References
Alexa, A., & Rahnenfuhrer, J. (2010). topGO: Enrichment Analysis for
Gene Ontology: Bioconductor package.
Ardlie, K. G., Deluca, D. S., Segre, A. V., Sullivan, T. J., Young, T.
R., Gelfand, E. T., . . . Dermitzakis, E. T. (2015). The Genotype-Tissue
Expression (GTEx) pilot analysis: Multitissue gene regulation in humans.Science, 348 (6235), 648-660. doi:10.1126/science.1262110
Arsenault, S. V., King, J. T., Kay, S., Lacy, K. D., Ross, K. G., &
Hunt, B. G. (2020). Simple inheritance, complex regulation:
Supergene-mediated fire ant queen polymorphism. Molecular Ecology,
29 (19), 3622-3636. doi:10.1111/mec.15581
Avalos, A., Fang, M., Pan, H., Ramirez Lluch, A., Lipka, A. E., Zhao, S.
D., . . . Hudson, M. E. (2020). Genomic regions influencing aggressive
behavior in honey bees are defined by colony allele frequencies.Proceedings of the National Academy of Sciences, 117 (29),
17135-17141. doi:10.1073/pnas.1922927117
Baud, A., Casale, F. P., Barkley-Levenson, A. M., Farhadi, N.,
Montillot, C., Yalcin, B., . . . Stegle, O. (2021). Dissecting indirect
genetic effects from peers in laboratory mice. Genome Biology,
22 (1). doi:10.1186/s13059-021-02415-x
Cohanim, A. B., Amsalem, E., Saad, R., Shoemaker, D., & Privman, E.
(2018). Evolution of olfactory functions on the fire ant social
chromosome. Genome Biology and Evolution . doi:10.1093/gbe/evy204
Dang, V. D., Cohanim, A. B., Fontana, S., Privman, E., & Wang, J.
(2019). Has gene expression neofunctionalization in the fire ant
antennae contributed to queen discrimination behavior? Ecology and
Evolution, 18 (1), 751. doi:10.1002/ece3.5748
DeHeer, C. J. (2002). A comparison of the colony-founding potential of
queens from single- and multiple-queen colonies of the fire antSolenopsis invicta . Animal Behaviour, 64 (4), 655-661.
doi:10.1006/anbe.2002.3095
DeHeer, C. J., Goodisman, M. A. D., & Ross, K. G. (1999). Queen
dispersal strategies in the multiple‐queen form of the fire antSolenopsis invicta . The American Naturalist, 153 (6),
660-675. doi:10.1086/303205
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha,
S., . . . Gingeras, T. R. (2013). STAR: ultrafast universal RNA-seq
aligner. Bioinformatics, 29 (1), 15-21.
doi:10.1093/bioinformatics/bts635
Farine, D. R., Montiglio, P.-O., & Spiegel, O. (2015). From individuals
to groups and back: The evolutionary implications of group phenotypic
composition. Trends in Ecology & Evolution, 30 (10), 609-621.
doi:10.1016/j.tree.2015.07.005
Fontana, S., Chang, N. C., Chang, T., Lee, C. C., Dang, V. D., & Wang,
J. (2020). The fire ant social supergene is characterized by extensive
gene and transposable element copy number variation. Molecular
Ecology, 29 (1), 105-120. doi:10.1111/mec.15308
Gempe, T., Stach, S., Bienefeld, K., & Beye, M. (2012). Mixing of
honeybees with different genotypes affects individual worker behavior
and transcription of genes in the neuronal substrate. PloS One,
7 (2), e31653. doi:10.1371/journal.pone.0031653
Gotzek, D., & Ross, K. G. (2007). Genetic regulation of colony social
organization in fire ants: An integrative overview. The Quarterly
Review of Biology, 82 (3), 201-226.
Gotzek, D., & Ross, K. G. (2008). Experimental conversion of colony
social organization in fire ants (Solenopsis invicta ): Worker
genotype manipulation in the absence of queen effects. Journal of
Insect Behavior, 21 (5), 337-350. doi:10.1007/s10905-008-9130-7
Hallar, B. L., Krieger, M. J. B., & Ross, K. G. (2007). Potential cause
of lethality of an allele implicated in social evolution in fire ants.Genetica, 131 (1), 69-79. doi:10.1007/s10709-006-9114-5
Helleu, Q., Roux, C., Ross, K. G., & Keller, L. (2022). Radiation and
hybridization underpin the spread of the fire ant social supergene.Proc Natl Acad Sci U S A, 119 (34), e2201040119.
doi:10.1073/pnas.2201040119
Huang, Y.-C., Dang, V. D., Chang, N.-C., & Wang, J. (2018). Multiple
large inversions and breakpoint rewiring of gene expression in the
evolution of the fire ant social supergene. Proceedings of the
Royal Society B-Biological Sciences, 285 (1878).
doi:10.1098/rspb.2018.0221
Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A.,
Forslund, S. K., Cook, H., . . . Bork, P. (2018). eggNOG 5.0: a
hierarchical, functionally and phylogenetically annotated orthology
resource based on 5090 organisms and 2502 viruses. Nucleic Acids
Research, 47 (D1), D309-D314. doi:10.1093/nar/gky1085
Iwanaga, S. (1993). The limulus clotting reaction. Current Opinion
in Immunology, 5 (1), 74-82. doi:10.1016/0952-7915(93)90084-6
Iwanaga, S., Miyata, T., Tokunaga, F., & Muta, T. (1992). Molecular
mechanism of hemolymph clotting system in Limulus .Thrombosis Research, 68 (1), 1-32.
doi:https://doi.org/10.1016/0049-3848(92)90124-S
Jouvenaz, D. P., Allen, G. E., Banks, W. A., & Wojcik, D. P. (1977). A
Survey for Pathogens of Fire Ants, Solenopsis spp., in the
Southeastern United States. The Florida Entomologist, 60 (4),
275-279. doi:10.2307/3493922
Kay, T., Alciatore, G., La Mendola, C., Reuter, M., Ulrich, Y., &
Keller, L. (2022a). A complete absence of indirect genetic effects on
brain gene expression in a highly social context. Molecular
Ecology . doi:10.1111/mec.16686
Kay, T., Helleu, Q., & Keller, L. (2022b). Iterative evolution of
supergene-based social polymorphism in ants. Philosophical
Transactions of the Royal Society B: Biological Sciences, 377 (1856),
20210196. doi:doi:10.1098/rstb.2021.0196
Keller, L. (1993). Queen Number and Sociality in Insects . New
York: Oxford University Press.
Keller, L., & Ross, K. G. (1995). Gene by environment interaction:
Effects of a single gene and social environment on reproductive
phenotypes of fire ant queens. Functional Ecology, 9 (4), 667-676.
doi:10.2307/2390159
Keller, L., & Ross, K. G. (1998). Selfish genes: A green beard in the
red fire ant. Nature, 394 (6693), 573-575. doi:10.1038/29064
Linksvayer, T. A. (2006). Direct, maternal, and sibsocial genetic
effects on individual and colony traits in an ant. Evolution,
60 (12), 2552-2561. doi:10.1111/j.0014-3820.2006.tb01889.x
Linksvayer, T. A. (2015). The molecular and evolutionary genetic
implications of being truly social for the social insects.Advances in Insect Physiology, 48 , 271-292.
doi:10.1016/bs.aiip.2014.12.003
Linksvayer, T. A., & Wade, M. J. (2005). The evolutionary origin and
elaboration of sociality in the aculeate Hymenoptera: Maternal effects,
sib-social effects, and heterochrony. The Quarterly Review of
Biology, 80 (3), 317-336.
Lucas, E. R., Romiguier, J., & Keller, L. (2017). Gene expression is
more strongly influenced by age than caste in the ant Lasius
niger . Molecular Ecology, 26 (19), 5058-5073.
doi:https://doi.org/10.1111/mec.14256
Mank, J. E. (2022). Sex-specific morphs: the genetics and evolution of
intra-sexual variation. Nat Rev Genet .
doi:10.1038/s41576-022-00524-2
Martinez-Ruiz, C., Pracana, R., Stolle, E., Paris, C. I., Nichols, R.
A., & Wurm, Y. (2020). Genomic architecture and evolutionary antagonism
drive allelic expression bias in the social supergene of red fire ants.eLife, 9 , e55862. doi:10.7554/eLife.55862
McCarthy, D. J., Chen, Y., & Smyth, G. K. (2012). Differential
expression analysis of multifactor RNA-Seq experiments with respect to
biological variation. Nucleic Acids Research, 40 (10), 4288-4297.
doi:10.1093/nar/gks042
Moore, A. J., Brodie, E. D., 3rd, & Wolf, J. B. (1997). Interacting
phenotypes and the evolutionary process: I. Direct and indirect genetic
effects of social interactions. Evolution, 51 (5), 1352-1362.
doi:10.1111/j.1558-5646.1997.tb01458.x
Nipitwattanaphon, M., Wang, J., Dijkstra, M. B., & Keller, L. (2013). A
simple genetic basis for complex social behaviour mediates widespread
gene expression differences. Molecular Ecology, 22 (14),
3797-3813. doi:10.1111/mec.12346
Picelli, S., Faridani, O. R., Björklund, A. K., Winberg, G., Sagasser,
S., & Sandberg, R. (2014). Full-length RNA-seq from single cells using
Smart-seq2. Nature Protocols, 9 (1), 171-181.
doi:10.1038/nprot.2014.006
Pracana, R., Levantis, I., Martínez-Ruiz, C., Stolle, E., Priyam, A., &
Wurm, Y. (2017a). Fire ant social chromosomes: Differences in number,
sequence and expression of odorant binding proteins. Evolution
Letters, 1 (4), 199-210. doi:10.1002/evl3.22
Pracana, R., Priyam, A., Levantis, I., Nichols, R. A., & Wurm, Y.
(2017b). The fire ant social chromosome supergene variant Sb shows low
diversity but high divergence from SB. Molecular Ecology, 26 (11),
2864-2879. doi:10.1111/mec.14054
Rittschof, C. C. (2017). Sequential social experiences interact to
modulate aggression but not brain gene expression in the honey bee
(Apis mellifera ). Frontiers in Zoology, 14 (1).
doi:10.1186/s12983-017-0199-8
Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: a
Bioconductor package for differential expression analysis of digital
gene expression data. Bioinformatics, 26 (1), 139-140.
doi:10.1093/bioinformatics/btp616
Ross, K. G. (1997). Multilocus evolution in fire ants: Effects of
selection, gene flow and recombination. Genetics, 145 (4),
961-974.
Ross, K. G., & Keller, L. (1995). Ecology and Evolution of
Social-Organization - Insights from Fire Ants and Other Highly Eusocial
Insects. Annual Review of Ecology and Systematics, 26 , 631-656.
doi:DOI 10.1146/annurev.es.26.110195.003215
Ross, K. G., & Keller, L. (1998). Genetic control of social
organization in an ant. Proceedings of the National Academy of
Sciences, 95 (24), 14232-14237.
Ross, K. G., & Keller, L. (2002). Experimental conversion of colony
social organization by manipulation of worker genotype composition in
fire ants (Solenopsis invicta ). Behavioral Ecology and
Sociobiology, 51 (3), 287-295. doi:10.1007/S00265-001-0431-5
Schwander, T., Libbrecht, R., & Keller, L. (2014). Supergenes and
complex phenotypes. Current Biology, 24 (7), R288-294.
doi:10.1016/j.cub.2014.01.056
Shoemaker, D., & Ascunce, M. S. (2010). A new method for distinguishing
colony social forms of the fire ant, Solenopsis invicta .Journal of Insect Science, 10 (73), 1-11. doi:10.1673/031.010.7301
Signor, S. A., & Nuzhdin, S. V. (2018). The evolution of gene
expression in cis and trans . Trends in Genetics,
34 (7), 532-544. doi:10.1016/j.tig.2018.03.007
Thompson, M. J., & Jiggins, C. D. (2014). Supergenes and their role in
evolution. Heredity, 113 (1), 1-8. doi:10.1038/hdy.2014.20
Trible, W., & Ross, K. G. (2016). Chemical communication of queen
supergene status in an ant. Journal of Evolutionary Biology,
29 (3), 502-513. doi:10.1111/jeb.12799
Vojvodic, S., Johnson, B. R., Harpur, B. A., Kent, C. F., Zayed, A.,
Anderson, K. E., & Linksvayer, T. A. (2015). The transcriptomic and
evolutionary signature of social interactions regulating honey bee caste
development. Ecology and Evolution, 5 (21), 4795-4807.
doi:10.1002/ece3.1720
Wang, J., Ross, K. G., & Keller, L. (2008). Genome-wide expression
patterns and the genetic architecture of a fundamental social trait.Plos Genetics, 4 (7), e1000127. doi:10.1371/journal.pgen.1000127
Wang, J., Wurm, Y., Nipitwattanaphon, M., Riba-Grognuz, O., Huang,
Y.-C., Shoemaker, D., & Keller, L. (2013). A Y-like social chromosome
causes alternative colony organization in fire ants. Nature,
493 (7434), 664-668. doi:10.1038/nature11832
Wellenreuther, M., & Bernatchez, L. (2018). Eco-evolutionary genomics
of chromosomal inversions. Trends in Ecology & Evolution, 33 (6),
427-440. doi:10.1016/j.tree.2018.04.002
Wolf, J. B., Brodie, E. D., 3rd, Cheverud, J. M., Moore, A. J., & Wade,
M. J. (1998). Evolutionary consequences of indirect genetic effects.Trends in Ecology & Evolution, 13 (2), 64-69.
doi:10.1016/s0169-5347(97)01233-0
Yan, Z., Martin, S. H., Gotzek, D., Arsenault, S. V., Duchen, P.,
Helleu, Q., . . . Keller, L. (2020). Evolution of a supergene that
regulates a trans-species social polymorphism. Nat Ecol Evol,
4 (2), 240-249. doi:10.1038/s41559-019-1081-1
Zeng, H., Millar, J. G., Chen, L., Keller, L., & Ross, K. G. (2022).
Characterization of Queen Supergene Pheromone in the Red Imported Fire
Ant Using Worker Discrimination Assays. Journal of Chemical
Ecology, 48 (2), 109-120. doi:10.1007/s10886-021-01336-0