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Abstract

This paper is concerned with the formation control problem for a class of large-scale mobile
sensor networks. The dynamic of mobile sensors are modeled by class of semilinear parabolic
system, which is a class of partial differential equation(PDE) and has rich geometric family. In
this model, the communication topology of agents is a chain graph and fixed. Leader feedback
laws which designed in a manner to the boundary control of semilinear parabolic system allow
the mobile sensors stable deployment onto planar curves. By constructing appropriate Lyapunov
functional and using linear matrix inequality, several sufficient criteria are derived ensuring the
mobile sensor networks to be globally asymptotically stable at the equilibrium. A simulation
example is provided to demonstrate the usefulness of the proposed formation control scheme.
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1. Introduction

Wireless sensor networks (WSNs) consist of a collection of sensing devices which are connect-
ed by wireless communication. A number of sensor nodes are connected in self-organized way,
and collect information accurately. With the rapidly development of micro-electro-mechanical
systems, sensor nodes have lower price and smaller volume than before. In the past few years,
WSNs have been extensively studied and applied in military and civilian[1−2]. Especially, the
capabilities of WSNs can be greatly expanded in the case of endowing nodes with mobility using
mobile robots. The use of mobile sensor networks brings reduction in power consumption and
costs, improved performance. Many successful applications of mobile sensor networks include
environmental monitoring[3−4], target tracking[5−8], formation control[9−10], and other areas.
These applications exploit mobile sensing nodes to collect information more effectively by the
network. Therefore, the investigation on the cooperative control of mobile sensor networks is
very important. Since a stable control scheme for mobile sensors to move cooperatively in a
distributed environment is presented in [11]. A gradient climbing task in which mobile sensor
networks can adapt its configuration in response to the measured environment. In [12], three
distributed stable deployment algorithms based on flocking in mobile sensor networks are ad-
dressed. Also, from the view of swarm, control problem of wireless sensor networks with mobile
multi-robots is discussed in [13-14]. And, formation control of mobile sensor networks has been
investigated intensively. Leader-following formation control of unicycle robots is studied in [15],
and a distributed nonlinear controller is proposed. A geometrical pathway in cone method is
studied to achieve the formation effectively in [16]. Stabilization of geometric pattern based on
Laplacian are considered in [9,10,17]. A behavior-based approach for formation maneuvers is
achieved in [18], and quantized coordination algorithms are proposed in [19] for agents’ deploy-
ment and rendezvous. Distributed robust H∞ rotating consensus problem is presented in [20],
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where second-order multi-agent system with mixed uncertainties and time-delay. Deployment
onto a desired planar curve is investigated in [21] and [22] using coverage control algorithms
and Lie group setting, respectively.

However, with the number of agent increases, the mobile sensor network would expose
a continuity of system. That is to say a large number of agents is a continuum instead of
particle group. In this case, the large-scale mobile sensor network can be modeled as partial
differential equation(PDE). For the past few years, the research of multi-agent begin to analysis
by PDEs[23−26]. In [23], the planar formation problem was solved by Liouville equation. By
using a linear hyperbolic system, the stability of vehicular platoons was analyzed in [25]. A
linear reaction-advection-diffusion equation as a efficient model was used in deployment onto
planar curves in [26]. Moreover, the partial difference equation(PdE)[27−28] can be studied for
Laplacian control in this viewpoint. It should be pointed out that the PDE-baesd model for
formation control of mobile sensor networks still has little research attention.

It is, therefore, the main focus of this paper to discuss the formation control problem for
an array of large-scale mobile sensor networks using a PDE-based model. We present a frame-
work for mobile sensors deployment onto family of planar geometric curves. The dynamic of
mobile sensors are modeled by semilinear parabolic system, which treat the mobile sensors as a
continuum. Such a framework which implies the communication topology of agents is a chain
graph and fixed. Hence, stable formation onto planar curves can be achieved by two boundary
agents, which restrained boundary condition for the semilinear parabolic system. By construct-
ing proper Lyapunov functional and employing boundary control techniques, several sufficient
criteria are derived ensuring that the addressed mobile sensor networks are globally asymptot-
ically stable. These conditions are expressed in the term of linear matrix inequality, which can
be solved by the MATLAB Toolbox effectively. A simulation example is given to demonstrate
the usefulness of the proposed formation control scheme.

Notations. Throughout this paper, the superscript ’T’ denotes matrix transposition and the
X > Y where X and Y are symmetric matrices, means that X − Y is positive definite. I is
the identity matrix with appropriate dimensions.

2. Problem formulation and preliminaries

For formation control of large-scale mobile sensor networks, we focus on the planar de-
ployment problem of agents. In this paper, 2-D deployment is considered two decoupled 1-D
deployment problems, which are the horizontal and the vertical direction, respectively. A large
number of sensing agents will be considered as a continuum by the following dynamical model

∂x1(α, t)

∂t
=

∂2x1(α, t)

∂α2
+ ϕ1(x1(α, t), α, t)x1(α, t),

∂x2(α, t)

∂t
=

∂2x2(α, t)

∂α2
+ ϕ2(x2(α, t), α, t)x2(α, t),

(1)

where (x1(α, t), x2(α, t)) denotes the position of agent α at time t. The parameter α as the
identity of each agent in a large group of mobile sensors, and α ∈ [0, 1]. Namely, α is an
agent’s index code and as the spatial variable of semilinear parabolic system for the group’s
collective dynamics. ∂x1(α,t)

∂t and ∂x2(α,t)
∂t refer to the horizontal and the vertical velocity of

agents, respectively.
The initial conditions associated with (1) is given by

x1(α, 0) = x10(α), x2(α, 0) = x20(α), (2)

2



and have the mixed boundary condition

∂x1(0, t)

∂α
= u01(t),

∂x1(1, t)

∂α
= u11(t),

∂x2(0, t)

∂α
= u02(t),

∂x2(1, t)

∂α
= u12(t), (3)

where u01(t), u02(t), u11(t) and u12(t) are the control input.
Nonlinear functions ϕi(α, t), i = 1, 2 are of class C1 and may be unknown. These functions

satisfy
|ϕi(xi(α, t), α, t)| ≤ ϕM , (4)

for constant bound ϕM ≥ 0.
Let x(α, t) = [x1(α, t), x2(α, t)]

T, ϕ(x(α, t), α, t) = diag[ϕ1(x1(α, t), α, t), ϕ2(x2(α, t), α, t)],
u0(t) = [u01(t), u02(t)]

T,u1(t) = [u11(t), u12(t)]
T,x(α, 0) = [x1(α, 0), x2(α, 0)]

T,
x0(α) = [x10(α), x20(α)]

T,x(0, t) = [x1(0, t), x2(0, t)]
T,x(1, t) = [x1(1, t), x2(1, t)]

T.
Then, the system (1) can be rewritten into a compact form as

∂x(α, t)

∂t
=
∂2x(α, t)

∂α2
+ ϕ(x(α, t), α, t)x(α, t). (5)

The initial and mixed boundary condition of system (5) as follows:

x(α, 0) = x0(α), (6)

∂x(0, t)

∂α
= u0(t),

∂x(1, t)

∂α
= u1(t), (7)

where ∂x(i,t)
∂α means ∂x(α,t)

∂α

∣∣
α=i

, i = 0, 1.
A large group of agents as a continuum by system (5), two boundary agents are designated

a crucial role. Index α = 1 is the leader agent and α = 0 is the anchor agent, the rest of index
0 < α < 1 are the follower agents. A decentralized communication topology is given, which is
a chain graph. All the agents utilize only local information that is nearest-neighbor in terms of
the fixed communication structure.

To give our main results, we introduce the following definition and lemmas.
Definition 1 The semilinear parabolic system (5) is said to be globally asymptotically stable
at the equilibrium curve x̄(α), if

lim
t→+∞

∥x(α, t)− x̄(α)∥ = 0

holds.
Definition 1 indicates lim

t→+∞
x(α, t) = x̄(α). In other words, large-scale mobile sensor net-

works will be gradually converge onto the formation which is equilibrium curve x̄(α).
Lemma 1 (Poincaré Inequality[29]). For any z(ξ), continuously differentiable on [0, 1]. Then,

the following inequality holds:∫ 1

0
z2(ξ)dξ ≤ 2z2(1) + 4

∫ 1

0

(
dz(ξ)

dξ

)2

dξ.

Lemma 2 (Barbalat’s Lemma[30]) Let f(t) be a non-negative function defined on [0,+∞). If
f(t) is Lebesgue integrable on [0,+∞) and is uniformly continuous on [0,+∞), then lim

t→+∞
f(t) = 0.

Our main goal in this paper is to deploy a large number of agents in which continuum model
onto various planar curves by designing the controllers of two boundary agents u0(t) and u1(t).
Hereinafter, the 2-D formation problem could be investigated in two aspects. For one thing,
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what type of the plane curve as a formation can be reached under the PDE dynamical model?
For another thing, how to design the boundary controllers such that a large number of mobile
agents reaches the formation stably?

First of all, we focus on the way to acquire the curve of formation.

3. Plane curve of formation design

As mentioned above, the large-scale mobile agents are governed by semilinear parabolic
system (5). Those agents are capable of reaching the formation correspond to the nonzero
equilibrium curves of (5). It is not difficult to draw that the equilibrium equation of (5) is
second ordinary differential equation

d2x̄(α)

dα2
+ ϕ(α)x̄(α) = 0, (8)

where x̄(0) and x̄(1) are given.
In fact, (8) is a vary-coefficient differential equation, due to ϕ(α) included in the coefficient

of state. The challenging problem can be solved through method of power series. According to
the solution of (8), rich types of formation would be included in family of equilibrium curves.

For the sake of concise analysis, we consider the homogeneous parabolic system in the
following:

∂x(α, t)

∂t
=
∂2x(α, t)

∂α2
+ ϕx(α, t). (9)

where ϕ = diag[ϕ1, ϕ2] and all the agents using the same constant ϕ. The deployment planar
curves desired correspond to the nonzero equilibrium curves of (9). And, curves of deployments
are satisfy the two-point boundary value problem

d2x̄(α)

dα2
+ ϕx̄(α) = 0 (10)

where x̄(α) = [x̄1(α), x̄2(α)]
T with x̄(0) and x̄(1) known. This allows for a general family of

equilibrium curves selected by setting constant coefficients ϕ. However, the equilibria depicted
by (10) may be open loop unstable. Thus, control of leader agent and anchor agent are vital to
stabilize the deployment planar curves.

Remark 1. Our results can be easily applicable to linear reaction-advection-diffusion equa-
tion

∂z(α, t)

∂t
=
∂2z(α, t)

∂α2
+ b

∂z(α, t)

∂α
+ λz(α, t), (11)

with constant coefficient vector b and λ under the mixed boundary conditions (6).

We change variables z(α, t) = w(α, t)e−
1
2
bα. This leads to

∂w(α, t)

∂t
=
∂2w(α, t)

∂α2
+ ϕw(α, t), (12)

where ϕ = λ− b2

4 .
The nonzero equilibrium curves of (12) satisfy

d2w̄(α)

dα2
+ ϕw̄(α) = 0. (13)

It is obvious that (12) and its nonzero equilibrium curves have the same form as (9) and (10).
We can solve the reaction-advection-diffusion equation (11) and parabolic system (9) in the
same way. Besides that, it is easy to see that (9) has only one parameter vector, but equivalent
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to (11) which has two parameter vectors. One parameter will be more simple than two param-
eters selected when setting the family of desired deployment planar curves.

For the formation of large-scale mobile sensor networks, we introduce decoupled 1-D PDE
model for vertical and horizontal direction, which yields two deployments x̄1(α) and x̄2(α).
Hence, the planar curve can be described in vector form as[

x̄1(α)
x̄2(α)

]
=

[
a1 a2
a3 a4

] [
ψ1(α)
ψ2(α)

]
, (14)

where constants a1, a2, a3, a4 are deployment coefficients, which are picked by user to generate
a desired deployment. (ψ1(α), ψ2(α)) are basis functions connect with the solutions of (11).
There are rich family of planar curves will be exhibited employing basis functions. According
to the value of ϕi, the basis functions are categorized in Table 1. We can design the planar
formation by selecting the basis functions of all the agents.

Table 1. Basis functions for 1-D deployment curves of semilinear parabolic system.

ϕi Value Basis Functions (ψ1(α), ψ2(α))

ϕi = 0 (1, α)

ϕi > 0 (cos(θiα), sin(θiα)), θi =
√
ϕi

ϕi < 0 (e−σiα, eσiα), σi =
√
−ϕi

Remark 2. When the PDE model are different in each dimension, the planar deployment
curve can be written as [

x̄1(α)
x̄2(α)

]
=

[
a1 a2
0 0

] [
ψ1(α)
ψ2(α)

]
+

[
0 0
a3 a4

] [
ψ3(α)
ψ4(α)

]
where (x̄1(α), x̄2(α)) and (x̄3(α), x̄4(α)) are basis functions for the vertical and horizontal direc-
tion, respectively. By utilizing this clue and employing PDE-based approach, some new results
can be obtained in another paper.

For presentation convenience, we denote

A =

[
a0 a1
a2 a3

]
, Q =

[
c1
c2

]
, S =

[
b1 0
0 b2

]
,

T =

[
1 d
0 1

]
, R =

[
cosϑ sinϑ
− sinϑ cosϑ

]
,

ψ(α) = [ψ1(α), ψ2(α)]
T.

Then (13) can be rewritten in the compact form as

x̄(α) = Aψ(α). (15)

By choosing different coefficient matrix, we can also depict the deployment of mobile sensor
to be translation x̄(α) = Aψ(α) +Q, scaling x̄(α) = SAψ(α), reflection x̄(α) = TAψ(α) and
rotation x̄(α) = RAψ(α). Combining translation and scaling, a general form as following

x̄(α) = SAψ(α) +Q. (16)

Also,
x̄(α) = RSAψ(α), (17)
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while combining rotation and scaling.

Next, it is to show that by introducing boundary control scheme, the state which is the
position of mobile agents in (5) is asymptotically stable.

3.1. Formation control scheme design

To achieve a large number of mobile sensors deployment onto desired planar curve, we
consider the anchor(α = 0) and leader(α = 1) agents serve as boundary control inputs. The
control law of anchor as follows:

u0(t) = K0x(0, t)−K0x̄(0) +
dx̄(0)

dα
(18)

The control law of leader is

u1(t) = −K1x(1, t) +K0x(0, t) +K1x̄(1)

−K0x̄(0) +
dx̄(1)

dα
(19)

where dx̄(i)
dα means dx̄(α)

dα

∣∣
α=i

, i = 1, 2.
For the aim of formation deployment, we shift the equilibrium curves x̄(α) to the origin by

curves error
y(α, t) = x(α, t)− x̄(α), (20)

where y(α, t) = [y1(α, t), y2(α, t)]
T.

Consequently, the error dynamics can be expressed by

∂y(α, t)

∂t
=
∂2y(α, t)

∂α2
+ ϕ(y(α, t), α, t)y(α, t), (21)

∂y(0, t)

∂α
= U0(t),

∂y(1, t)

∂α
= U1(t), (22)

where ∂y(i,t)
∂α means ∂y(α,t)

∂α

∣∣
α=i

, i = 0, 1.
Substituting (19) into (6), and considering (17)-(18) leads to

U0(t) = K0y(0, t), (23)

U1(t) = −K1y(1, t) +K0y(0, t) (24)

In a word, we are interested in finding a formation control scheme such that a large group
of mobile sensors move to the deployment curve desired. The steps of coordinates of the agents
by the design procedure are listed in the following.

(1) Present the family of desired deployment curves, and decompose into two decoupled 1-D
deployments on vertical and horizontal direction.

(2) Select the basis functions of desired curves on each 1-D deployment by the family of desired
deployment profiles.

(3) Confirm the specific basis functions through choosing the values of coefficient ϕi.

(4) Pick the coefficient of basis function to generate the specific deployment profiles on vertical
and horizontal direction.

(5) Implement the control laws for mobile sensor networks, including leader, anchor, and
follower agents.
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4. Cloesd-loop stability analysis

In this section, gradually stable converge to desired planar curves is investigated for system
(4) using Lyapunov functional approach and linear matrix inequality. The analysis of cloesd-
loop stability is given in the following theorem.

Theorem 1Under the boundary control scheme (23) and (24), the system (21)with λmax(ϕM ) <
1
4 is globally asymptotically stable at the equilibrium curve x̄(α), if there exist control gain di-
agonal matrices K0 and K1, such that the following LMI holds:

Ψ =

[
−2K0 K0

K0 −2K1 + I

]
< 0. (25)

Proof. Consider the following Lyapunov functional

V (t) =

∫ 1

0
yT(α, t)y(α, t)dα. (26)

Taking the time derivative of V (t) along the trajectories of system (21), we obtain

V̇ (t) = 2

∫ 1

0
yT(α, t)

[
∂2y(α, t)

∂α2
+ ϕ(y(α, t), α, t)y(α, t)

]
dα

= 2

∫ 1

0
yT(α, t)

∂2y(α, t)

∂α2
dα

+ 2

∫ 1

0
yT(α, t)ϕ(y(α, t), α, t)y(α, t)dα. (27)

According to Lemma 1, we can obtain that

2

∫ 1

0
yT(α, t)

∂2y(α, t)

∂α2
dα

= 2yT(α, t)
∂y(α, t)

∂α

∣∣∣∣1
0

− 2

∫ 1

0

(
∂y(α, t)

∂α

)T(∂y(α, t)
∂α

)
dα

≤ 2yT(1, t)
∂y(1, t)

∂α
− 2yT(0, t)

∂y(0, t)

∂α

+ yT(1, t)y(1, t)− 1

2

∫ 1

0
yT(α, t)y(α, t)dα. (28)

Considering the boundary control law (23) and (24), we get

2yT(1, t)
∂y(1, t)

∂α
− 2yT(0, t)

∂y(0, t)

∂α

= 2yT(1, t)
[
−K1y(1, t) +K0y(0, t)

]
− 2yT(0, t)K0y(0, t)

= − 2yT(1, t)K1y(1, t) + 2yT(1, t)K0y(0, t)

− 2yT(0, t)K0y(0, t) (29)

Then, the following holds

2

∫ 1

0
yT(α, t)

∂2y(α, t)

∂α2
dα

≤ yT(1, t)(−2K1 + I)y(1, t) + 2yT(1, t)K0y(0, t)

− 2yT(0, t)K0y(0, t)−
1

2

∫ 1

0
yT(α, t)y(α, t)dα. (30)
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By (4), and substituting (30) into (27) leads to

V̇ (t) ≤ yT(1, t)(−2K1 + I)y(1, t)

+ 2yT(1, t)K0y(0, t)− 2yT(0, t)K0y(0, t)

− 1

2

∫ 1

0
yT(α, t)y(α, t)dα

+ 2

∫ 1

0
yT(α, t)ϕMy(α, t)dα

≤ ηT(t)Ψη(t)

+ (−1

2
I + 2ϕM )

∫ 1

0
yT(α, t)y(α, t)dα, (31)

where η(t) = [yT(0, t), yT(1, t)]T and Ψ is defined in (25).
Let ρ1 = λmax(Ψ), ρ2 = 2λmax(ϕM ) − 1

2 . From (25), it can be inferred that ρ1 < 0. The
choice λmax(ϕM ) < 1

4 , we have

V̇ (t) ≤ ρ1|η(t)|2 + ρ2

∫ 1

0
|y(α, t)|2dα.

≤ ρ1|y(0, t)|2 + ρ1|y(1, t)|2 + ρ2∥y(α, t)∥2. (32)

Therefore, we get

V (t)− V (0)

≤
∫ t

0

(
ρ1|y(0, s)|2 + ρ1|y(1, s)|2 + ρ2∥y(α, s)∥2

)
dt,

which implies that ∫ t

0

(
|y(0, s)|2 + |y(1, s)|2 + ∥y(α, s)∥2

)
dt ≤ −1

ρ
V (0)

where ρ = max{ρ1, ρ2}.
Accordingly, ∫ t

0

(
|y(0, s)|2 + |y(1, s)|2 + ∥y(α, s)∥2

)
dt ≤ +∞ (33)

In addition,it is not difficult to verify that |y(0, s)|2 + |y(1, s)|2 + ∥y(α, s)∥2 is uniformly
continuous on [0,+∞). Therefore, we can conclude from Lemma 2 that

lim
t→+∞

∥y(α, t)∥ = 0,

if lim
t→+∞

|y(0, t)| = 0 and lim
t→+∞

|y(1, t)| = 0.

i.e.

lim
t→+∞

∥x(α, t)− x̄(α)∥ = 0,

if lim
t→+∞

|x(0, t)− x̄(0)| = 0 and lim
t→+∞

|x(1, t)− x̄(1)| = 0.

The system (21) is globally asymptotically stable. In other words, large-scale mobile sensor
networks employ the boundary control laws (18) and (19) can be gradually stable converge to
a planar formation curve x̄(α).
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Remark 3. In fact, if choose the Lyapunov functional as V (t) = eεt
∫ 1
0 y

T(α, t)y(α, t)dα where
ε is a positive scalar, we can verify the system (21) is exponentially stable along the similar line
of proof of Theorem 1, and the proof is omitted.

In system (5), by taking ϕ(x(α, t), α, t) = 0, then the system reduces to

∂x(α, t)

∂t
=
∂2x(α, t)

∂α2
. (34)

That is a linear parabolic system(heat equation) also can as a model in a large agents, which
depends on only nearest-neighbors. And the equilibrium curve is satisfy

d2x̄(α)

dα2
= 0. (35)

As pointed out in Table 1, equilibrium curve with associate to the solutions of (35) is linear in
α. The formation deployment of mobile agents only onto straight line or a point.

In this case, the corollary is easily accessible from Theorem 1.
Corollary 1 Under the boundary control scheme (23) and (24), the system (34) is globally
asymptotically stable at the straight line or a point x̄(α), if there exist control gain diagonal
matrices K0 and K1, such that Ψ < 0 holds.

5. Simulation example

In this section, we present the simulation results for a variety of deployment of formation
problems utilizing semilinear parabolic systems. In the following examples, we consider the
deployment of mobile sensor network with n = 10 agents onto formation curve and the inter-
connection structure is dependent on discretization of (21). The boundary formation control
scheme (23) and (24) are implemented by the anchor agent and leader agent. In this manner,
the mobile agents parameterized in α can move to the desired planar curve.

In simulation, the initial positions of mobile agents are sampled from the Gaussian distribu-
tion N (0, 1). Then the LMI in Theorem 1 can be solved by using MATLAB with LMI Toolbox.

Accordingly, the matrices of control gain can be obtain as followsK0 =

[
15.8838 0

0 15.8838

]
,K1 =[

27.7966 0
0 27.7966

]
.

Our first scenario focuses on the agents deploy to a circular formation. In Fig. 1(a), the
anchor and leader guide the agents onto a circle x̄1(α) = 5 sin(2πα), x̄2(α) = 5 cos(2πα), with
parameter ϕ1 = ϕ2 = 0.04π2.

Next, the formation shown in Fig 1(b) is formed using parameter ϕ1 = −1/16 for x1-axis
deployment and ϕ2 = 2π2 for x2-axis deployment. The formation of agents stabilize the curve
x̄1(α) = (2/e−3.5 − 1)(−e−3.5 − 1 + 2e−3.5α), x̄2(α) = 5 sin(

√
3πα).

The examples shown above demonstrated to the flexibility of our results on Theorem 1. We
now provide two simulations that using linear parabolic system (32). The following scenario
shows the agents deploy to a straight line x̄1(α) = 0.85α, x̄2(α) = 4.6α in Fig. 1(c).

In last example, we employ the control laws to enable the agents rendezvous at a desired
point. Fig. 1(d) depicts the agents take a route to the rendezvous point (1.5,0.8), not move to
it directly.
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(a) Circular deployment (b) 3D view

Figure 1: Mobile sensors circular deployment

(a) Curve deployment (b) 3D view

Figure 2: Mobile sensors curve deployment

(a) Line deployment (b) 3D view

Figure 3: Mobile sensors straight line deployment
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(a) Rendezvous deployment (b) 3D view

Figure 4: Mobile sensors Rendezvous at (1.5,0.8)

6. Conclusions

In this paper, we have investigated a PDE-based model for the formation control problem of
large-scale mobile sensor networks. By modeling the dynamic of a continuum of agents in terms
of two decoupled semilinear parabolic system and using boundary control techniques, motion
plan is given for the deployment of mobile agents onto desired formation in planar curve. In
this model, the communication topology of agents is a chain graph and fixed. For this, the
controllers of leader and anchor are designed to maintain a stable deployment. The control gain
can be obtain in the LMI-based sufficient criteria which derived ensuring the system is globally
asymptotically stable through employing Lyapunov functional method. A simulation example
has been given to show the effectiveness of the proposed formation control scheme.
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