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Abstract

The recent iterative numerical method in [Kazemi, Manochehr, Amar Deep, and
Juan Nieto, ”An existence result with numerical solution of nonlinear fractional inte-
gral equations,” Mathematical Methods in the Applied Sciences (2023)] requires some
corrections, as we point out in this note. We give a counterexample to one of their main
statements (Theorem 5.1). The iterative method used is untrue, and we will correct it.
With an example, it can be seen that using the midpoint rule will not be suitable and
accurate in fractional cases (0 < τ < 1); instead, using Jacobi’s quadrature rule can
work well. Also, to show the validity of our numerical method, a non-linear example is
considered.
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1 Introduction and preliminaries
Let us briefly introduce some preliminaries and notations:

• (B, || · ||): real Banach space.

• Bρ, ∂Bρ: open ball of radius ρ > 0 with center 0, the boundary of Bρ, respectively.

• C(I) is a set of real valued continues functions on I := [0, b] ⊂ R with the uniform
norm

∥ x ∥= sup{|x(s)|, s ∈ I}, x ∈ C(I). (1)
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In [12], T : C(I) → C(I) was defined as

Tz(s) = ζ (s,Ψ1(z)(s),Ψ2(z)(s),Φ1(z)(s)) , s ∈ I, z ∈ Bρ(E), s ∈ I := [0, b], (2)

in which
Ψ1(z)(s) = f(s, z(α(s))), s ∈ I,
Ψ2(z)(s) = u(s, z(β(s))), s ∈ I,

Φ1(z)(s) =
1

Γ(τ)

∫ θ(s)

0

p(s, ξ, z(γ(ξ)))

(θ(s)− ξ)1−τ
dξ, s ∈ I, 0 < τ ≤ 1.

(3)

The goal of article [12] is to examine in order to determine fixed points of equation (2) and a
subjected iterative method to solve numerically it if the conditions are considered appropriate
for all continuous functions in (3) (refer to [12, conditions (1)-(3)]). Consequently, Kazemi
et al. [12] demonstrated the existence of a fixed point for T using Petryshyn’s theorem. For
its numerical solution, they also suggested an iterative approach based on the midpoint rule.
We shall demonstrate the falsity of Theorem 5.1 in [12] in this note, among others. We
further show that, generally speaking, the recursive connection described in [12] is untrue
since sentences in the recursion sequence cannot be calculated from previously unknown
phrases; the method can only be used in a specific situation, and the midpoint rule is not
good at all to find numerically a fixed point of equation (2) in fractional cases (0 < τ < 1);
instead, using Jacobi’s quadrature rule works well.

2 Numerical iterative method
In Section 5, Kazemi et al. [12] introduced a numerical method that is based on an iterative
procedure such that the integral term in (4) is obtained by estimating the midpoint rule as
follows: Consider a mesh ∆ with nodal points {si}ni=0 on s ∈ [0, b] as follows:

∆ : 0 = s0 < s1 < s2 < ... < sn−1 < sn = b,

where si = ih, i = 0, ...n, h = b
n

and the operator T on the ball Bρ:

Tz(s) = ζ (s, f(s,Ψ1(z)(s),Φ1(z)(s)) . (4)

Notice that the term Ψ2(z) does not exist in (4) since the method can be similarly applied
to (2). They considered the Picard sequence zM+1 = TzM as follows:

zM+1(si) = (TzM)(si) = ζ

(
si, f(si, zM(α(si))),

1

Γ(τ)

∫ θ(si)

0

p(si, ξ, zM(γ(ξ)))

(θ(si)− ξ)1−τ
dξ

)
,M = 1, 2, ...,

(5)

with arbitrary initial point z0(s) = g(s), s ∈ [0, b] and used the midpoint quadrature rule to
approximate the integrals term in (5) for points ξj = jh′, j = 0, 1, ..., n, where h′ = θ(si)

n
.∫ θ(si)

0

p(si, ξ, z(γ(ξ)))

(θ(si)− ξ)1−τ
dξ ≃θ(si)

n

n−1∑
j=0

p
(
si, ξj +

h′

2
, z(γ(ξj +

h′

2
))
)

(θ(si)−
(
ξj +

h′

2
)
)1−τ . (6)
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The combination of (5) and (6) leads to the following recursive procedure:

z̄0(si) = g(si),

z̄M(si) = ζ

(
si, f(si, z̄M−1(α(si))),

h′

Γ(τ)

n−1∑
j=0

p
(
si, ξj +

h′

2
, z̄M−1(γ(ξj +

h′

2
))
)(

θ(si)− (ξj +
h′

2
)
)1−τ

)
, (7)

where h = b
n
, si = ih, i = 0, . . . , n.

Kazemi et al. [12, Theorem 5.1] showed that the iterative method (5) is convergent on the
ball Bρ, which is not correct. More precisely, here the unknown is z, which is the fixed
point of equation (5), and they showed that the Picard sequence zM+1 converges to z. In
the next section, we discuss this theorem. Then they used the iterative sequence (7) to solve
numerically integral equation (4). It is clear that in a recursive relation, the sentences of each
step are obtained from previously known (or approximated) terms, but notice that the above
iterative formula zM(si), si = ih, i = 0, ...n, where h = b

n
is approximated from unknown

terms zM−1(α(si)) and zM−1(γ(ξj +
h′

2
))
)
, which is not applicable in practice (compare with

(10) and (14) below). More precisely, let us start with the initial value z̄0(s) = g(s), s ∈ I
(g ∈ C(I) is arbitrary, e.g., consider g = 0), then we get

z̄1(si) = ζ

(
si, f(si, z̄0(α(si))),

h′

Γ(τ)

n−1∑
j=0

p
(
si, ξj +

h′

2
, z̄0(γ(ξj +

h′

2
))
)(

θ(si)− (ξj +
h′

2
)
)1−τ

)
, i = 0, ..., n.

Now, in the iterative procedure, your data (“only”) are z̄1(si), i = 0, ..., n (see also the
algorithm in [12]). In the next step, you have to compute:

z̄2(si) = ζ

(
si, f(si, z̄1(α(si))),

h′

Γ(τ)

n−1∑
j=0

p
(
si, ξj +

h′

2
, z̄1(γ(ξj +

h′

2
))
)(

θ(si)− (ξj +
h′

2
)
)1−τ

)
, i = 0, ..., n.

How can we possibly compute z̄2(si) from the unknown terms z̄1(α(si)) and z̄1(γ(ξj +
h′

2
))?

Notice that your known data “only” are z̄1(si), i = 0, ..., n, so the iterative procedure (7)
cannot be applied in practice.
In the following, we correct this problem. Before introducing the method, it is important to
mention that this method can only be used for �Fredholm integral equations. In what follows,
we have to assume that α(t) = γ(t) = t, θ(t) = b in (5). More precisely, we want to solve
numerically the following:

z(s) = (Tz)(s) = ζ

(
s, f(s, z(s)),

1

Γ(τ)

∫ b

0

p(s, ξ, z(ξ)))

(b− ξ)1−τ
dξ

)
, s ∈ I, 0 < τ ≤ 1. (8)

In general, numerical integration is primarily concerned with the computation of numerical
values that approximate the values of definite integrals. In many cases, this value is computed
using the quadrature rule formula:∫ b

0

w(ξ)ϕ(ξ)dξ =
n∑

k=1

ωkϕ(ξk) + En(f), (9)
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where 0 ≤ ξ1 ≤ · · · ≤ ξn ≤ b are (preassigned or not) abscissas in [0, b]. This formulation has
important applications in numerical analysis, where the weights ωi and nods ξi are known
in advance. Many of these methods are assigned to nods inside the integration interval and
when w(ξ) = 1, such as Newton-Cotes rule, midpoint rule and so on. It can be combined
with (8) and (9) to obtain an iterative numerical formula in nods ξi, i = 1, . . . , n as follows:

z̄M(ξi) = ζ

(
ξi, f(ξi, z̄M−1(ξi)),

1

Γ(τ)

n∑
k=1

ωk
p(ξi, ξk, z̄M−1(ξk))

(b− ξk)1−τ

)
, i = 0, . . . , n, (10)

where z̄0(ξi) = g(ξi) be an arbitrary initial value, and for 0 < τ < 1 it cannot be possible to
use the numerical integral method (9) such that ξn = b because of the singularity in (10).
Let us examine this method in some examples. First, Example 5.3 in [12] is not correct; we
can see this below.

Example 2.1. Kazemi et al. [12] solved numerically the following nonlinear fractional inte-
gral equation:

z(s) = ψ(s) +
e−s

√
sz2(s)

1 + s2
+

e−s

5Γ(1
3
)

∫ 1

0

ξ sin(s) + 1
3
z2(ξ)

(1− ξ)
2
3

dξ, s ∈ [0, 1], (11)

where

ψ(s) = 1 +
√
s− e−s

√
s − 2

√
3e−s

75πΓ(5
6
)

(√
π3 +

405

56
Γ(

2

3
)Γ(

5

6
)

(
sin(s) +

49

54

))
,

and with the exact solution z(s) = 1 +
√
s. Let

g(s) =
e−s

√
sz2(s)

1 + s2
+

e−s

5Γ(1
3
)

∫ 1

0

ξ sin(s) + 1
3
z2(ξ)

(1− ξ)
2
3

dξ,

=
e−s

√
sz2(s)

1 + s2
+

e−s

5Γ(1
3
)
× 9e−s sin (s)

4
+

e−s

5Γ(1
3
)

∫ 1

0

1
3
z2(ξ)

(1− ξ)
2
3

dξ, s ∈ [0, 1],

then we get

ψ(0) = − 2
√
3

75πΓ(5
6
)

(√
π3 +

405

56
Γ(

2

3
)Γ(

5

6
)
49

54

)
≃ −0.2032,

and

g(0) = 1 +
1

5Γ(1
3
)

∫ 1

0

1
3
z2(ξ)

(1− ξ)
2
3

dξ ≃ 1.3326.

So z(0) ̸= g(0) + ψ(0). Also, if one puts z on (11) then one can plot the right and left-hand
sides of (11) by Matlab; Fig.1 shows the results.
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Figure 1: Graphs of left and right hand side of (11)

2.1 Using midpoint rule
In the following examples, put ∥en∥max = max{en(ξi), i = 0, 1, ..., n}, where en(ξi) =| z(ξi)−
z̄M(ξi) |, z is the exact solution and z̄M is obtained from Picard sequence (10) and the
termination condition in Matlab codes were max{|en+1(ξi) − en(ξi)|, i = 0, 1, ..., n} < 10−20.
Since Example 5.3 in [12] is not correct, we consider other cases. Notice that this method
is not applicable for the Volterra integral equation, such as Example 5.2 of [12]. Since in
general it cannot be proven that the Picard sequence converges (see Section 3), we assume that
equation (8) has a unique solution z in C(I) and that the Picard sequence zM+1 = T (zM)
converges to z. Let us consider the non-singular integral equation (when in (10) we have
τ = 1) and apply the iterative Picard sequence (10) with the midpoint rule, where in (10)
we have wi =

b
n

and ξi =
2i−1
2n
b, i = 1, . . . , n.

Example 2.2 (see [4, 13]). Consider the following non-singular Fredholm integral equation:

z(s) = −s2 − s

3
(2
√
2− 1) + 2 +

∫ 1

0

st
√
z(t)dt,

where s ∈ [0, 1]. The exact solution is given by z(s) = 2 − s2. For n = 10, 20, 30, 40, Fig. 2
summarizes the results of en(s).
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Figure 2: The graph of error functions en(s), s = 1
2n
, 3
2n
, . . . , 2n−1

2n
for n = 10, 20, 30, 40
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But the midpoint rule does not work well for the singular Fredholm integral equation. Let
us consider a simple example as follows:

Example 2.3. Consider the following singular linear Fredholm integral equation

z(s) = s− 3e−s

4Γ(1
3
)
+

1

Γ(1
3
)

∫ 1

0

e−s

3(1− t)
2
3

z(t)dt, (12)

where s ∈ [0, 1]. The exact solution is z(s) = s. For n = 10, 20, 30, 40, Fig. 3 summarizes
the results of en(s).
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Figure 3: The graph of error functions en(s), s = 1
2n
, 3
2n
, . . . , 2n−1

2n
for n = 10, 20, 30, 40
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The reason for this inaccuracy, even for a simple example, is that the mid-point rule does not
work well for integral approximating of non-smooth functions such as (1 − x)α,−1 < α < 1
(see, for instance, [9, Sec. 5.8.2] and [3]).

2.2 Using Gaussian quadrature
In this subsection, we propose Jacobi’s quadrature rule instead of the midpoint rule for
the fractional Fredholm integral equation. It is known that Gaussian quadrature is a very
powerful tool for approximating integrals. One of the most important of these methods is
Jacobi’s rule, which can be applied for approximating integrals of non-smooth functions such
as (1− x)α,−1 < α < 1. Jacobi’s weights are defined as

w(x) = (1− x)α(1 + x)β, (α, β > −1), x ∈ [−1, 1]. (13)

It is well known that ξi, i = 1, . . . , n in (9) are the zeros of Jacobi’s polynomials of degree n
(change of variable y = x+1

2
transfers zeros to interval [0, 1], and the interval [−1, 1] changes

to [0, 1]) . More details about this rule may be found in [8]. In this method, in equation (8),
consider w(x) = (1− x)−(1−τ), where in (13) we have α = −(1− τ), β = 0, then equation (8)
is solved numerically by

z̄M(ξi) = ζ

(
ξi, f(ξi, z̄M−1(ξi)),

1

Γ(τ)

n∑
k=1

ωkp(ξi, ξk, z̄M−1(ξk))

)
, i = 1, . . . , n. (14)
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where z̄0(ξi) = g(ξi) be arbitrary initial value and ξi, i = 1, . . . , n are the zeros of Jacobi’s
polynomial of degree n. Since Jacobi’s polynomials are orthogonal and (9) is exact for
polynomials of degree less than n (see [8]), wi can be calculated from the following system:

n∑
i=1

wi(ξi)
j =

∫ 1

0

(1− x)−(1−τ)xjdx, j = 0, . . . , n− 1.

Example 2.4. Let us solve equation (12) from Jacobi’s quadrature rule. An easy Matlab
code can calculate the zeros of Jacobi’s polynomials and coefficients wi for α = −(1 − τ) =
−2

3
, β = 0 and n = 10, 20. For example, for n = 10 we have

ξi =0.013926464, 0.071927637, 0.170501691, 0.300335271, 0.449132428,

0.602798417, 0.7467766, 0.86742754, 0.953318687, 0.996269028.

and

wi =0.035907187, 0.083596575, 0.131441854, 0.179613411, 0.228671065,

0.279851231, 0.335897, 0.403596938, 0.505034731, 0.816390047.

Fig.4 shows the errors en(ξi) in using equation (14)

Figure 4: The graph of errors en(ξi) for n = 10, 20

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
10-17

n=10

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
10-16

n=20

To show the validity of Jacobi’s method, let us consider a non-linear example too.
Example 2.5. Let us solve equation

z(t) = 1 +
√
s−

e−s
(
π + 10

3

)
15Γ(1

2
)

+
1

15Γ(1
2
)

∫ 1

0

e−s

(1− t)
1
2

z2(t)dt (15)

from Jacobi’s quadrature rule (14), where the exact solution is z(t) = 1+
√
s. An easy Matlab

code can calculate the zeros of Jacobi’s polynomials and coefficients wi for α = −(1 − τ) =
−1

2
, β = 0 and n = 10, 20. For example, for n = 10 we have

ξi =0.013695585, 0.070758123, 0.167828348, 0.295882708, 0.442988685,

0.595435715, 0.739014906, 0.860343759, 0.948113606, 0.994143692,
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and

wi =0.035228014, 0.08120286, 0.125344097, 0.166553483, 0.20386024,

0.236389064, 0.263377277, 0.284192219, 0.298345973, 0.305506774.

where ξi are the zeros of Jacobi’s polynomials. Fig.5 shows the errors en(ξi) in using equation
(14).

Figure 5: The graph of errors en(ξi) for n = 10, 20
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Remark 2.6. Notice that it can be proven that both equations (12) and (15) are contractions
with the metric induced by norm (1), so they have a unique solution.

3 Counterexamples
It is known that the problem of solving nonlinear functional equations, e.g., nonlinear integral
equations, can be formulated using a fixed point finding for a given nonlinear equation [10, 11].
In this section, we discuss the Leray- Schauder type map and a counterexample for [12,
Theorem 5.1].

3.1 Leray- Schauder type map and existence results
There are many existence fixed point theorems investigated by numerous mathematicians
after the Leray-Schauder theorem that can be applied to finding solutions to implicit nonlinear
functional equations such as nonlinear integral equations, boundary value problems, etc.; for
instance, see [1, 5, 6, 16, 18, 19].

Theorem 3.1 (Leray-Schauder theorem [14]). Let B be a Banach space, C a bounded, open
subset of B and 0 ∈ C. Suppose that T : C → B is a continuous, condensing map, and
assume that

T (x) ̸= λx for x ∈ ∂A and λ ∈ (1,+∞), (L-S)

holds. Then T has a fixed point in C.
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The relation (L-S) is called the Leray-Schauder boundary condition, and we say T is a Leray-
Schauder type map if T satisfies the conditions of theorem 3.1. Also, this result is due to
Petryshyn [17] with the following boundary condition, which is obviously equivalent to (L-S),
where C = Bρ

if T (z) = λz, for some z ∈ ∂Bρ, then λ ≤ 1. (P)

Conditions (1)-(2) in [12, Theorem 3.1] imply that T is a continuous and condensing map,
respectively, and conditions (3) imply that

T (Bρ) ⊆ Bρ, (16)

which is a stronger condition than (P) (see also [15, Theorem 2.1]). Sometimes it is better
to consider condition (L-S) instead of (16):
Example 3.2. Consider T : Bρ → E with ρ > 0 and

T (z)(s) = 1 + 2(s− 1)

∫ 1

0

z(t)dt (17)

It is easy to check conditions (1)-(2) in [12, Theorem 3.1] hold, where ζ(s, u1, u2, u3) = 1+u3
and u3 = 2(s− 1)

∫ 1

0
z(t)dt, then we have −2ρ ≤ u3 ≤ 2ρ and

sup{|ζ(s, u1, u2, u3)|; s ∈ [0, 1], u3 ∈ [−2ρ, 2ρ]} ≤ 1 + 2ρ ⩽̸ ρ, ∀ρ > 0.

So, it cannot be possible to verify condition (3) of [12, Theorem 3.1]. We show that (L-S)
holds. Let z = λT (z) for some z ∈ ∂B1 and λ ∈ (1,+∞). From (17) we get∫ 1

0

T (z)(s)ds =

∫ 1

0

[1 + 2(s− 1)a]ds = 1− a = λa→ a =
1

1 + λ
< 1/2

where a =
∫ 1

0
z(t)dt, equality 1− a = λa implies that a > 0 and inequality λa = 1− a < 1/2

is a contradiction, since we have 1/2 < a and a < λa = 1− a < 1/2, thus T has a fixed point
in B1. It is easy to check that the fixed point is z(s) = s, s ∈ [0, 1].

3.2 Leray-Schauder type map and counterexamples
The Banach contraction principle implies that every contraction T is a Picard operator on
a metric space, i.e., the Picard sequence zn = T n(z0), for all z0 ∈ X, converges to a unique
fixed point of T (in numerical analysis, this technique is called the successive approximation
method). Pay attention; Leray-Schauder type maps do not make a claim about the conver-
gence of the Picard sequence. Usually, in these cases, mathematicians have other suggestions
for using iteration procedures such as Kirk, Krasnoselskij, Mann, and Ishikawa, e.t.c., iter-
ation sequences (see [7, Section 6] and [2, Section 8]) to generate successive approximation
sequences and find fixed points of various classes of mappings in normed linear spaces. Un-
fortunately, Picard sequences do not converge in general, even on the real axis [19, Section
2]. Also, fixed points of Leray-Schauder type map T can be non-unique [20, Chapter 15], and
the Picard sequences may not converge (even point-wise) in Banach space C(E) (see also
[18]), specially when T is a Frehoem integral equation, e.g.:
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Example 3.3. Consider T in Example 3.2. Let z0(s) = 0, s ∈ [0, 1] then we have

z1(s) = 1, z2(s) = 2s− 1, z3(s) = 1, z4(s) = 2s− 1, . . . .

This shows that limn→+∞ zn(s) does not exist for every s ∈ [0, 1).

Kazemi et al. [12] in Theorem 5.1 assert that “under the assumptions of [12, Theorem 3.1],
the iterative method (5) is convergent on the ball Bρ”.
It is possible to construct integral equations (especially Fredholm integral equations) such
that conditions [12, Theorem 3.1-(1)-(3)] hold and Picard sequence (5) does not converge
even point-wise in C(I), e.g.:

Example 3.4. Consider T : Bρ → E with 1 ≤ ρ and

T (z)(s) = −1

4
+

|z (s)|
2

+
1

4

∫ 1

0

√
|z (t)|dt,

or

T (z)(s) = −1

4
− z (s)

2
+

1

4

∫ 1

0

√
|z (t)|dt.

It is easy to check conditions (1)-(2) in [12, Theorem 3.1], where k1 = 1
2
, k2 = 0, k3 =

k4 = 1, k5 = 0, τ = 1, p(s, t, z(γ(t))) = 1
4

√
|z (t)|, ζ(s, u1, u2, u3) = −1

4
+ 1

2
|u1| + u3 or

ζ(s, u1, u2, u3) = −1
4
− 1

2
u1 + u3 and u1 = z(s), u3 =

1
4

∫ 1

0

√
|z (t)|dt. In both cases, we have

sup

{
|ζ(s, u1, u2, u3)|; s ∈ [0, 1], u1 ∈ [−ρ, ρ], u3 ∈

[
−1

4

√
ρ,

1

4

√
ρ

]}
≤ 1

4
+

1

2
ρ+

1

4

√
ρ ≤ ρ,

thus, condition (3) of [12, Theorem 3.1] is satisfied too. Let z0(s) = 0, s ∈ [0, 1] then we have

z1(s) = −1

4
, z2(s) = 0, z3(s) = −1

4
, . . . .

Thus, limn→+∞ zn(s) does not exist for every s ∈ [0, 1].

At the end, let us mention some unjustified statements and some errors in the proof of [12,
Theorem 5.1]:

• The proof begins with this sentence: By complete induction on M ∈ N, we assume
that for all m ≤M − 1,

|zm(s)− z(s)| ≤ σ, s ∈ [0, b]. (18)

Relation (18) is the hypothesis of induction, so from induction steps it must be proved
that |zM(s) − z(s)| ≤ σ, s ∈ [0, b], which is not seen anywhere in the proof. Then,
without showing this, they have set M → ∞ and σ → 0.

11



• They showed that the following inequality holds:

|zM(s)− z(s)| = |(TzM−1)(s)− (Tz)(s)|
...

≤ k1|f(s, zM−1(α(s))− f(s, z(α(s))|

+
k3

Γ(τ)

∫ θ(s)

0

|p(s, ξ, zM−1(γ(ξ)))− p(s, ξ, z(γ(ξ)))|
(θ(s)− ξ)1−τ

dξ, (19)

...

≤ (k1k4)
M |z0(αM(s))− z(αM(s))|+ 1

1− k1k4

k3
Γ(τ + 1)

Dτω(p, σ).

(20)

Please check [12] for more details on this inequality. The comparison of relations (19)
and (20) shows that modulus of continuity ω(p, σ) in this inequality is on the third
component, while they already in the proof of Theorem 3.1 were defined as

ω(p, σ) = sup{|p(s, ξ, z)−p(s̄, ξ, z)| : |s−s̄| ≤ σ, s, s̄ ∈ Ib, ξ ∈ [0, D], z ∈ [−ρ, ρ]}, (21)

where the modulus of continuity ω(p, σ) in (21) is on the first component.
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