Yaneva, G., Potoroko, I., & Ivanova, D. G. (2021).
Contribution of cyanotoxins to the ecotoxicological role of lichens.Toxins, 13 (5). doi:10.3390/toxins13050321
Jüriado, I., Kaasalainen, U., Jylhä, M., & Rikkinen, J. (2019).
Relationships between mycobiont identity, photobiont specificity and
ecological preferences in the lichen genus Peltigera (Ascomycota)
in Estonia (northeastern Europe). Fungal Ecology, 39 , 45-54.
doi:10.1016/j.funeco.2018.11.005
Kaasalainen, U., Fewer, D. P., Jokela, J., Wahlsten, M., Sivonen, K., &
Rikkinen, J. (2012). Cyanobacteria produce a high variety of hepatotoxic
peptides in lichen symbiosis. Proceedings of the National Academy
of Sciences, 109 (15), 5886-5891. doi:10.1073/pnas.1200279109
Kaasalainen, U., Jokela, J., Fewer, D. P., Sivonen, K., & Rikkinen, J.
(2009). Microcystin production in the tripartite cyanolichenPeltigera leucophlebia . Molecular Plant-Microbe
Interactions, 22 (6), 695-702. doi:10.1094/MPMI-22-6-0695
Kammerscheit, X., Chauvat, F., & Cassier-Chauvat, C. (2019). First in
vivo evidence that glutathione-S-transferase operates in photo-oxidative
stress in cyanobacteria. Frontiers in Microbiology, 10 (1899).
doi:10.3389/fmicb.2019.01899
Karas, V. O., Westerlaken, I., & Meyer, A. S. (2015). The DNA-binding
protein from starved cells (Dps) utilizes dual functions to defend cells
against multiple stresses. Journal of Bacteriology, 197 (19),
3206-3215. doi:10.1128/JB.00475-15
Kato, N., Brooks, W., & Calvo Ana, M. (2003). The expression of
sterigmatocystin and penicillin genes in Aspergillus nidulans is
controlled by veA, a gene required for sexual development.Eukaryotic Cell, 2 (6), 1178-1186.
doi:10.1128/EC.2.6.1178-1186.2003
Keszenman, D. J., Candreva, E. C., & Nunes, E. (2000). Cellular and
molecular effects of bleomycin are modulated by heat shock inSaccharomyces cerevisiae . Mutation Research, 459 (1),
29-41. doi:https://doi.org/10.1016/S0921-8777(99)00056-7
Keszenman, D. J., Candreva, E. C., Sánchez, A. G., & Nunes, E. (2005).
RAD6 gene is involved in heat shock induction of bleomycin resistance inSaccharomyces cerevisiae . Environmental and Molecular
Mutagenesis, 45 (1), 36-43. doi:10.1002/em.20083
Kono, M., Kon, Y., Ohmura, Y., Satta, Y., & Terai, Y. (2020). In vitro
resynthesis of lichenization reveals the genetic background of
symbiosis-specific fungal-algal interaction in Usnea hakonensis .BMC Genomics, 21 (1), 671. doi:10.1186/s12864-020-07086-9
Kopke, K., Hoff, B., Bloemendal, S., Katschorowski, A., Kamerewerd, J.,
& Kück, U. (2013). Members of the Penicillium chrysogenum velvet
complex play functionally opposing roles in the regulation of penicillin
biosynthesis and conidiation. Eukaryotic Cell, 12 (2), 299-310.
doi:10.1128/EC.00272-12
Koriem, A. M., & Ahmadjian, V. (1986). An ultrastructural study of
lichenized and cultured Nostoc photobionts of Peltigera
canina , Peltigera rufescens , and Peltigera spuria .Endocytobiosis and Cell Research, 3 , 65-78.
Kranner, I. (2002). Glutathione status correlates with different degrees
of desiccation tolerance in three lichens. New Phytologist,
154 (2), 451-460. doi:https://doi.org/10.1046/j.1469-8137.2002.00376.x
Kranner, I., Beckett, R., Hochman, A., & Nash III, T. H. (2008).
Desiccation-tolerance in lichens: A review. The Bryologist,
111 (4), 576-593. doi:10.1639/0007-2745-111.4.576
Kukwa, M., Kosecka, M., & Guzow-Krzemińska, B. (2020). One name – one
fungus: The influence of photosynthetic partners on the taxonomy and
systematics of lichenized fungi. Acta Societatis Botanicorum
Poloniae, 89 (3). doi:10.5586/asbp.89311
Kurepa, J., Walker, J. M., Smalle, J., Gosink, M. M., Davis, S. J.,
Durham, T. L., Sung, D.Y., & Vierstra, R. D. (2003). The small
ubiquitin-like modifier (SUMO) protein modification system inArabidopsis : Accumulation of SUMO1 and -2 conjugates is increased
by stress. Journal of Biological Chemistry, 278 (9), 6862-6872.
doi:10.1074/jbc.M209694200
Lange, O. L., & Green, T. G. A. (2005). Lichens show that fungi can
acclimate their respiration to seasonal changes in temperature.Oecologia, 142 (1), 11-19. doi:10.1007/s00442-004-1697-x
Lange, O. L., Green, T. G. A., & Ziegler, H. (1988). Water status
related photosynthesis and carbon isotope discrimination in species of
the lichen genus Pseudocyphellaria with green or blue-green
photobionts and in photosymbiodemes. Oecologia, 75 (4), 494-501.
doi:10.1007/BF00776410
Lange, O. L., Kilian, E., & Ziegler, H. (1986). Water vapor uptake and
photosynthesis of lichens: Performance differences in species with green
and blue-green algae as phycobionts. Oecologia, 71 (1), 104-110.
doi:10.1007/BF00377327
Leach, M. D., Stead, D. A., Argo, E., & Brown, A. J. P. (2011).
Identification of sumoylation targets, combined with inactivation of
SMT3, reveals the impact of sumoylation upon growth, morphology, and
stress resistance in the pathogen Candida albicans .Molecular Biology of the Cell, 22 (5), 687-702.
doi:10.1091/mbc.E10-07-0632
Légeret, B., Schulz-Raffelt, M., Nguyen, H. M., Auroy, P., Beisson, F.,
Peltier, G., Blanc, G., & Li-Beisson, Y. (2016). Lipidomic and
transcriptomic analyses of Chlamydomonas reinhardtii under heat
stress unveil a direct route for the conversion of membrane lipids into
storage lipids. Plant, Cell & Environment, 39 (4), 834-847.
doi:10.1111/pce.12656
Liang, W., Wang, L., Shi, J., Lei, X., Yang, J., Wu, S., & Chen, W.
(2014). Differential expression of antioxidant proteins in the
drought-tolerant cyanobacterium Nostoc flagelliforme under
desiccation. Plant OMICS, 7 , 205-212.
Lommen, P. W., Schwintzer, C. R., Yocum, C. S., & Gates, D. M. (1971).
A model describing photosynthesis in terms of gas diffusion and enzyme
kinetics. Planta, 98 (3), 195-220. doi:10.1007/BF00387066
Love, M., Huber, W., & Anders, S. (2014). Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome
Biology, 15 (12), 550. doi:10.1186/s13059-014-0550-8
Lu, J., Magain, N., Miądlikowska, J., Coyle, J. R., Truong, C., &
Lutzoni, F. (2018). Bioclimatic factors at an intrabiome scale are more
limiting than cyanobiont availability for the lichen-forming genusPeltigera . American Journal of Botany, 105 (7), 1198-1211.
doi:10.1002/ajb2.1119
Lu, Z., Kong, X., Lu, Z., Xiao, M., Chen, M., Zhu, L., Shen, Y., Hu, X.,
& Song, S. (2014). Para-aminobenzoic acid (PABA) synthase enhances
thermotolerance of mushroom Agaricus bisporus . PLoS one,
9 (3), e91298. doi:10.1371/journal.pone.0091298
Magain, N., & Sérusiaux, E. (2014). Do photobiont switch and cephalodia
emancipation act as evolutionary drivers in the lichen symbiosis? A case
study in the Pannariaceae (Peltigerales). PLoS one, 9 (2), e89876.
doi:10.1371/journal.pone.0089876
Martínez, I., Burgaz, A. R., Vitikainen, O., & Escudero, A. (2003).
Distribution patterns in the genus Peltigera Willd. The
Lichenologist, 35 (4), 301-323.
doi:https://doi.org/10.1016/S0024-2829(03)00041-0
Morel, M., Ngadin, A. A., Droux, M., Jacquot, J.-P., & Gelhaye, E.
(2009). The fungal glutathione S-transferase system. Evidence of new
classes in the wood-degrading basidiomycete Phanerochaete
chrysosporium . Cellular and Molecular Life Sciences, 66 (23),
3711-3725. doi:10.1007/s00018-009-0104-5
Müller, W. H., van der Krift, T. P., Krouwer, A. J., Wösten, H. A., van
der Voort, L. H., Smaal, E. B., & Verkleij, A. J. (1991). Localization
of the pathway of the penicillin biosynthesis in Penicillium
chrysogenum . The EMBO Journal, 10 (2), 489-495.
Muñoz-López, M., & García-Pérez, J. L. (2010). DNA transposons: nature
and applications in genomics. Current Genomics, 11 (2), 115-128.
doi:10.2174/138920210790886871
Nair, S., & Finkel, S. E. (2004). Dps protects cells against multiple
stresses during stationary phase. Journal of Bacteriology,
186 (13), 4192-4198. doi:10.1128/JB.186.13.4192-4198.2004
Negi, P., Rai, A. N., & Suprasanna, P. (2016). Moving through the
stressed genome: Emerging regulatory roles for transposons in plant
stress response. Frontiers in Plant Science, 7 (1448).
doi:10.3389/fpls.2016.01448
O’Brien, H. E., Miądlikowska, J., & Lutzoni, F. (2005). Assessing host
specialization in symbiotic cyanobacteria associated with four closely
related species of the lichen fungus Peltigera . European
Journal of Phycology, 40 (4), 363-378. doi:10.1080/09670260500342647
O’Brien, H. E., Miądlikowska, J., & Lutzoni, F. (2009). Assessing
reproductive isolation in highly diverse communities of the
lichen-forming fungal genus Peltigera . Evolution, 63 (8),
2076-2086. doi:https://doi.org/10.1111/j.1558-5646.2009.00685.x
Ocampo-Friedmann, R., & Friedmann, E. I. (1993). Biologically active
substances produced by antarctic cryptoendolithic fungi. Antarctic
Journal of the United States, 28 (5), 252-254.
Oei, A. L., Vriend, L. E. M., Crezee, J., Franken, N. A. P., &
Krawczyk, P. M. (2015). Effects of hyperthermia on DNA repair pathways:
one treatment to inhibit them all. Radiation Oncology, 10 (165).
doi:10.1186/s13014-015-0462-0
Onesti, S., Miller, A. D., & Brick, P. (1995). The crystal structure of
the lysyl-tRNA synthetase (LysU) from Escherichia coli .Structure, 3 (2), 163-176.
doi:https://doi.org/10.1016/S0969-2126(01)00147-2
Palmqvist, K., Dahlman, L., Jonsson, A., & Nash, T. H. (2008). The
Carbon Economy of Lichens. In T. H. Nash III (Ed.), Lichen
Biology (2 ed., pp. 182-215). Cambridge: Cambridge University Press.
Pardo-De la Hoz, C. J., Magain, N., Lutzoni, F., Goward, T., Restrepo,
S., & Miądlikowska, J. (2018). Contrasting symbiotic patterns in two
closely related lineages of trimembered lichens of the genusPeltigera . Frontiers in Microbiology, 9 (2770).
doi:10.3389/fmicb.2018.02770
Patel, P. K., & Free, S. J. (2019). The genetics and biochemistry of
cell wall structure and synthesis in Neurospora crassa , a model
filamentous fungus. Frontiers in Microbiology, 10 (2294).
doi:10.3389/fmicb.2019.02294
Pawlowski, K., & Bergman, B. (2007). Plant Symbioses withFrankia and Cyanobacteria. In H. Bothe, S. J. Ferguson, & W. E.
Newton (Eds.), Biology of the Nitrogen Cycle (pp. 165-178).
Amsterdam: Elsevier.
Peredo, E. L., & Cardon, Z. G. (2020). Shared up-regulation and
contrasting down-regulation of gene expression distinguish
desiccation-tolerant from intolerant green algae. Proceedings of
the National Academy of Sciences, 117 (29), 17438.
doi:10.1073/pnas.1906904117
Prudden, J., Perry, J. J. P., Arvai, A. S., Tainer, J. A., & Boddy, M.
N. (2009). Molecular mimicry of SUMO promotes DNA repair. Nature
Structural & Molecular Biology, 16 (5), 509-516. doi:10.1038/nsmb.1582
Purvis, O. W. (2000). Lichens . London: Natural History Museum.
Ranković, B., & Mišić, M. (2008). The antimicrobial activity of the
lichen substances of the lichens Cladonia furcata ,Ochrolechia androgyna , Parmelia caperata andParmelia conspresa . Biotechnology & Biotechnological
Equipment, 22 (4), 1013-1016. doi:10.1080/13102818.2008.10817601
Richardson, D. H. S., & Smith, D. C. (1968). Lichen physiology. X. The
isolated algal and fungal symbionts of Xanthoria aureola .New Phytologist, 67 (1), 69-77.
Richardson, D. H. S., Smith, D. C., & Lewis, D. H. (1967). Carbohydrate
movement between the symbionts of lichens. Nature, 214 (5091),
879-882. doi:10.1038/214879a0
Sakaki, K., Tashiro, K., Kuhara, S., & Mihara, K. (2003). Response of
genes associated with mitochondrial function to mild heat stress in
yeast Saccharomyces cerevisiae . The Journal of
Biochemistry, 134 (3), 373-384. doi:10.1093/jb/mvg155
Sayers, E. W., Beck, J., Brister, J. R., Bolton, E. E., Canese, K.,
Comeau, D. C., . . . Ostell, J. (2020). Database resources of the
National Center for Biotechnology Information. Nucleic Acids
Research, 48 (D1), D9-D16. doi:10.1093/nar/gkz899
Schrank, B. R., Aparicio, T., Li, Y., Chang, W., Chait, B. T.,
Gundersen, G. G., . . . Gautier, J. (2018). Nuclear ARP2/3 drives DNA
break clustering for homology-directed repair. Nature, 559 (7712),
61-66. doi:10.1038/s41586-018-0237-5
Schwendener, S. (1868). Ueber die Beziehungen zwischen Algen und
Flechtengonidien. Botanische Zeitung, 26 (18), 289-292.
Shrestha, G., & St. Clair, L. L. (2013). Lichens: a promising source of
antibiotic and anticancer drugs. Phytochemistry Reviews, 12 (1),
229-244. doi:10.1007/s11101-013-9283-7
Skult, H. (1997). Notes on the chemical and morphological variation of
the lichen Ophioparma ventosa in East Fennoscandia. Annales
Botanici Fennici, 34 (4), 291-297.
Smith, D., Muscatine, L., & Lewis, D. (1969). Carbohydrate movement
from autotrophs to heterotrophs in mutualistic symbiosis.Biological Reviews, 44 (1), 17-85.
doi:https://doi.org/10.1111/j.1469-185X.1969.tb00821.x
Smith, D. C. (1963). Studies in the physiology of lichens. IV.
Carbohydrates in Peltigera polydactyla and the utilization of
absorbed glucose. New Phytologist, 62 (2), 205-216.
Song, Y., Zhao, J., Chen, J., Luo, Q., Yang, R., Xu, J., . . . Yan, X.
(2018). Heat shock‐induced metabolic conversion of membrane lipids,
fatty acids and volatile organic compounds of Pyropia haitanensisunder different heat shock time. Phycological Research, 66 ,
89-99. doi:doi: 10.1111/pre.12206
Spribille, T., Resl, P., Stanton, D. E., & Tagirdzhanova, G. (2022).
Evolutionary biology of lichen symbioses. New Phytologist, 234 ,
1566–1582. doi:10.1111/nph.18048
Steinhäuser, S. S., Andrésson, Ó. S., Pálsson, A., & Werth, S. (2016).
Fungal and cyanobacterial gene expression in a lichen symbiosis: Effect
of temperature and location. Fungal Biology, 120 (10), 1194-1208.
doi:10.1016/j.funbio.2016.07.002
Sundberg, B., Ekblad, A., Näsholm, T., & Palmqvist, K. (1999). Lichen
respiration in relation to active time, temperature, nitrogen and
ergosterol concentrations. Functional Ecology, 13 (1), 119-125.
doi:https://doi.org/10.1046/j.1365-2435.1999.00295.x
Tarkowski, Ł. P., & Van den Ende, W. (2015). Cold tolerance triggered
by soluble sugars: a multifaceted countermeasure. Frontiers in
Plant Science, 6 (203). doi:10.3389/fpls.2015.00203
The UniProt Consortium. (2021). UniProt: the universal protein
knowledgebase in 2021. Nucleic Acids Research, 49 (D1), D480-D489.
doi:10.1093/nar/gkaa1100
Tønsberg, T., & Holtan-Hartwig, J. (1983). Phycotype pairs inNephroma , Peltigera and Lobaria in Norway.Nordic Journal of Botany, 3 (6), 681-688.
doi:https://doi.org/10.1111/j.1756-1051.1983.tb01479.x
Vančurová, L., Muggia, L., Peksa, O., Řídká, T., & Škaloud, P. (2018).
The complexity of symbiotic interactions influences the ecological
amplitude of the host: A case study in Stereocaulon (lichenized
Ascomycota). Molecular Ecology, 27 (14), 3016-3033.
doi:https://doi.org/10.1111/mec.14764
Wagner, S., Bader, M. Y., & Zotz, G. (2014). Physiological Ecology of
Tropical Bryophytes. In D. T. Hanson & S. K. Rice (Eds.),Photosynthesis in Bryophytes and Early Land Plants (pp. 269-289).
Dordrecht: Springer.
Werth, S. (2011). Biogeography and Phylogeography of Lichen Fungi and
their Photobionts. In D. Fontaneto (Ed.), Biogeography of
Microscopic Organisms. Is Everything Small Everywhere? (pp. 191-208).
Cambridge: Cambridge University Press.
Werth, S., & Sork, V. L. (2014). Ecological specialization inTrebouxia (Trebouxiophyceae) photobionts of Ramalina
menziesii (Ramalinaceae) across six range-covering ecoregions of
western North America. American Journal of Botany, 101 (7),
1127-1140. doi:https://doi.org/10.3732/ajb.1400025
Woitzik, D., Weckesser, J., & Jürgens, U. J. (1988). Isolation and
characterization of cell wall components of the unicellular
cyanobacterium Synechococcus sp. PCC 6307. Journal of
General Microbiology, 134 (3), 619-627.
doi:https://doi.org/10.1099/00221287-134-3-619
Wu, X. R., Kenzior, A., Willmot, D., Scanlon, S., Chen, Z., Topin, A., .
. . Folk, W. R. (2007). Altered expression of plant lysyl tRNA
synthetase promotes tRNA misacylation and translational recoding of
lysine. The Plant Journal, 50 (4), 627-636.
doi:https://doi.org/10.1111/j.1365-313X.2007.03076.x
Zhang, X., Wu, C., Hu, C., Li, Y., Sun, X., & Xu, N. (2020). Lipid
remodeling associated with chitooligosaccharides-induced heat tolerance
of marine macroalgae Gracilariopsis lemaneiformis . Algal
Research, 52 , 102113. doi:https://doi.org/10.1016/j.algal.2020.102113
Zhou, W., Ryan, J. J., & Zhou, H. (2004). Global analyses of sumoylated
proteins in Saccharomyces cerevisiae . Induction of protein
sumoylation by cellular stresses. The Journal of Biological
Chemistry, 279 (31), 32262-32268. doi:10.1074/jbc.M404173200