References
1. Guo X, Wang X, Zheng D, Feng D. Effect of coal consumption on the
upgrading of industrial structure. Geofluids. 2022;2022:4313175.
2. Liang S, Peng B, Liu S, et al. Low-temperature highly efficient and
selective removal of H2S over three-dimensional
Zn-Cu-based materials in an anaerobic environment. Environ Sci Technol.
2020;54(10):5964-5972.
3. Liu Q, Liu B, Liu Q, Guo S, Wu X. Probing mesoporous character,
desulfurization capability and kinetic mechanism of synergistic
stabilizing sorbent
CaxCuyMnzOi/MAS-9
in hot coal gas. J Colloid Interface Sci. 2021;587:743-754.
4. Feng Y, Lu J, Wang J, et al. Desulfurization sorbents for green and
clean coal utilization and downstream toxics reduction: A review and
perspectives. J Clean Prod. 2020;273:123080.
5. Yang H, Tatarchuk B. Novel-doped zinc oxide sorbents for low
temperature regenerable desulfurization applications. AIChE J.
2010;56(11):2898-2904.
6. Sun Y, Zhang X, Zhang M, et al. Rational design of electrospun
nanofibers for gas purification: Principles, opportunities, and
challenges. Chem Eng J. 2022;446:137099.
7. Canning G, Azzam S, Hoffman A, et al. Lanthanum induced lattice
strain improves hydrogen sulfide capacities of copper oxide adsorbents.
AIChE J. 2021;67(12):e17484.
8. Feng Y, Wen J, Hu Y, Wu B, Wu M, Mi J. Evaluation of the cycling
performance of a sorbent for H2S removal and simulation
of desulfurization-regeneration processes. Chem Eng J.
2017;326:1255-1265.
9. Luo J, Wang C, Liu J, et al. High-performance adsorptive
desulfurization by ternary hybrid boron carbon nitride aerogel. AIChE J.
2021;67(9):e17280.
10. Liu Q, Zhang Z, Liu B, Xia H. Rare earth oxide doping and synthesis
of spinel ZnMn2O4/KIT-1 with double
gyroidal mesopores for desulfurization nature of hot coal gas. Appl
Catal B-Environ. 2018;237:855-865.
11. Wu M, Li Q, Wang X, Mi J. Structure characteristics and hot-coal-gas
desulfurization properties of Zn-based sorbents supported on mesoporous
silica with different pore-arrangement patterns: A comparison study.
Energ Fuel. 2021;35(3):2456-2467.
12. Thompson J. Acid gas adsorption on zeolite SSZ-13: Equilibrium and
dynamic behavior for natural gas applications. AIChE J.
2020;66(10):e16549.
13. Zhang X, Xiong W, Peng L, Wu Y, Hu X. Highly selective absorption
separation of H2S and CO2 from
CH4 by novel azole-based protic ionic liquids. AIChE J.
2020;66(6):e16936.
14. Feng Y, Wang J, Hu Y, Lu J, Zhang M, Mi J. Microwave heating
motivated performance promotion and kinetic study of iron oxide sorbent
for coal gas desulfurization. Fuel. 2020;267:117215.
15. Armstrong M, Shi X, Shan B, Lackner K, Mu B. Rapid
CO2 capture from ambient air by sorbent-containing
porous electrospun fibers made with the solvothermal polymer additive
removal technique. AIChE J. 2019;65(1):214-220.
16. Liu R, Hou L, Yue G, et al. Progress of fabrication and applications
of electrospun hierarchically porous nanofibers. Adv Fiber Mater.
2022;4(4):604-630.
17. Bajaj B, Joh HI, Jo SM, Park JH, Yi KB, Lee S. Enhanced reactive
H2S adsorption using carbon nanofibers supported with
Cu/CuxO nanoparticles. Appl Surf Sci. 2018;429:253-257.
18. Kim S, Bajaj B, Byun CK, et al. Preparation of flexible zinc
oxide/carbon nanofiber webs for mid-temperature desulfurization. Appl
Surf Sci. 2014;320:218-224.
19. Jun J, Lee JS, Shin DH, Kim SG, Jang J. Multidimensional
MnO2 nanohair-decorated hybrid multichannel carbon
nanofiber as an electrode material for high-performance supercapacitors.
Nanoscale. 2015;7(38):16026-16033.
20. Wang L, Li X, Li Q, et al. Oriented polarization tuning broadband
absorption from flexible hierarchical ZnO arrays vertically supported on
carbon cloth. Small. 2019;15(18):1900900.
21. de Oliveira JB, Guerrini LM, Oishi SS, et al. Carbon nanofibers
obtained from electrospinning process. Mater Res Express.
2018;5(2):025602.
22. Qiu Y, Li G, Hou Y, et al. Vertically aligned carbon nanotubes on
carbon nanofibers: a hierarchical three-dimensional carbon nanostructure
for high-energy flexible supercapacitors. Chem Mater.
2015;27(4):1194-1200.
23. Hu J, Li C, Li L, et al. Phytic acid assisted preparation of
high-performance supercapacitor electrodes from noncarbonizable
polyvinylpyrrolidone. J Power Sources. 2020;448:227402.
24. Karthikeyan KK, Biji P. A novel biphasic approach for direct
fabrication of highly porous, flexible conducting carbon nanofiber mats
from polyacrylonitrile (PAN)/NaHCO3 nanocomposite.
Micropor Mesopor Mater. 2016;224:372-383.
25. Zhao Y, Lai Q, Wang Y, Zhu J, Liang Y. Interconnected hierarchically
porous Fe, N-codoped carbon nanofibers as efficient oxygen reduction
catalysts for Zn-air batteries. ACS Appl Mater Interfaces.
2017;9(19):16178-16186.
26. Kang S, Park Dh, Hwang J. Hierarchical ZnO nano-spines grown on a
carbon fiber seed layer for efficient VOC removal and airborne virus and
bacteria inactivation. J Hazard Mater. 2022;424:127262.
27. Zhang P, Shao C, Zhang Z, et al. In situ assembly of well-dispersed
Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for
catalytic reduction of 4-nitrophenol. Nanoscale. 2011
2011;3(8):3357-3363.
28. Zhang Z, Li X, Wang C, Fu S, Liu Y, Shao C. Polyacrylonitrile and
carbon nanofibers with controllable nanoporous structures by
electrospinning. Macromol Mater Eng. 2009;294(10):673-678.
29. Zhao P, Yao M, Ren H, Wang N, Komarneni S. Nanocomposites of
hierarchical ultrathin MnO2 nanosheets/hollow carbon
nanofibers for high-performance asymmetric supercapacitors. Appl Surf
Sci. 2019;463:931-938.
30. Luo D, Fei J, Zhang C, Li H, Zhang L, Huang J. Optimization of
mechanical and tribological properties of carbon fabric/resin composites
via controlling ZnO nanorods morphology. Ceram Int.
2018;44(13):15393-15401.
31. Chen H, Ding L-X, Xiao K, Dai S, Wang S, Wang H. Highly ordered
ZnMnO3 nanotube arrays from a “self-sacrificial” ZnO
template as high-performance electrodes for lithium ion batteries. J
Mater Chem A. 2016;4(42):16318-16323.
32. Li N, Wang J-Y, Liu Z-Q, et al. One-dimensional
ZnO/Mn3O4 core/shell nanorod and
nanotube arrays with high supercapacitive performance for
electrochemical energy storage. RSC Adv. 2014;4(33):17274-17281.
33. Ashoka S, Nagaraju G, Chandrappa GT. Reduction of
KMnO4 to Mn3O4 via
hydrothermal process. Mater Lett. 2010;64(22):2538-2540.
34. Tucureanu V, Matei A, Avram AM. FT-IR spectroscopy for carbon family
study. Crit Rev Anal Chem. Nov 2016;46(6):502-520.
35. Gaggiano R, De Graeve I, Mol JMC, Verbeken K, Kestens LAI, Terryn H.
An infrared spectroscopic study of sodium silicate adsorption on porous
anodic alumina. Surf Interface Anal. 2013;45(7):1098-1104.
36. Singh M, Kaur M, Sangha MK, Ubhi MK. Comparative evaluation of
manganese oxide and its graphene oxide nanocomposite as polyphenol
oxidase mimics. Mater Today Commun. 2021;27:102237.
37. Liu Z, Xing Y, Fang S, et al. Low temperature self-assembled
synthesis of hexagonal plate-shape Mn3O43D hierarchical architectures and their application in electrochemical
capacitors. RSC Adv. 2015;5(68):54867-54872.
38. Chi HZ, Tian S, Hu X, Qin H, Xi J. Direct growth of
MnO2 on carbon fiber cloth for electrochemical
capacitor. J Alloy Compd. 2014;587:354-360.
39. Yang B, Quan H, Gao J, Wang S, Wang N, Sun C. MnO nanoparticles with
cationic defects encapsulated in nitrogen-doped porous carbon for
high-performance aqueous zinc-ion batteries. J Alloy Compd.
2021;889:161680.
40. Li W, Gao X, Chen Z, et al. Electrochemically activated MnO cathodes
for high performance aqueous zinc-ion battery. Chem Eng J.
2020;402:125509.
41. Ayiania M, Smith M, Hensley AJR, Scudiero L, McEwen J-S,
Garcia-Perez M. Deconvoluting the XPS spectra for nitrogen-doped chars:
An analysis from first principles. Carbon. 2020;162:528-544.
42. Zhang J, Chu R, Chen Y, Zeng Y, Zhang Y, Guo H. Porous carbon
encapsulated Mn3O4 for stable lithium
storage and its ex-situ XPS study. Electrochimi Acta. 2019;319:518-526.
43. Zheng X, Lian Q, Zhou L, Jiang Y, Gao J. Urchin-like trimanganese
tetraoxide particles with oxidase-like activity for glutathione
detection. Colloids Surf A. 2020;606:125397.
44. Zhu S, Li L, Liu J, et al. Structural directed growth of ultrathin
parallel birnessite on beta-MnO2 for high-performance
asymmetric supercapacitors. ACS Nano. 2018;12(2):1033-1042.
45. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC.
Resolving surface chemical states in XPS analysis of first row
transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl
Surf Sci. 2011;257(7):2717-2730.
46. Gallegos MV, Peluso MA, Thomas H, Damonte LC, Sambeth JE. Structural
and optical properties of ZnO and manganese-doped ZnO. J Alloy Compd.
2016;689:416-424.
47. Amin MS, Alshareef FM, Alsaggaf WT, Zaki ZI. Employing manufactured
Mn3O4-ZnO nanocomposite for ameliorated
photocatalytic performance under visible light. Opt Mater.
2022;127:112286.
48. Wang J, Ju F, Han L, et al. Effect of activated carbon supports on
removing H2S from Coal-based gases using Mn-based
sorbents. Energ Fuel. 2015;29(2):488-495.
49. Qi K, Wang Y-Q, Rengaraj S, Al Wahaibi B, Mohamed Jahangir AR. MnS
spheres: Shape-controlled synthesis and its magnetic properties. Mater
Chem Phys. 2017;193:177-181.
50. Mariyappan V, Murugan K, Chen S-M. Solvothermal synthesis of carbon
incorporated MnS2 Spheres; high sensing performance
towards the detection of furazolidone in bio-fluids. J Alloy Compd.
2021;882:160744.
51. Pham DT, Vu TT, Kim S, et al. A versatile pyramidal hauerite anode
in congeniality diglyme-based electrolytes for boosting performance of
Li- and Na-ion Batteries. Adv Energy Mater. 2019;9(37):1900710.
52. González-Chan IJ, Oliva AI. Physicochemical analysis and
characterization of chemical bath deposited ZnS films at near ambient
temperature. J Electrochem Soc. 2016;163(8):421-427.
53. Long JW, Wallace JM, Peterson GW, Huynh K. Manganese oxide
nanoarchitectures as broad-spectrum sorbents for toxic gases. ACS Appl
Mater Interfaces. 2016;8(2):1184-1193.
54. Li Q, Wang X, Zhang R, Mi J, Wu M. Insights into the effects of
metal-ion doping on the structure and hot-coal-gas desulfurization
properties of Zn-based sorbents supported on SBA-15. Fuel.
2022;315:123198.
55. Anjum M, Kumar R, Barakat MA. Visible light driven photocatalytic
degradation of organic pollutants in wastewater and real sludge using
ZnO-ZnS/Ag2O-Ag2S nanocomposite. J
Taiwan Inst Chem E. 2017;77:227-235.