ORCID
Jiyun She: https://orcid.org/0000-0003-0071-1948
.
R EFERENCES
Banerjee, S., Kirkby, C.A., Schmutter, D., Bissett, A., Kirkegaard,
J.A., Richardson, A.E. (2016). Network analysis reveals functional
redundancy and keystone taxa amongst bacterial and fungal communities
during organic matter decomposition in an arable soil. Soil Biol.
Biochem 97 , 188–198.
https://doi.org/10.1016/j.soilbio.2016.03.017.
Brewer, T.E., Aronson, E.L., Arogyaswamy, K., Billings, S.A., Botthoff,
J.K., Campbell, A.N., Dove, N.C., Fairbanks, D., Gallery, R.E., Hart,
S.C., Kaye, J., King, G., Logan, G., Lohse, K.A., Maltz, M.R., Mayorga,
E., O’Neill, C., Owens, S.M., Packman, A., Pett-Ridge, J., Fierer, N.
(2019). Ecological and Genomic Attributes of Novel Bacterial Taxa
That Thrive in Subsurface Soil Horizons. mBio, 10 , e01318-19.
https://doi.org/10.1128/mBio.01318-19.
Ding, X., Zhang, B., Lü, X., Wang, J., Horwath, W.R. (2017). Parent
material and conifer biome influence microbial residue accumulation in
forest soils. Soil Biol Biochem, 107 , 1–9.
https://doi.org/10.1016/j.soilbio.2016.12.020.
Dollinger, J., Jose, S. (2018). Agroforestry for soil health.Agroforest Syst, 92 , 213–219.
https://doi.org/10.1007/s10457-018-0223-9.
Dunn, R.M., Mikola, J., Bol, R., Bardgett, R.D. (2006). Influence of
microbial activity on plant–microbial competition for organic and
inorganic nitrogen. Plant Soil, 289 , 321–334.
https://doi.org/10.1007/s11104-006-9142-z.
Eilers, K.G., Debenport, S., Anderson, S., Fierer, N. (2012). Digging
deeper to find unique microbial communities: The strong effect of depth
on the structure of bacterial and archaeal communities in soil. Soil
Biol Biochem, 50, 58–65. https://doi.org/10.1016/j.soilbio.2012.03.011.
Fierer, N., Bradford, M.A., Jackson, R.B. (2007). Toward an ecological
classification of soil bacteria. Ecology, 88, 1354–1364.
https://doi.org/10.1890/05-1839.
Gao, X., Jia, R., Xie, L., Kuang, L., Feng, L., Wan, C. (2018). A study
of the correlation between obesity and intestinal flora in school-age
children. Sci Rep, 8, 14511.
https://doi.org/10.1038/s41598-018-32730-6.
Goss-Souza, D., Mendes, L.W., Borges, C.D., Baretta, D., Tsai, S.M.,
Rodrigues, J.L.M. (2017). Soil microbial community dynamics and assembly
under long-term land use change. FEMS Microbiol Ecol, 93, fix109.
https://doi.org/10.1093/femsec/fix109.
Han, J., Sun, R., Zeng, X., Zhang, J., Xing, R., Sun, C., Chen, Y.
(2020). Rapid classification and quantification of camellia
(Camellia oleifera Abel.). oil blended with rapeseed oil using
FTIR-ATR spectroscopy. Molecules, 25, 2036.
https://doi.org/10.3390/molecules25092036.
Hartmann, M., Niklaus, P.A., Zimmermann, S., Schmutz, S., Kremer, J.,
Abarenkov, K., Lüscher, P., Widmer, F., Frey, B. (2014). Resistance and
resilience of the forest soil microbiome to logging-associated
compaction. ISME J, 8, 226–244.
https://doi.org/10.1038/ismej.2013.141.
He, H., Liu, Y., Hu, Y., Zhang, M., Wang, G., & Shen, W. (2020). Soil
Microbial Community and Its Interaction with Soil Carbon Dynamics
Following a Wetland Drying Process in Mu Us Sandy Land.International journal of environmental research and public health,
17, 4199. https://doi.org/10.3390/ijerph17124199.
He, S., Guo, L., Niu, M., Miao, F., Jiao, S., Hu, T., & Long, M.
(2017). Ecological diversity and co-occurrence patterns of bacterial
community through soil profile in response to long-term switchgrass
cultivation. Scientific reports, 7, 3608.
https://doi.org/10.1038/s41598-017-03778-7.
Hermans, S.M., Buckley, H.L., Case, B.S., Curran-Cournane, .F, Taylor,
M., Lear, G. (2017). Bacteria as emerging indicators of soil condition.Appl Environ Microbiol, 83, e02826-16.
https://doi.org/10.1128/AEM.02826-16.
Hermans, S.M., Buckley, H.L., Case, B.S., Curran-Cournane, F., Taylor,
M., Lear, G. (2020). Using soil bacterial communities to predict
physico-chemical variables and soil quality. Microbiome, 8, 79.
https://doi.org/10.1186/s40168-020-00858-1.
Jiang, C., Feng, J., Zhu, S. F., & Shui, W. (2021). Characteristics of
the Soil Microbial Communities in Different Slope Positions along an
Inverted Stone Slope in a Degraded Karst Tiankeng. Biology, 10,474. https://doi.org/10.3390/BIOLOGY10060474.
Jiao, S., Chen, W., Wang, J., Du, N., Li, Q., Wei, G. (2018). Soil
microbiomes with distinct assemblies through vertical soil profiles
drive the cycling of multiple nutrients in reforested ecosystems.Microbiome, 6, 146. https://doi.org/10.1186/s40168-018-0526-0.
Kalam, S., Basu, A., Ahmad, I., Sayyed, R.Z., El-Enshasy, H.A., Dailin,
D.J., Suriani, N.L. (2020). Recent Understanding of Soil Acidobacteria
and Their Ecological Significance: A Critical Review. Frontiers in
microbiology, 11, 580024. https://doi.org/10.3389/fmicb.2020.580024.
Khan, S., Mulvaney, R.L., Mulvaney, C.S. (1997). Accelerated diffusion
methods for inorganic-nitrogen analysis of soil extracts and water.Soil Sci. Soc. Am. J, 61, 936–942.
https://doi.org/10.2136/sssaj1997.03615995006100030032x.
Kielak, A.M., Barreto, C.C., Kowalchuk, G.A., van Veen, J.A., Kuramae,
E.E. (2016). The ecology of Acidobacteria: moving beyond genes and
genomes. Front Microbiol, 7, 744.
https://doi.org/10.3389/fmicb.2016.00744.
Krishnamoorthy, U., Muscato, T.V., Sniffen, C.J., Van Soest, P.J.
(1982). Nitrogen fractions in selected feedstuffs. J Dairy Sci 65,
217–225. https://doi.org/10.3168/jds.S0022-0302(82)82180-2.
Kroon, J., Bergsten, U., Sonesson, J. (2019). Increasing production
value in Scots pine plantation through mixing with lodgepole pine.Scan J For Res, 34, 689–698.
https://doi.org/10.1080/02827581.2019.1695909.
Kuske, C.R., Ticknor, L.O., Miller, M.E., Dunbar, J.M., Davis, J.A.,
Barns, S.M., Belnap, J. (2002). Comparison of soil bacterial communities
in rhizospheres of three plant species and the interspaces in an arid
grassland. Appl Environ Microbiol, 68, 1854–1863.
https://doi.org/10.1128/aem.68.4.1854-1863.2002.
Lee, H. J., Jeong, S. E., Kim, P. J., Madsen, E. L., & Jeon, C. O.
(2015). High resolution depth distribution of Bacteria, Archaea,
methanotrophs, and methanogens in the bulk and rhizosphere soils of a
flooded rice paddy. Frontiers in microbiology, 6, 639.
https://doi.org/10.3389/fmicb.2015.00639.
Li, J., Wu, Z., Yuan, J. (2019). Impact of agro-farming activities on
microbial diversity of acidic red soils in a Camellia oleiferaforest. Rev Bras Ciênc Solo, 43, e0190044.
https://doi.org/10.1590/18069657rbcs20190044.
Li, R., Kan, S., Zhu, M., Chen, J., Ai, X., Chen, Z., Zhang, J., Ai, Y.
(2018). Effect of different vegetation restoration types on fundamental
parameters, structural characteristics and the soil quality index of
artificial soil. Soil Till Res, 184, 11–23. https://doi.org/
10.1016/j.still.2018.06.010 .
Liu, Z., Jia, G., Yu, X. (2020). Variation of water uptake in
degradation agroforestry shelterbelts on the North China Plain.Agric Ecosys Environ, 287, 106697.
https://doi.org/10.1016/j.agee.2019.106697.
Lu, W., Shen, X., Chen, Y. (2019). Effects of intercropping peanut on
soil nutrient status and microbial activity within young Camellia
oleifera plantation. Comm Soil Sci Plant Anal, 50, 1232–1238.
https://doi.org/10.1080/00103624.2019.1614600.
McGonigle, J.M., Lang, S.Q., Brazelton, W.J. (2020). Genomic Evidence
for Formate Metabolism by Chloroflexi as the Key to Unlocking
Deep Carbon in Lost City Microbial Ecosystems. Applied and
environmental microbiology, 86, e02583-19.
https://doi.org/10.1128/AEM.02583-19.
Mitchell, R.J., Hester, A.J., Campbell, C.D., Chapman, S.J., Cameron,
C.M., Hewison, R.L., Potts, J.M. (2010). Is vegetation composition or
soil chemistry the best predictor of the soil microbial community?Plant Soil, 333, 417–430.
http://dx.doi.org/10.1007/s11104-010-0357-7.
Mosquera-Losada, M.R., Santiago-Freijanes, J.J., Rois-Díaz, M., Moreno,
G., den Herder, M., Aldrey-Vázquez, J.A., Ferreiro-Domínguez, N.,
Pantera, A., Pisanelli, A., Rigueiro-Rodríguez, A. (2018). Agroforestry
in Europe: A land management policy tool to combat climate change.Land Use Policy, 78, 603–613.
https://doi.org/10.1016/j.landusepol.2018.06.052.
Sunil, M., Janne K.O., Morgado L.N., Kristian K.A., Yngvild, R., Hvard,
K. (2021). Soil depth matters: shift in composition and inter-kingdom
co-occurrence patterns of microorganisms in forest soils. FEMS
microbiology ecology, 97, fiab022. https://doi.org/
10.1093/femsec/fiab022/6129799.
Müller, D.B., Vogel, C., Bai, Y., Vorholt, J.A. (2016). The plant
microbiota: systems-level insights and perspectives. Annu Rev
Genet, 50, 211–234.
https://doi.org/10.1146/annurev-genet-120215-034952.
Nacke, H., Goldmann, K., Schöning, I., Pfeiffer, B., Kaiser, K.,
Castillo-Villamizar, G.A., Schrumpf, M., Buscot, F., Daniel, R., Wubet,
T. (2016). Fine spatial scale variation of soil microbial communities
under European beech and Norway spruce. Front Microbiol, 7, 2067.
https://doi.org/10.3389/fmicb.2016.02067.
Neilson, J.W., Quade, J., Ortiz, M., Nelson, W.M., Legatzki, A., Tain,
F., LaComb, M., Betancour, J.L., Wing, R.A., Soderlund, C.A., Maier,
R.M.(2012). Life at the hyperarid margin: novel bacterial diversity in
arid soils of the Atacama Desert, Chile. Extremophiles, 16,553–566. https://doi.org/10.1007/s00792-012-0454-z.
Noble, A.S., Noe, S., Clearwater, M.J., Lee, C.K. (2020). A core
phyllosphere microbiome exists across distant populations of a tree
species indigenous to New Zealand. PLoS One, 15, e0237079.
https://doi.org/10.1371/journal.pone.0237079.
Prober, S.M., Leff, J.W., Bates, S.T., Borer, E.T., Firn, J., Harpole,
S., Lind, E.M., Seabloom, E.W., Adler, P.B., Bakker, J.D., Cleland,
E.E., DeCrappeo, N.M., DeLorenze, E., Hagenah, N., Hautier, Y.,
Hofmockel, K.S., Kirkman, K.P., Knops, J.M.H., La Pierre, K.J.,
MacDougall, A.S., McCulley, R.L., Mitchell, C.E., Risch, A.C., Schutez,
M., Stevens, C.J., Williams, R.J., Fierer, N. (2015). Plant diversity
predicts beta but not alpha diversity of soil microbes across grasslands
worldwide. Ecol Lett, 18, 85–95.
https://doi.org/10.1111/ele.12381.
Quandt, A., Neufeldt, H., McCabe, J.T. (2019). Building livelihood
resilience: what role does agroforestry play? Clim Dev, 11,485–500. https://doi.org/10.1080/17565529.2018.1447903.
Schulz, E. (2002). Influence of extreme management on decomposable soil
organic matter pool. Arch. Agron. Soil Sci, 48, 101–105.
https://doi.org/10.1080/03650340214166.
Sheng, Y., Cong, J., Lu, H., Yan., L., Liu, Q., Li, D., Zhang, Y.
(2019). Broad-leaved forest types affect soil fungal community structure
and soil organic carbon contents. Microbiology Open, 8, e874.
https://doi.org/10.1002/mbo3.874.
Six, J., Bossuyt, H., Degryze, S., Denef, K. (2004). A history of
research on the link between (micro)aggregates, soil biota, and soil
organic matter dynamics. Soil Till Res, 79, 7–31.
https://doi.org/10.1016/j.still.2004.03.008.
Sun, Q., Wang, R., Hu, Y., Yao, L., Guo, S. (2018). Spatial variations
of soil respiration and temperature sensitivity along a steep slope of
the semiarid Loess Plateau. PloS one,13, e0195400.
https://doi.org/10.1371/journal.pone.0195400.
Tobias-Hünefeldt, S.P., Wing, S.R., Espinel-Velasco, N., Baltar, F.,
Morales, S.E. (2019). Depth and location influence prokaryotic and
eukaryotic microbial community structure in New Zealand fjords.Sci Total Environ, 693, 133507.
https://doi.org/10.1016/j.scitotenv.2019.07.313.
Tu, J., Chen, J., Zhou, J., Ai, W., Chen, L. (2019). Plantation quality
assessment of Camellia oleifera in mid-subtropical China.Soil Till Res, 186, 249–258.
https://doi.org/10.1016/j.still.2018.10.023.
Van der Heijden, M.G., Streitwolf-Engel, R., Riedl, R., Siegrist, S.,
Neudecker, A., Ineichen, K., Boller, T., Wiemken, A., Sanders, I.R.
(2006). The mycorrhizal contribution to plant productivity, plant
nutrition and soil structure in experimental grassland. New
Phytol, 172, 739–752.
https://doi.org/10.1111/j.1469-8137.2006.01862.x.
Wang, J., Soininen, J., Zhang, Y., Wang, B., Yang, X., Shen, J. (2011).
Contrasting patterns in elevational diversity between microorganisms and
macroorganisms. J. Biogeogr, 38, 595–603.
https://doi.org/10.1111/j.1365-2699.2010.02423.x.
Wang, W., Zhong, Z., Wang, Q., Wang, H., Fu, Y., He, X. (2017). Glomalin
contributed more to carbon, nutrients in deeper soils, and differently
associated with climates and soil properties in vertical profiles.Scientific reports, 7, 13003.
https://doi.org/10.1038/s41598-017-12731-7.
Ward, N.L., Challacombe, J.F., Janssen, P.H., Henrissat, B., Coutinho,
P.M., Wu, M., Xie, G., Haft, D.H., Sait, M., Badger, J., Barabote, R.D.,
Bradley, B., Brettin, T.S., Brinkac, L.M., Bruce, D., Creasy, T.,
Daugherty, S.C., Davidsen, T.M., DeBoy, R.T., Detter, J.C., Dodson,
R.J., Durkin, A.S., Ganapathy, A., Gwinn-Giglio, M., Han, C.S., Khouri,
H., Kiss, H., Kothari, S.P., Madupu, R., Nelson, K.E., Nelson, W.C.,
Paulsen, I., Penn, K., Ren, Q., Rosovitz, M.J., Selengut, J.D.,
Shrivastava, S., Sullivan, S.A., Tapia, R., Thompson, L.S., Watkins,
K.L., Yang, Q., Yu, C., Zafar, N., Zhous, L., Kuske, C.R.. (2009). Three
genomes from the phylum Acidobacteria provide insight into the
lifestyles of these microorganisms in soils. Appl. Environ.
Microbiol, 75, 2046–2056. https://doi.org/10.1128/AEM.02294-08.
Wu, F., Li, J., Chen, Y., Zhang, L., Zhang, Y., Wang, S., Shi, X., Li,
L., Liang, J. (2019). Effects of phosphate solubilizing bacteria on the
growth, photosynthesis, and nutrient uptake of Camellia oleiferaAbel. Forests, 10, 348. https://doi.org/10.3390/f10040348.
Xiao, S., He, Y. (2019). Application of near-infrared spectroscopy and
multiple spectral algorithms to explore the effect of soil particle
sizes on soil nitrogen detection. Molecules, 24, 2486.
https://doi.org/10.3390/molecules24132486.
Zhalnina, K., Dias, R., Dörr de Quadros, P., Davis-Richardson, A.,
Camargo, F.A.O., Clark. I.M., McGrath, S.P., Hirsch, P.R., Triplett,
E.W. (2015). Soil pH determines microbial diversity and composition in
the park grass experiment. Microb Ecol, 69, 395–406.
https://doi.org/10.1007/s00248-014-0530-2.
Zhang, L., Shen, T., Cheng, Y., Zhao, T., Li, L., Qi, P. (2020a).
Temporal and spatial variations in the bacterial community composition
in Lake Bosten, a large, brackish lake in China. Scientific
reports, 10 , 304. https://doi.org/10.1038/s41598-019-57238-5.
Zhang, P., Cui, Z., Guo, M., Xi, R. (2020b). Characteristics of the soil
microbial community in the forestland of camellia oleifera.PeerJ, 8, 9117.
https://doi.org/10.7717/peerj.9117.
Zhang, Y., Hou, L., Li, Z., Zhao, D., Song, L., Shao, G., Ai, J.J., Sun,
Q. (2020c). Leguminous supplementation increases the resilience of soil
microbial community and nutrients in Chinese fir plantations. Sci
Total Environ, 703, 134917.
https://doi.org/10.1016/j.scitotenv.2019.134917.