ORCID
Jiyun She: https://orcid.org/0000-0003-0071-1948
.
R EFERENCES
Banerjee, S., Kirkby, C.A., Schmutter, D., Bissett, A., Kirkegaard, J.A., Richardson, A.E. (2016). Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem 97 , 188–198. https://doi.org/10.1016/j.soilbio.2016.03.017.
Brewer, T.E., Aronson, E.L., Arogyaswamy, K., Billings, S.A., Botthoff, J.K., Campbell, A.N., Dove, N.C., Fairbanks, D., Gallery, R.E., Hart, S.C., Kaye, J., King, G., Logan, G., Lohse, K.A., Maltz, M.R., Mayorga, E., O’Neill, C., Owens, S.M., Packman, A., Pett-Ridge, J., Fierer, N. (2019). Ecological and Genomic Attributes of Novel Bacterial Taxa That Thrive in Subsurface Soil Horizons. mBio, 10 , e01318-19. https://doi.org/10.1128/mBio.01318-19.
Ding, X., Zhang, B., Lü, X., Wang, J., Horwath, W.R. (2017). Parent material and conifer biome influence microbial residue accumulation in forest soils. Soil Biol Biochem, 107 , 1–9. https://doi.org/10.1016/j.soilbio.2016.12.020.
Dollinger, J., Jose, S. (2018). Agroforestry for soil health.Agroforest Syst, 92 , 213–219. https://doi.org/10.1007/s10457-018-0223-9.
Dunn, R.M., Mikola, J., Bol, R., Bardgett, R.D. (2006). Influence of microbial activity on plant–microbial competition for organic and inorganic nitrogen. Plant Soil, 289 , 321–334. https://doi.org/10.1007/s11104-006-9142-z.
Eilers, K.G., Debenport, S., Anderson, S., Fierer, N. (2012). Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol Biochem, 50, 58–65. https://doi.org/10.1016/j.soilbio.2012.03.011.
Fierer, N., Bradford, M.A., Jackson, R.B. (2007). Toward an ecological classification of soil bacteria. Ecology, 88, 1354–1364. https://doi.org/10.1890/05-1839.
Gao, X., Jia, R., Xie, L., Kuang, L., Feng, L., Wan, C. (2018). A study of the correlation between obesity and intestinal flora in school-age children. Sci Rep, 8, 14511. https://doi.org/10.1038/s41598-018-32730-6.
Goss-Souza, D., Mendes, L.W., Borges, C.D., Baretta, D., Tsai, S.M., Rodrigues, J.L.M. (2017). Soil microbial community dynamics and assembly under long-term land use change. FEMS Microbiol Ecol, 93, fix109. https://doi.org/10.1093/femsec/fix109.
Han, J., Sun, R., Zeng, X., Zhang, J., Xing, R., Sun, C., Chen, Y. (2020). Rapid classification and quantification of camellia (Camellia oleifera Abel.). oil blended with rapeseed oil using FTIR-ATR spectroscopy. Molecules, 25, 2036. https://doi.org/10.3390/molecules25092036.
Hartmann, M., Niklaus, P.A., Zimmermann, S., Schmutz, S., Kremer, J., Abarenkov, K., Lüscher, P., Widmer, F., Frey, B. (2014). Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J, 8, 226–244. https://doi.org/10.1038/ismej.2013.141.
He, H., Liu, Y., Hu, Y., Zhang, M., Wang, G., & Shen, W. (2020). Soil Microbial Community and Its Interaction with Soil Carbon Dynamics Following a Wetland Drying Process in Mu Us Sandy Land.International journal of environmental research and public health, 17, 4199. https://doi.org/10.3390/ijerph17124199.
He, S., Guo, L., Niu, M., Miao, F., Jiao, S., Hu, T., & Long, M. (2017). Ecological diversity and co-occurrence patterns of bacterial community through soil profile in response to long-term switchgrass cultivation. Scientific reports, 7, 3608. https://doi.org/10.1038/s41598-017-03778-7.
Hermans, S.M., Buckley, H.L., Case, B.S., Curran-Cournane, .F, Taylor, M., Lear, G. (2017). Bacteria as emerging indicators of soil condition.Appl Environ Microbiol, 83, e02826-16. https://doi.org/10.1128/AEM.02826-16.
Hermans, S.M., Buckley, H.L., Case, B.S., Curran-Cournane, F., Taylor, M., Lear, G. (2020). Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome, 8, 79. https://doi.org/10.1186/s40168-020-00858-1.
Jiang, C., Feng, J., Zhu, S. F., & Shui, W. (2021). Characteristics of the Soil Microbial Communities in Different Slope Positions along an Inverted Stone Slope in a Degraded Karst Tiankeng. Biology, 10,474. https://doi.org/10.3390/BIOLOGY10060474.
Jiao, S., Chen, W., Wang, J., Du, N., Li, Q., Wei, G. (2018). Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems.Microbiome, 6, 146. https://doi.org/10.1186/s40168-018-0526-0.
Kalam, S., Basu, A., Ahmad, I., Sayyed, R.Z., El-Enshasy, H.A., Dailin, D.J., Suriani, N.L. (2020). Recent Understanding of Soil Acidobacteria and Their Ecological Significance: A Critical Review. Frontiers in microbiology, 11, 580024. https://doi.org/10.3389/fmicb.2020.580024.
Khan, S., Mulvaney, R.L., Mulvaney, C.S. (1997). Accelerated diffusion methods for inorganic-nitrogen analysis of soil extracts and water.Soil Sci. Soc. Am. J, 61, 936–942. https://doi.org/10.2136/sssaj1997.03615995006100030032x.
Kielak, A.M., Barreto, C.C., Kowalchuk, G.A., van Veen, J.A., Kuramae, E.E. (2016). The ecology of Acidobacteria: moving beyond genes and genomes. Front Microbiol, 7, 744. https://doi.org/10.3389/fmicb.2016.00744.
Krishnamoorthy, U., Muscato, T.V., Sniffen, C.J., Van Soest, P.J. (1982). Nitrogen fractions in selected feedstuffs. J Dairy Sci 65, 217–225. https://doi.org/10.3168/jds.S0022-0302(82)82180-2.
Kroon, J., Bergsten, U., Sonesson, J. (2019). Increasing production value in Scots pine plantation through mixing with lodgepole pine.Scan J For Res, 34, 689–698. https://doi.org/10.1080/02827581.2019.1695909.
Kuske, C.R., Ticknor, L.O., Miller, M.E., Dunbar, J.M., Davis, J.A., Barns, S.M., Belnap, J. (2002). Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl Environ Microbiol, 68, 1854–1863. https://doi.org/10.1128/aem.68.4.1854-1863.2002.
Lee, H. J., Jeong, S. E., Kim, P. J., Madsen, E. L., & Jeon, C. O. (2015). High resolution depth distribution of Bacteria, Archaea, methanotrophs, and methanogens in the bulk and rhizosphere soils of a flooded rice paddy. Frontiers in microbiology, 6, 639. https://doi.org/10.3389/fmicb.2015.00639.
Li, J., Wu, Z., Yuan, J. (2019). Impact of agro-farming activities on microbial diversity of acidic red soils in a Camellia oleiferaforest. Rev Bras Ciênc Solo, 43, e0190044. https://doi.org/10.1590/18069657rbcs20190044.
Li, R., Kan, S., Zhu, M., Chen, J., Ai, X., Chen, Z., Zhang, J., Ai, Y. (2018). Effect of different vegetation restoration types on fundamental parameters, structural characteristics and the soil quality index of artificial soil. Soil Till Res, 184, 11–23. https://doi.org/ 10.1016/j.still.2018.06.010 .
Liu, Z., Jia, G., Yu, X. (2020). Variation of water uptake in degradation agroforestry shelterbelts on the North China Plain.Agric Ecosys Environ, 287, 106697. https://doi.org/10.1016/j.agee.2019.106697.
Lu, W., Shen, X., Chen, Y. (2019). Effects of intercropping peanut on soil nutrient status and microbial activity within young Camellia oleifera plantation. Comm Soil Sci Plant Anal, 50, 1232–1238. https://doi.org/10.1080/00103624.2019.1614600.
McGonigle, J.M., Lang, S.Q., Brazelton, W.J. (2020). Genomic Evidence for Formate Metabolism by Chloroflexi as the Key to Unlocking Deep Carbon in Lost City Microbial Ecosystems. Applied and environmental microbiology, 86, e02583-19. https://doi.org/10.1128/AEM.02583-19.
Mitchell, R.J., Hester, A.J., Campbell, C.D., Chapman, S.J., Cameron, C.M., Hewison, R.L., Potts, J.M. (2010). Is vegetation composition or soil chemistry the best predictor of the soil microbial community?Plant Soil, 333, 417–430. http://dx.doi.org/10.1007/s11104-010-0357-7.
Mosquera-Losada, M.R., Santiago-Freijanes, J.J., Rois-Díaz, M., Moreno, G., den Herder, M., Aldrey-Vázquez, J.A., Ferreiro-Domínguez, N., Pantera, A., Pisanelli, A., Rigueiro-Rodríguez, A. (2018). Agroforestry in Europe: A land management policy tool to combat climate change.Land Use Policy, 78, 603–613. https://doi.org/10.1016/j.landusepol.2018.06.052.
Sunil, M., Janne K.O., Morgado L.N., Kristian K.A., Yngvild, R., Hvard, K. (2021). Soil depth matters: shift in composition and inter-kingdom co-occurrence patterns of microorganisms in forest soils. FEMS microbiology ecology, 97, fiab022. https://doi.org/ 10.1093/femsec/fiab022/6129799.
Müller, D.B., Vogel, C., Bai, Y., Vorholt, J.A. (2016). The plant microbiota: systems-level insights and perspectives. Annu Rev Genet, 50, 211–234. https://doi.org/10.1146/annurev-genet-120215-034952.
Nacke, H., Goldmann, K., Schöning, I., Pfeiffer, B., Kaiser, K., Castillo-Villamizar, G.A., Schrumpf, M., Buscot, F., Daniel, R., Wubet, T. (2016). Fine spatial scale variation of soil microbial communities under European beech and Norway spruce. Front Microbiol, 7, 2067. https://doi.org/10.3389/fmicb.2016.02067.
Neilson, J.W., Quade, J., Ortiz, M., Nelson, W.M., Legatzki, A., Tain, F., LaComb, M., Betancour, J.L., Wing, R.A., Soderlund, C.A., Maier, R.M.(2012). Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles, 16,553–566. https://doi.org/10.1007/s00792-012-0454-z.
Noble, A.S., Noe, S., Clearwater, M.J., Lee, C.K. (2020). A core phyllosphere microbiome exists across distant populations of a tree species indigenous to New Zealand. PLoS One, 15, e0237079. https://doi.org/10.1371/journal.pone.0237079.
Prober, S.M., Leff, J.W., Bates, S.T., Borer, E.T., Firn, J., Harpole, S., Lind, E.M., Seabloom, E.W., Adler, P.B., Bakker, J.D., Cleland, E.E., DeCrappeo, N.M., DeLorenze, E., Hagenah, N., Hautier, Y., Hofmockel, K.S., Kirkman, K.P., Knops, J.M.H., La Pierre, K.J., MacDougall, A.S., McCulley, R.L., Mitchell, C.E., Risch, A.C., Schutez, M., Stevens, C.J., Williams, R.J., Fierer, N. (2015). Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol Lett, 18, 85–95. https://doi.org/10.1111/ele.12381.
Quandt, A., Neufeldt, H., McCabe, J.T. (2019). Building livelihood resilience: what role does agroforestry play? Clim Dev, 11,485–500. https://doi.org/10.1080/17565529.2018.1447903.
Schulz, E. (2002). Influence of extreme management on decomposable soil organic matter pool. Arch. Agron. Soil Sci, 48, 101–105. https://doi.org/10.1080/03650340214166.
Sheng, Y., Cong, J., Lu, H., Yan., L., Liu, Q., Li, D., Zhang, Y. (2019). Broad-leaved forest types affect soil fungal community structure and soil organic carbon contents. Microbiology Open, 8, e874. https://doi.org/10.1002/mbo3.874.
Six, J., Bossuyt, H., Degryze, S., Denef, K. (2004). A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till Res, 79, 7–31. https://doi.org/10.1016/j.still.2004.03.008.
Sun, Q., Wang, R., Hu, Y., Yao, L., Guo, S. (2018). Spatial variations of soil respiration and temperature sensitivity along a steep slope of the semiarid Loess Plateau. PloS one,13, e0195400. https://doi.org/10.1371/journal.pone.0195400.
Tobias-Hünefeldt, S.P., Wing, S.R., Espinel-Velasco, N., Baltar, F., Morales, S.E. (2019). Depth and location influence prokaryotic and eukaryotic microbial community structure in New Zealand fjords.Sci Total Environ, 693, 133507. https://doi.org/10.1016/j.scitotenv.2019.07.313.
Tu, J., Chen, J., Zhou, J., Ai, W., Chen, L. (2019). Plantation quality assessment of Camellia oleifera in mid-subtropical China.Soil Till Res, 186, 249–258. https://doi.org/10.1016/j.still.2018.10.023.
Van der Heijden, M.G., Streitwolf-Engel, R., Riedl, R., Siegrist, S., Neudecker, A., Ineichen, K., Boller, T., Wiemken, A., Sanders, I.R. (2006). The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol, 172, 739–752. https://doi.org/10.1111/j.1469-8137.2006.01862.x.
Wang, J., Soininen, J., Zhang, Y., Wang, B., Yang, X., Shen, J. (2011). Contrasting patterns in elevational diversity between microorganisms and macroorganisms. J. Biogeogr, 38, 595–603. https://doi.org/10.1111/j.1365-2699.2010.02423.x.
Wang, W., Zhong, Z., Wang, Q., Wang, H., Fu, Y., He, X. (2017). Glomalin contributed more to carbon, nutrients in deeper soils, and differently associated with climates and soil properties in vertical profiles.Scientific reports, 7, 13003. https://doi.org/10.1038/s41598-017-12731-7.
Ward, N.L., Challacombe, J.F., Janssen, P.H., Henrissat, B., Coutinho, P.M., Wu, M., Xie, G., Haft, D.H., Sait, M., Badger, J., Barabote, R.D., Bradley, B., Brettin, T.S., Brinkac, L.M., Bruce, D., Creasy, T., Daugherty, S.C., Davidsen, T.M., DeBoy, R.T., Detter, J.C., Dodson, R.J., Durkin, A.S., Ganapathy, A., Gwinn-Giglio, M., Han, C.S., Khouri, H., Kiss, H., Kothari, S.P., Madupu, R., Nelson, K.E., Nelson, W.C., Paulsen, I., Penn, K., Ren, Q., Rosovitz, M.J., Selengut, J.D., Shrivastava, S., Sullivan, S.A., Tapia, R., Thompson, L.S., Watkins, K.L., Yang, Q., Yu, C., Zafar, N., Zhous, L., Kuske, C.R.. (2009). Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbiol, 75, 2046–2056. https://doi.org/10.1128/AEM.02294-08.
Wu, F., Li, J., Chen, Y., Zhang, L., Zhang, Y., Wang, S., Shi, X., Li, L., Liang, J. (2019). Effects of phosphate solubilizing bacteria on the growth, photosynthesis, and nutrient uptake of Camellia oleiferaAbel. Forests, 10, 348. https://doi.org/10.3390/f10040348.
Xiao, S., He, Y. (2019). Application of near-infrared spectroscopy and multiple spectral algorithms to explore the effect of soil particle sizes on soil nitrogen detection. Molecules, 24, 2486. https://doi.org/10.3390/molecules24132486.
Zhalnina, K., Dias, R., Dörr de Quadros, P., Davis-Richardson, A., Camargo, F.A.O., Clark. I.M., McGrath, S.P., Hirsch, P.R., Triplett, E.W. (2015). Soil pH determines microbial diversity and composition in the park grass experiment. Microb Ecol, 69, 395–406. https://doi.org/10.1007/s00248-014-0530-2.
Zhang, L., Shen, T., Cheng, Y., Zhao, T., Li, L., Qi, P. (2020a). Temporal and spatial variations in the bacterial community composition in Lake Bosten, a large, brackish lake in China. Scientific reports, 10 , 304. https://doi.org/10.1038/s41598-019-57238-5.
Zhang, P., Cui, Z., Guo, M., Xi, R. (2020b). Characteristics of the soil microbial community in the forestland of camellia oleifera.PeerJ, 8, 9117. https://doi.org/10.7717/peerj.9117.
Zhang, Y., Hou, L., Li, Z., Zhao, D., Song, L., Shao, G., Ai, J.J., Sun, Q. (2020c). Leguminous supplementation increases the resilience of soil microbial community and nutrients in Chinese fir plantations. Sci Total Environ, 703, 134917. https://doi.org/10.1016/j.scitotenv.2019.134917.