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Summary

This paper considers explicit neutral delay differential equations (NDDE) with
piecewise continuous initial functions. We explain how the discontinuities in the
solutions arise and present a perturbing scheme, in combination with an adaptive
Legendre–Gauss–Radau collocation method, to deal with this type of problems com-
putationally. The pointwise and mean convergence of the continuous solution of the
perturbed NDDE to the discontinuous solution of the original NDDE are proved.
Our new method for discontinuous NDDEs and the rigorous theoretical analysis pro-
vided are particularly important since explicit NDDEs have received little attention
in the literature. Numerical results are given to show that the proposed method can
be implemented in an efficient and accurate manner.
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1 INTRODUCTION

Delay differential equations (DDE) are useful in modeling of population dynamics, the spread of infection diseases, two-body
problems of electrodynamics, blood cell production models, etc,1,2,3,4,5,6,7. The lags can represent gestation times, incubation
periods, transport delays, or they can simply lump complicated biological processes together, accounting only for the time
required for these processes to occur. Given the fact that the time delay could cause a stable equilibrium to become unstable and
cause the populations to fluctuate, DDEs exhibit much more complicated dynamics than ODEs.

Consider the following DDE with multiple time dependent delays
d
d𝑡
𝑈 (𝑡) = 𝑓

(
𝑡, 𝑈 (𝑡), 𝑈 (𝑡 − 𝜏1(𝑡)),… , 𝑈 (𝑡 − 𝜏𝑚(𝑡)),

d
d𝑡
𝑈 (𝑡 − 𝜏𝑚+1(𝑡)),… , d

d𝑡
𝑈 (𝑡 − 𝜏𝑚+𝑛(𝑡))

)
, 𝑡0 ⩽ 𝑡 ⩽ 𝑇 , (1)

and initial functions

𝑈 (𝑡) = 𝜙(𝑡), d
d𝑡
𝑈 (𝑡) = d

d𝑡
𝜙(𝑡), 𝑡−1 ⩽ 𝑡 < 𝑡0, (2)

where 𝑓 and 𝜙 are given functions which satisfy certain conditions with certain properties, 𝑇 is a positive constant, 𝜏𝑞(𝑡) ⩾ 0,
1 ⩽ 𝑞 ⩽ 𝑚+𝑛 are time dependent delays and 𝑡−1 = inf

𝑡0⩽𝑡⩽𝑇
{𝑡− 𝜏𝑞(𝑡)}𝑞 . The existence and uniqueness of the solution to the model

(1)–(2) are described in detail in8,9,10. The model (1) with derivative delay terms is called explicit neutral delay differential
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equation (NDDE), otherwise it is called retarded differential equation (RDE). Another well-known and widely studied class of
NDDEs is implicit NDDEs, a form frequently called Hale’s form11.

In the context of population dynamics, the model problem (1) can be obtained, e.g., from the balance laws of the age-structured
population dynamics, assuming that the birth rates and death rates, as functions of age, are piecewise constant. The delay
arises naturally from biology as the age-at-maturity of individuals. This modeling approach has also applications in population
dynamics of isolated populations12, interplay of predators and prey13, and tumor modeling14.

It is well known that the DDEs solutions can behave quite differently from ODEs. For instance, the DDEs characteristic
equation, in contrast to ODEs, may have infinitely many roots and a DDE can have solutions that oscillate rapidly. Discontinuity
of NDDEs’ solutions makes the bifurcation analyses and numerical treatment of such equations, much more complicated than
those of RDEs. The solution of RDEs becomes smoother when the integration proceeds in successive subintervals, but it is not
necessarily the case for NDDEs2,3.

Many numerical methods are proposed for solving DDEs using the Runge–Kutta method. These methods are developed based
on Taylor’s expansions or quadrature formulas1,15,16,17,18,19,20,21,22,23,24,25. Another class of efficient methods for DDEs is the class
of spectral methods. A spectral method employs global orthogonal polynomials as trial functions and it provides exceedingly
accurate numerical results for smooth solutions26,27. So far, there are few numerical methods with the spectral accuracy for
DDEs and specifically for NDDEs28,29,30,31,32,33,34,35.

In29, we presented an adaptive Legendre–Gauss-Radau (LGR) collocation method to solve RDEs and NDDEs with constant
or time-dependent delays. In the current work, we present a modified version of this method for approximating discontinuous
solution of explicit NDDEs with a discontinuous initial function. A perturbed continuous problems is first derived by perturbing
the initial function. Then, a hybrid perturbation–collocation scheme is developed. The pointwise and mean convergence of the
perturbed continuous solution to the discontinuous solution of the original are proved.

The remainder of the article is organized as follows: In Section 2, some properties of shifted Legendre polynomials are
reviewed. Section 3, describes the distinctions between NDDEs with continuous and discontinuous initial function. I Section
4, the theoretical results regarding pointwise and mean convergence properties of the perturbed problem are given. The hybrid
perturbation–collocation method is described in Section 5. Section 6 is for some numerical results and justifies our theoretical
analysis. Finally, conclusions are given in Section 7.

2 PROPERTIES OF SHIFTED LEGENDRE POLYNOMIALS

This section is devoted to giving some mathematical preliminaries required for our subsequent development. The shifted
Legendre polynomial of degree 𝑛 in the interval 𝐼 = [𝑎, 𝑏] is defined by

𝐿𝐼,𝑛(𝑡) = 𝐿𝑛

( 2𝑡
𝑏 − 𝑎

− 𝑏 + 𝑎
𝑏 − 𝑎

)
, 𝑛 = 0, 1, 2,…

where 𝐿𝑛(𝑡) is the standard Legendre polynomial of degree 𝑛26.
In particular,

𝐿𝐼,0(𝑡) = 1, 𝐿𝐼,1(𝑡) =
2𝑡

𝑏 − 𝑎
− 𝑏 + 𝑎

𝑏 − 𝑎
, 𝐿𝐼,2(𝑡) =

1
2

(
3( 2𝑡
𝑏 − 𝑎

− 𝑏 + 𝑎
𝑏 − 𝑎

)2 − 1
)

The shifted Legendre polynomials satisfy the following three term recurrence relation

𝐿𝐼,𝑛+1(𝑡) =
2𝑛 + 1
𝑛 + 1

( 2𝑡
𝑏 − 𝑎

− 𝑏 + 𝑎
𝑏 − 𝑎

)
𝐿𝐼,𝑛(𝑡) −

𝑛
𝑛 + 1

𝐿𝐼,𝑛−1(𝑡), 𝑛 = 1, 2, 3,… .

We then have
𝐿𝐼,𝑛(𝑎) = (−1)𝑛, 𝐿𝐼,𝑛(𝑏) = 1. (3)

and
d
dt
𝐿𝐼,𝑛(𝑡) =

𝑛 + 1
𝑏 − 𝑎

𝐽 (1,1)
𝐼,𝑛−1(𝑡). (4)

in which, we have 𝐿𝐼,𝑛(𝑡) = 𝐽 (0,0)
𝐼,𝑛 (𝑡) and 𝐽 (𝛼,𝛽)

𝐼,𝑛 is the shifted Jacobi polynomial of degree 𝑛.
The set of polynomials {𝐿𝐼,𝑛(𝑡)} is a complete orthogonal system in the space 𝐿2(𝐼), namely,

𝑏

∫
𝑎

𝐿𝐼,𝑚(𝑡)𝐿𝐼,𝑛(𝑡) d𝑡 =
𝑏 − 𝑎
2𝑛 + 1

𝛿𝑚,𝑛,
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where 𝛿𝑚,𝑛 is the Kronecker function symbol. Then, the formal series of a function 𝑢 ∈ 𝐿2(𝐼) in terms of the system {𝐿𝐼,𝑛(𝑡)}
and the expansion coefficients are defined as

𝑢(𝑡) =
∞∑
𝑛=0

𝑢𝐼,𝑛𝐿𝐼,𝑛(𝑡), 𝑢𝐼,𝑛 =
2𝑛 + 1
𝑏 − 𝑎

𝑏

∫
𝑎

𝑢(𝑡)𝐿𝐼,𝑛(𝑡) d𝑡. (5)

We denote by 𝑡𝑗 , 0 ⩽ 𝑗 ⩽ 𝑁 , the nodes of the standard LGR interpolation on the interval [−1, 1). (The nodes of the standard
LGR interpolation on the interval [−1, 1) is denoted by 𝑡𝑗 , 0 ⩽ 𝑗 ⩽ 𝑁 .) In particular, 𝑡0 = −1 and 𝑡𝑁 < 1. The corresponding
Christoffel numbers are 𝑤𝑗 , 0 ⩽ 𝑗 ⩽ 𝑁 .( 𝑤𝑗 , 0 ⩽ 𝑗 ⩽ 𝑁 are the corresponding Christoffel numbers .)

Then the nodes of the shifted LGR interpolation on the interval [𝑎, 𝑏) are the distinct zeros of 𝐿𝐼,𝑁 (𝑡) + 𝐿𝐼,𝑁+1(𝑡), denoted
by 𝑡𝐼,𝑗 , 0 ⩽ 𝑗 ⩽ 𝑁 . In particular, 𝑡𝐼,0 = 𝑎. Clearly, the nodes 𝑡𝐼,𝑗 can be obtained by shifting the nodes 𝑡𝑗 and the corresponding
Christoffel numbers are 𝑤𝐼,𝑗 =

𝑏−𝑎
2
𝑤𝑗 , 0 ⩽ 𝑗 ⩽ 𝑁 .

Let 𝑁 be the set of polynomials of degree at most 𝑁 . Thanks to the property of the standard LGR quadrature, it follows that
for any 𝑝 ∈ 2𝑁 on 𝐼 ,

𝑏

∫
𝑎

𝑝(𝑡) d𝑡 = 𝑏 − 𝑎
2

1

∫
−1

𝑝
(𝑏 − 𝑎

2
𝑡 + 𝑏 + 𝑎

2

)
d𝑡

= 𝑏 − 𝑎
2

𝑁∑
𝑗=0

𝑤𝑗𝑝
(𝑏 − 𝑎

2
𝑡𝑗 +

𝑏 + 𝑎
2

)
=

𝑁∑
𝑗=0

𝑤𝐼,𝑗𝑝(𝑡𝐼,𝑗). (6)

Let ⟨𝑢, 𝑣⟩𝐼 and ‖𝑢‖𝐼 be the inner product and the norm of space 𝐿2(𝐼), respectively. We also define the following discrete inner
product and norm,

⟨𝑢, 𝑣⟩𝐼,𝑁 =
𝑁∑
𝑗=0

𝑤𝐼,𝑗𝑢(𝑡𝐼,𝑗)𝑣(𝑡𝐼,𝑗), ‖𝑢‖𝐼,𝑁 =
√⟨𝑢, 𝑢⟩𝐼,𝑁 . (7)

Due to (6), for any 𝑝𝑔 ∈ 2𝑁 and 𝑔 ∈ 𝑁 , ⟨𝑔, 𝑝⟩𝐼 = ⟨𝑔, 𝑝⟩𝐼,𝑁 , ‖𝑔‖𝐼 = ‖𝑔‖𝐼,𝑁 . (8)

For any 𝑈 ∈ (𝐼), the shifted LGR interpolation 𝑁𝑈 (𝑡) ∈ 𝑁 is determined uniquely by

𝑁𝑈 (𝑡𝐼,𝑗) = 𝑈 (𝑡𝐼,𝑗), 0 ⩽ 𝑗 ⩽ 𝑁. (9)

Because of (8), for any 𝑔 ∈ 𝑁 , ⟨𝑁𝑈, 𝑔⟩𝐼 = ⟨𝑁𝑈, 𝑔⟩𝐼,𝑁 = ⟨𝑈, 𝑔⟩𝐼,𝑁 . (10)

This shows that the interpolant 𝑁𝑈 is the orthogonal projection of 𝑢 upon 𝑁 on 𝐼 with respect to the discrete inner product (7).
The interpolation 𝑁𝑈 (𝑡) in the interval 𝐼 can be expanded as

𝑁𝑈 (𝑡) =
𝑁∑
𝑛=0

𝑢̃𝐼,𝑛𝐿𝐼,𝑛(𝑡), (11)

and with the aid of (5) and (10) we obtain

𝑢̃𝐼,𝑛 =
2𝑛 + 1
𝑏 − 𝑎

⟨𝑁𝑈,𝐿𝐼,𝑛⟩𝐼 = 2𝑛 + 1
𝑏 − 𝑎

⟨𝑈,𝐿𝐼,𝑛⟩𝐼,𝑁 , 0 ⩽ 𝑛 ⩽ 𝑁. (12)

3 DISTINCTION BETWEEN CONTINUOUS AND DISCONTINUOUS INITIAL FUNCTIONS

In29 we developed an adaptive Legendre-Gauss-Radau collocation method by discretizing the DDE (1)–(2) with a continuous
initial function 𝜙(𝑡) and employing a dynamic set of mesh points. In the next subsection, we review this method briefly. For the
sake of simplicity, in the model (1)-(2) we assume that 𝑚 = 𝑛 = 1. Thus, we consider the NDDE

d
d𝑡
𝑈 (𝑡) = 𝑓

(
𝑡, 𝑈 (𝑡), 𝑈 (𝑡 − 𝜏1(𝑡)),

d
d𝑡
𝑈 (𝑡 − 𝜏2(𝑡))

)
, 𝑡0 ⩽ 𝑡 ⩽ 𝑇 , (13)

𝑈 (𝑡) = 𝜙(𝑡), d
d𝑡
𝑈 (𝑡) = d

d𝑡
𝜙(𝑡), 𝑡−1 ⩽ 𝑡 < 𝑡0. (14)
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Next, we explain a perturbation scheme to deal with discontinuous initial functions.

3.1 Continuous initial function
Assume that 𝜙(𝑡) ∈ 𝑙 with 𝑙 ⩾ 0, and d𝑙+1

d𝑡𝑙+1
𝜙(𝑡) is piecewise continuous. By this we mean that d𝑙+1

d𝑡𝑙+1
𝜙(𝑡) is continuous on the

interval [𝑡−1, 𝑡0], except at a finite number of points {𝑡0−𝜎𝑠}𝑆𝑠=1 at which d𝑙+1

d𝑡𝑙+1
𝜙(𝑡) has jump discontinuity with continuity from the

right. It is well known that the accuracy of the numerical solution of the problem (13)–(14) is highly dependent on the considered
mesh due to loss of regularity of the solution even when the functions 𝑓 , 𝜏𝑞 and 𝜙 are smooth29,25. Therefore, it is necessary to
define a dynamic mesh, 𝑀 , that includes the set of breaking points. For constant and time-dependent delays considered in this
work, the set of breaking points can be constructed in advance. To this end we start with 𝐵 = {𝑡0, 𝑡0 − 𝜎1,… , 𝑡0 − 𝜎𝑆}. Then,
assuming each delay is monotonic, we solve each scalar equation

𝑡 − 𝜏𝑞(𝑡) = 𝜁, 𝑞 = 1, 2,

by an appropriate iterative solver, where 𝜁 is a computed breaking point. If the obtained solutions are less than 𝑇 we add them
to the set 𝐵. In the first step of the method, we set 𝑀 = 𝐵 and in the subsequent steps it may be updated based on a certain
mesh refinement algorithm described below.

Suppose that we have sorted the set of mesh points as 𝑀 = {𝜁𝑘}𝑘. Let 𝐼 (𝑘) = [𝜁𝑘−1, 𝜁𝑘), ℎ𝑘 = 𝜁𝑘 − 𝜁𝑘−1, 𝑈𝑘(𝑡) be the smooth
local solution of the problem (13)–(14) on the subinterval 𝐼 (𝑘) and 𝑡𝐼 (𝑘),𝑗 ∶= 𝑡𝑘,𝑗 , 0 ⩽ 𝑗 ⩽ 𝑁𝑘 be the shifted LGR quadrature
points in the subinterval 𝐼 (𝑘). By considering the (𝑘−1)-dimensional multi-index 𝑁̃ ∶= (𝑁1,… , 𝑁𝑘−1), we define the function
Ψ𝑁̃𝑈 as

Ψ𝑁̃𝑈 (𝑡) =

⎧⎪⎨⎪⎩
𝜙(𝑡), 𝑡−1 ⩽ 𝑡 ⩽ 𝑡0,

𝑁𝑖
𝑈𝑖(𝑡), 𝑡 ∈ 𝐼 (𝑖), 1 ⩽ 𝑖 ⩽ 𝑘 − 1.

(15)

In the 𝑘𝑡ℎ step, the LGR collocation method for solving (13)–(14) is to seek 𝑈𝑁𝑘
𝑘 (𝑡) ∈ 𝑁𝑘

(𝐼 (𝑘)), such that⎧⎪⎨⎪⎩
d
dt
𝑈𝑁𝑘

𝑘 (𝑡𝑘,𝑗) = 𝑓
(
𝑡𝑘,𝑗 , 𝑈

𝑁𝑘
𝑘 (𝑡𝑘,𝑗), 𝑢𝑁̃ (𝑡𝑘,𝑗 − 𝜏1(𝑡𝑘,𝑗)),

d
dt
𝑢𝑁̃ (𝑡𝑘,𝑗 − 𝜏2(𝑡𝑘,𝑗))

)
, 1 ⩽ 𝑗 ⩽ 𝑁𝑘,

𝑈𝑁𝑘
𝑘 (𝜁𝑘−1) = 𝑢𝑁̃ (𝜁𝑘−1),

(16)

where 𝑢𝑁̃ (𝑡) is the piecewise polynomial approximation of Ψ𝑁̃𝑈 (𝑡) obtained in the preceding steps. Note that, the possible jump
discontinuities in the first derivative of 𝑈 (𝑡) at the breaking points is not an issue for approximating the solution of NDDEs,
because the LGR scheme avoids collocation at breaking points.

We next describe the numerical implementation for (16). We expand the collocation solution as

𝑈𝑁𝑘
𝑘 (𝑡) =

𝑁𝑘∑
𝑛=0

𝑢̃𝑁𝑘
𝐼 (𝑘),𝑛𝐿𝐼 (𝑘),𝑛(𝑡), 𝑡 ∈ 𝐼 (𝑘). (17)

Since 𝑈𝑁𝑘
𝑘 (𝑡)𝐿𝐼 (𝑘),𝑛(𝑡) ∈ 2𝑁𝑘

, by integrating it over the interval 𝐼 (𝑘) and using (5) and (8) it can be verified that

𝑢̃𝑁𝑘
𝐼 (𝑘),𝑛 = 2𝑛 + 1

ℎ𝑘
⟨𝑈𝑁𝑘

𝑘 , 𝐿𝐼 (𝑘),𝑛⟩𝐼 (𝑘) = 2𝑛 + 1
ℎ𝑘

⟨𝑈𝑁𝑘
𝑘 , 𝐿𝐼 (𝑘),𝑛⟩𝐼 (𝑘),𝑁𝑘

= 2𝑛 + 1
ℎ𝑘

𝑁𝑘∑
𝑗=0

𝑈𝑁𝑘
𝑘 (𝑡𝑘,𝑗)𝐿𝐼 (𝑘),𝑛(𝑡𝑘,𝑗)𝑤𝐼 (𝑘),𝑗 , 0 ⩽ 𝑛 ⩽ 𝑁𝑘. (18)

Then, by virtue of (4), we deduce that

d
dt
𝑈𝑁𝑘

𝑘 (𝑡) = 1
ℎ𝑘

𝑁𝑘∑
𝑛=1

(𝑛 + 1)𝑢̃𝑁𝑘
𝐼 (𝑘),𝑛𝐽

(1,1)
𝐼 (𝑘),𝑛−1(𝑡), 𝑡 ∈ 𝐼 (𝑘). (19)

Furthermore, using (3), a direct calculation shows 𝐿𝐼 (𝑘),𝑛(𝜁𝑘−1) = (−1)𝑛. Therefore, we have from (16) and (17) with 𝑡 = 𝜁𝑘−1
that

𝑁𝑘∑
𝑛=0

(−1)𝑛𝑢̃𝑁𝑘
𝐼 (𝑘),𝑛 = 𝑢𝑁̃ (𝜁𝑘−1). (20)
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Consequently, we use (17)–(20) to obtain from (16) for 1 ⩽ 𝑗 ⩽ 𝑁𝑘 that⎧⎪⎪⎨⎪⎪⎩
1
ℎ𝑘

𝑁𝑘∑
𝑛=1

(𝑛 + 1)𝑢̃𝑁𝑘
𝐼 (𝑘),𝑛𝐽

(1,1)
𝐼 (𝑘),𝑛−1(𝑡𝑘,𝑗) = 𝑓

(
𝑡𝑘,𝑗 , 𝑈

𝑁𝑘
𝑘 (𝑡𝑘,𝑗), 𝑢𝑁̃ (𝑡𝑘,𝑗 − 𝜏1(𝑡𝑘,𝑗)),

d
d𝑡
𝑢𝑁̃ (𝑡𝑘,𝑗 − 𝜏2(𝑡𝑘,𝑗))

)
,

𝑁𝑘∑
𝑛=0

(−1)𝑛𝑢̃𝑁𝑘
𝐼 (𝑘),𝑛 = 𝑢𝑁̃ (𝜁𝑘−1).

(21)

When the function 𝑓 is nonlinear, we first use certain iteration process to solve (21) and obtain 𝑢̃𝑁𝑘
𝐼 (𝑘),𝑛, 0 ⩽ 𝑛 ⩽ 𝑁𝑘. Finally, we

add 𝑈𝑁𝑘
𝑘 (𝑡) as a new piece to 𝑢𝑁̃ (𝑡) and we use 𝑈𝑁𝑘

𝑘 (𝜁𝑘) as the appoximate initial value to be used in the next step. For the step
size control strategy regarding this method, refer to29.
The spectral accuracy of numerical solutions can be confirmed by comparing 𝑢𝑁𝑘

𝑘 (𝑡) with the interpolation approximation
𝐼𝑁𝑘

𝑈𝑘(𝑡). The following theorem establishes the convergence rate of the multistep collocation scheme (16) for NDDEs.

Theorem 1. If 𝑓 in the scheme (16) satisfies the Lipschitz condition with a Lipschitz constant 𝛾 ⩾ 0 as |𝑓 (𝑡, 𝑦1, 𝑦2, 𝑦3) −
𝑓 (𝑡, 𝑧1, 𝑧2, 𝑧3)| ⩽ 𝛾

(|𝑦1 − 𝑧1| + |𝑦2 − 𝑧2| + |𝑦3 − 𝑧3|) and 𝛼𝑘 with 𝑘 ⩾ 1 be a positive constant such that
√
24ℎ𝑘𝛾 ⩽ 𝛼𝑘 < 1,

then for any 𝑈𝑘 ∈ 𝐻 𝑟(𝐼 (𝑘)) and integer 𝑟 ⩾ 2, we have

‖‖‖𝑈𝑘 − 𝑢𝑁𝑘
𝑘
‖‖‖2𝐼 (𝑘) ⩽ 𝑐𝛼𝑘

𝑘∑
𝑖=1

𝑟∑
𝑙=𝑚𝑖𝑛{𝑟,𝑁𝑖+1}

𝑁3−2𝑟
𝑖 ℎ2𝑙−2

𝑖
‖‖‖𝑈 (𝑙)

𝑖
‖‖‖2𝐼 (𝑖) , (22)

|||𝑈𝑘(𝜁𝑘) − 𝑢𝑁𝑘
𝑘 (𝜁𝑘)

|||2 ⩽ 𝑐𝛼𝑘

𝑘∑
𝑖=1

𝑟∑
𝑙=𝑚𝑖𝑛{𝑟,𝑁𝑖+1}

𝑁3−2𝑟
𝑖 ℎ2𝑙−3

𝑖
‖‖‖𝑈 (𝑙)

𝑖
‖‖‖2𝐼 (𝑖) , (23)

where 𝑐𝛼𝑘 is a positive constant depending only on 𝛼𝑘 and 𝑟.

Proof. Ref to29

3.2 Discontinuous initial function
In11 the authors illustrate and explain how discontinuities in the solution of implicit NDDEs arise. Also, an efficient strategy for
approximating discontinuous solutions of a type of differential-algebraic equations is discussed in25.

As discussed in11, this discontinuity in the initial function propagates and causes the solution itself to be discontinuous, too.
Let the initial function 𝜙(𝑡) in the explicit NDDE (13) be continuously differentiable on [𝑡−1, 𝑡0] with the exception of the

distinct ordered points {𝑡0 − 𝜎1,… , 𝑡0 − 𝜎𝑆} ⊂ [𝑡−1, 𝑡0], at each of which 𝜙(𝑡) is discontinuous but continuous from the right.
The lack of smoothness in 𝜙(𝑡) propagates forward to the sequence of points of the set 𝐵. Similarly to36, we give the following
definition.

Definition 1. A possibly discontinuous function 𝑈 (𝑡) ≡ 𝑈 (𝜙; 𝑡), 𝑡 ∈ [𝑡−1, 𝑇 ) is a solution of the explicit NDDE (13) with the
above mentioned initial function if
(i) 𝑈 (𝑡) = 𝜙(𝑡) for 𝑡 ∈ [𝑡−1, 𝑡0];
(ii) 𝑈 (𝑡) satisfies (13) for [𝑡0, 𝑇 )∖𝐵

(
i.e., d

d𝑡
𝑈 (𝑡) represents the conventional two-sided derivative for all 𝑡 ∈ [𝑡0, 𝑇 )∖𝐵

)
;

(iii) at those points of 𝐵 which (13) is not satisfied we interpret d
d𝑡
𝑈 (𝑡) as the one-sided right derivative.

Authors of11 have proved the existence and uniqueness of discontinuous solutions of NDDEs in Hale’s form. As far as we
know, similar results for explicit NDDEs is not yet available in the literature and such a study is beyond the scope of this paper.
So, we assume that the problem considered here has a unique discontinuous solution.

To approximate the discontinuous solution of the NDDE (13) and to govern the size of the jumps at the breaking points, we
combine the perturbing scheme proposed in11 with the adaptive collocation scheme explained before. We replace the discon-
tinuous 𝜙(𝑡) by a sufficiently smooth approximation 𝜙𝛿(𝑡) such that 𝑈 (𝜙𝛿; 𝑡) is continuous and provides a good approximation
𝑈𝛿(𝑡) ∶= 𝑈 (𝜙𝛿; 𝑡) ≈ 𝑈 (𝑡) for each 𝑡 ∈ [𝑡−1, 𝑇 ). For simplicity of statement, we suppose that 𝑆 = 1, i.e., 𝜙(𝑡) has only one jump
discontinuity at a point 𝑡0 − 𝜎 ∈ [𝑡−1, 𝑡0]. Evidently, this discontinuity in 𝜙(𝑡) propagates forward to the sequence of breaking
points. For 𝑆 ⩾ 2 the results can be extended with slight modifications.
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Now, choose a proper parameter 𝛿 ∈ (0, 1) and consider the perturbed initial function 𝜙𝛿(𝑡) that equals to 𝜙(𝑡) except in the
small interval (𝑡0 − 𝜎 − 𝛿, 𝑡0 − 𝜎) in which 𝜙𝛿(𝑡) is the cubic polynomial satisfying

𝜙𝛿(𝑡0 − 𝜎 − 𝛿) = 𝜙(𝑡0 − 𝜎 − 𝛿), 𝜙𝛿(𝑡0 − 𝜎) = lim
𝑡→𝑡0−𝜎+

𝜙(𝑡),

and
d
d𝑡
𝜙𝛿(𝑡0 − 𝜎 − 𝛿) = d

d𝑡
𝜙(𝑡0 − 𝜎 − 𝛿), d

d𝑡
𝜙𝛿(𝑡0 − 𝜎) = lim

𝑡→𝑡0−𝜎+

d
d𝑡
𝜙(𝑡).

Clearly, 𝜙𝛿(𝑡) ∈ 1[𝑡−1, 𝑡0] though its derivative is large over the interval (𝑡0 − 𝜎 − 𝛿, 𝑡0 − 𝜎) for small 𝛿. Moreover, it is
straightforward to show that

lim
𝛿→0

𝜙𝛿(𝑡) = 𝜙(𝑡), lim
𝛿→0

d
d𝑡
𝜙𝛿(𝑡) =

d
d𝑡
𝜙(𝑡),

pointwise for all 𝑡 ∈ [𝑡−1, 𝑡0 − 𝜎) ∪ [𝑡0 − 𝜎, 𝑡0). This convergence is clearly not uniform. However, we have

lim
𝛿→0

‖‖𝜙𝛿(𝑡) − 𝜙(𝑡)‖‖𝐿1[𝑡−1,𝑡0]
= 0,

i.e., convergence in the mean; but
lim
𝛿→0

‖‖‖‖ d
d𝑡
𝜙𝛿(𝑡) −

d
d𝑡
𝜙(𝑡)

‖‖‖‖𝐿1[𝑡−1,𝑡0]
= 𝐽0,

where 𝐽0 is the size of the jump at 𝑡 = 𝑡0 − 𝜎.

4 THEORETICAL RESULTS

In this section, we show that 𝑈𝛿(𝑡) converges pointwise and converges in the mean to 𝑈 (𝑡) on bounded intervals [𝑡0, 𝑇 ) when
𝛿 → 0. In the forthcoming discussions, we assume that there exists a Lipschitz constant 𝛾 ⩾ 0 such that|𝑓 (𝑡, 𝑦1, 𝑦2, 𝑦3) − 𝑓 (𝑡, 𝑧1, 𝑧2, 𝑧3)| ⩽ 𝛾

(|𝑦1 − 𝑧1| + |𝑦2 − 𝑧2| + |𝑦3 − 𝑧3|) . (24)

We also require the differential form of the Gronwall’s inequality:

Lemma 1. Let 𝐵 > 0 and 𝑓 be a continuous function defined on [𝑎, 𝑏]. If 𝑓 is differentiable in (𝑎, 𝑏) and d
d𝑡
𝑓 (𝑡) ⩽ 𝐴 + 𝐵𝑓 (𝑡)

for 𝑡 ∈ (𝑎, 𝑏), then 𝑓 (𝑡) ⩽ 𝐴
𝐵

(
𝑒𝐵(𝑡−𝑎) − 1

)
for all 𝑡 ∈ [𝑎, 𝑏].

Theorem 2. Suppose that the NDDE (13) with a piecewise continuous initial function 𝜙(𝑡) has a unique solution 𝑈 (𝑡). Then,

with the aforementioned assumptions on 𝜙𝛿(𝑡), 𝑈𝛿(𝑡) converges pointwise to 𝑈 (𝑡) for 𝑡 ∈
𝐾⋃
𝑘=1

[𝜁𝑘−1, 𝜁𝑘) as 𝛿 → 0.

Proof. For all 𝑡 ∈ [𝑡−1, 𝑡0), given the pointwise convergence of 𝜙𝛿(𝑡) and d
d𝑡
𝜙𝛿(𝑡), there exists a corresponding 𝛿(𝑡) such that|||𝜙𝛿1 (𝑡) − 𝜙𝛿2 (𝑡)

||| ⩽ 𝜀,
|||| d
d𝑡
𝜙𝛿1 (𝑡) −

d
d𝑡
𝜙𝛿2 (𝑡)

|||| ⩽ 𝜀, when 𝛿1, 𝛿2 ∈ (0, 𝛿(𝑡)]. (25)

Suppose 𝑡 ∈ [𝑡0, 𝜁1) and 𝛿1, 𝛿2 ∈ (0, 𝛿(𝑡)], then from (13) we have
d
d𝑡
𝑈𝛿1(𝑡) = 𝑓

(
𝑡, 𝑈𝛿1 (𝑡), 𝜙𝛿1(𝑡 − 𝜏1(𝑡)),

d
d𝑡
𝜙𝛿1 (𝑡 − 𝜏2(𝑡))

)
,

d
d𝑡
𝑈𝛿2(𝑡) = 𝑓

(
𝑡, 𝑈𝛿2 (𝑡), 𝜙𝛿2(𝑡 − 𝜏1(𝑡)),

d
d𝑡
𝜙𝛿2 (𝑡 − 𝜏2(𝑡))

)
.

By subtracting these equations for 𝑡 ∈ [𝑡0, 𝜁1) and utilizing the Lipschitz condition (24), we obtain|||| d
d𝑡
𝑈𝛿1(𝑡) −

d
d𝑡
𝑈𝛿2(𝑡)

|||| ⩽ 𝛾 |||𝑈𝛿1 (𝑡) − 𝑈𝛿2 (𝑡)
||| + 𝛾 |||𝜙𝛿1 (𝑡 − 𝜏1(𝑡)) − 𝜙𝛿2 (𝑡 − 𝜏1(𝑡))

|||
+𝛾

|||| d
d𝑡
𝜙𝛿1(𝑡 − 𝜏2(𝑡)) −

d
d𝑡
𝜙𝛿2(𝑡 − 𝜏2(𝑡))

|||| . (26)

Then, (25) implies |||| d
d𝑡
𝑈𝛿1(𝑡) −

d
d𝑡
𝑈𝛿2(𝑡)

|||| ⩽ 2𝛾𝜀 + 𝛾 |||𝑈𝛿1 (𝑡) − 𝑈𝛿2 (𝑡)
||| . (27)

Applying Lemma 1 to (27), results|||𝑈𝛿1(𝑡) − 𝑈𝛿2(𝑡)
||| ⩽ Λ1,1𝜀 for 𝑡 ∈ [𝑡0, 𝜁1) whenever 𝛿1, 𝛿2 ∈ (0, 𝛿(𝑡)], (28)
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where Λ1,1 = 2(𝑒𝛾ℎ1 − 1) > 0. In addition, we can deduce from (27) and (28) that|||| d
d𝑡
𝑈𝛿1(𝑡) −

d
d𝑡
𝑈𝛿2(𝑡)

|||| ⩽ Λ1,2𝜀 for 𝑡 ∈ [𝑡0, 𝜁1) whenever 𝛿1, 𝛿2 ∈ (0, 𝛿(𝑡)], (29)

where Λ1,2 = 2𝛾𝑒𝛾ℎ1 > 0. Thus, with Λ1 = max{Λ1,1,Λ1,2}, we have|||𝑈𝛿1 (𝑡) − 𝑈𝛿2 (𝑡)
||| ⩽ Λ1𝜀, for 𝑡 ∈ [𝑡0, 𝜁1) whenever 𝛿1, 𝛿2 ∈ (0, 𝛿(𝑡)],

and |||| d
d𝑡
𝑈𝛿1 (𝑡) −

d
d𝑡
𝑈𝛿2 (𝑡)

|||| ⩽ Λ1𝜀,

and the conditions that apply on [𝑡−1, 𝑡0) apply on [𝑡0, 𝜁1) provided that 𝜀 is replaced by Λ1𝜀. It follows that the preceding
arguments can be repeated on the subinterval [𝜁1, 𝜁2) to establish (with the same method of proof) that|||𝑈𝛿1 (𝑡) − 𝑈𝛿2 (𝑡)

||| ⩽ Λ2𝜀, for 𝑡 ∈ [𝜁1, 𝜁2) whenever 𝛿1, 𝛿2 ∈ (0, 𝛿(𝑡)],|||| d
d𝑡
𝑈𝛿1 (𝑡) −

d
d𝑡
𝑈𝛿2 (𝑡)

|||| ⩽ Λ2𝜀.

By induction, for each subinterval [𝜁𝑘−1, 𝜁𝑘) contained in [𝑡0, 𝑇 )|||𝑈𝛿1 (𝑡) − 𝑈𝛿2(𝑡)
||| ⩽ Λ𝑘𝜀, for 𝑡 ∈ [𝜁𝑘−1, 𝜁𝑘) whenever 𝛿1, 𝛿2 ∈ (0, 𝛿(𝑡)],|||| d

d𝑡
𝑈𝛿1(𝑡) −

d
d𝑡
𝑈𝛿2 (𝑡)

|||| ⩽ Λ𝑘𝜀.

It follows that there exists a value Λ∗(𝑡) ∈ (0,∞) such that, for all 𝑡 ∈ [𝑡0, 𝑇 ),|||𝑈𝛿1 (𝑡) − 𝑈𝛿2 (𝑡)
||| ⩽ Λ∗(𝑡) sup

𝑠∈[𝑡−1,𝑡0]

|||𝜙𝛿1 (𝑠) − 𝜙𝛿2 (𝑠)
||| . (30)

This discussion implies the existence of 𝑈∗(𝑡) such that 𝑈𝛿(𝑡) converges pointwise to 𝑈∗(𝑡) for 𝑡 ∈ [𝑡0, 𝑇 ) as 𝛿 → 0. In view of
the uniqueness of the solution 𝑈 (𝑡) of (13), 𝑈∗(𝑡) = 𝑈 (𝑡) and we have established the pointwise convergence of 𝑈𝛿(𝑡) to 𝑈 (𝑡)
for all 𝑡 ∈ [𝑡0, 𝑇 ). □

Theorem 3. Suppose that the NDDE (13) with a piecewise continuous initial function 𝜙(𝑡) has a unique solution 𝑈 (𝑡). Then,
with the aforementioned assumptions on 𝜙𝛿(𝑡), 𝑈𝛿(𝑡) converges in the mean to 𝑈 (𝑡) as 𝛿 → 0.

Proof. Consider the mesh
{
𝜂𝛿,𝑖

}3𝐾
𝑖=−3 with the mesh points

𝑡−1 < 𝑡0 − 𝜎 − 𝛿 < 𝑡0 − 𝜎 < 𝑡0 < 𝑡1 − 𝜎 − 𝛿 < 𝑡1 − 𝜎 < 𝑡1 < ⋯ < 𝑇 .

By our assumptions, 𝜙(𝑡) = 𝜙𝛿(𝑡) for 𝑡 ∈ [𝑡−1, 𝑡0 − 𝜎 − 𝛿] and also 𝜙(𝑡0) = 𝜙𝛿(𝑡0); therefore, the uniqueness of the solution
implies that 𝑈 (𝑡) = 𝑈𝛿(𝑡) on the subinterval [𝜂𝛿,0, 𝜂𝛿,1).

Let 𝑡 ∈ [𝜂𝛿,1, 𝜂𝛿,2). From (13) we obtain

𝑈 (𝑡) = 𝑈 (𝜂𝛿,1) +

𝑡

∫
𝜂𝛿,1

𝑓 (𝑠, 𝑈 (𝑠), 𝜙(𝑠 − 𝜏1(𝑠)),
d
d𝑠

𝜙(𝑠 − 𝜏2(𝑠))) d𝑠,

𝑈𝛿(𝑡) = 𝑈𝛿(𝜂𝛿,1) +

𝑡

∫
𝜂𝛿,1

𝑓 (𝑠, 𝑈𝛿(𝑠), 𝜙𝛿(𝑠 − 𝜏1(𝑠)),
d
d𝑠

𝜙𝛿(𝑠 − 𝜏2(𝑠))) d𝑠.

Note that 𝑈 (𝜂𝛿,1) = 𝑈𝛿(𝜂𝛿,1). By subtracting these equations and utilizing the Lipschitz condition (24), we get

||𝑈 (𝑡) − 𝑈𝛿(𝑡)|| ⩽ 𝛾

⎛⎜⎜⎜⎝
𝑡

∫
𝜂𝛿,1

||𝑈 (𝑠) − 𝑈𝛿(𝑠)|| d𝑠 +
𝑡

∫
𝜂𝛿,1

||𝜙(𝑠 − 𝜏1(𝑠)) − 𝜙𝛿(𝑠 − 𝜏1(𝑠))|| d𝑠
+

𝑡

∫
𝜂𝛿,1

|||| d
d𝑠

𝜙(𝑠 − 𝜏2(𝑠)) −
d
d𝑠

𝜙𝛿(𝑠 − 𝜏2(𝑠))
|||| d𝑠

⎞⎟⎟⎟⎠ . (31)
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We also have lim𝛿→0
‖‖𝜙𝛿(𝑡) − 𝜙(𝑡)‖‖𝐿1[𝑡−1,𝑡0]

= 0 and lim𝛿→0
‖‖‖ d

d𝑡
𝜙𝛿(𝑡) −

d
d𝑡
𝜙(𝑡)‖‖‖𝐿1[𝑡−1,𝑡0]

= 𝐽0. Thus, for a given constant 𝜀 > 0,
there exists a value 𝛿∗ > 0 such that, when 𝛿 ∈ (0, 𝛿∗] and 𝑡 ∈ [𝜂𝛿,1, 𝜂𝛿,2),

𝑡

∫
𝜂𝛿,1

||𝜙(𝑠 − 𝜏1(𝑠)) − 𝜙𝛿(𝑠 − 𝜏1(𝑠))|| d𝑠 ⩽ 𝜀,

𝑡

∫
𝜂𝛿,1

|||| d
d𝑠

𝜙(𝑠 − 𝜏2(𝑠)) −
d
d𝑠

𝜙𝛿(𝑠 − 𝜏2(𝑠))
|||| d𝑠 ⩽ 𝐽0 + 𝜀.

Therefore, when 𝛿 ∈ (0, 𝛿∗] inequality (31) can be rewritten as

||𝑈 (𝑡) − 𝑈𝛿(𝑡)|| ⩽ 𝛾(2𝜀 + 𝐽0) + 𝛾

𝑡

∫
𝜂𝛿,1

||𝑈 (𝑠) − 𝑈𝛿(𝑠)|| d𝑠. (32)

Introducing 𝐴 = 𝛾
(
2𝜀 + 𝐽0

)
, 𝐵 = 𝛾 and 𝑓 (𝑡) = ∫ 𝑡

𝜂𝛿,1
||𝑈 (𝑠) − 𝑈𝛿(𝑠)|| d𝑠 in Lemma 1, and with 𝑡 = 𝜂𝛿,2, we can conclude that

𝜂𝛿,2

∫
𝜂𝛿,1

||𝑈 (𝑡) − 𝑈𝛿(𝑡)|| d𝑡 ⩽ (
2𝜀 + 𝐽0

) (
𝑒𝛾𝛿 − 1

)
.

Consequently, there exists a value 𝛿∗ > 0 such that for 𝛿 ∈ (0, 𝛿∗],
𝜂𝛿,2

∫
𝜂𝛿,1

||𝑈 (𝑡) − 𝑈𝛿(𝑡)|| d𝑡 ⩽ Δ1𝜀,

where Δ1 = 2𝜀 + 𝐽0.
This shows that 𝑈𝛿(𝑡) converges in the mean to 𝑈 (𝑡) in the subinterval [𝜂𝛿,1, 𝜂𝛿,2) as 𝛿 → 0. Moreover, considering the

pointwise convergence of 𝑈𝛿(𝑡) to 𝑈 (𝑡), there exist constants Λ1, 𝛿 > 0 such that for 𝛿 ∈ (0, 𝛿],||𝑈 (𝜂𝛿,2) − 𝑈𝛿(𝜂𝛿,2)|| ⩽ Λ1𝜀. (33)

Next, let 𝑡 ∈ [𝜂𝛿,2, 𝜂𝛿,3). With the same method of proof and with the aid of (33), we can establish that, if 𝛿 ∈ (0, 𝛿] then
𝜂𝛿,3

∫
𝜂𝛿,2

||𝑈 (𝑡) − 𝑈𝛿(𝑡)|| d𝑡 ⩽ 1
𝛾
(𝑒𝛾𝜎 − 1) ||𝑈 (𝜂𝛿,2) − 𝑈𝛿(𝜂𝛿,2)|| ⩽ Δ2𝜀,

where Δ2 =
Λ1

𝛾
(𝑒𝛾𝜎 − 1) and, moreover, ||𝑈 (𝜂𝛿,3) − 𝑈𝛿(𝜂𝛿,3)|| ⩽ Λ1𝜀. (34)

It follows that the preceding arguments can be repeated to establish that for 𝛿 ∈ (0, 𝛿],
𝜂𝛿,4

∫
𝜂𝛿,3

||𝑈 (𝑡) − 𝑈𝛿(𝑡)|| d𝑡 ⩽ Δ3𝜀,

where Δ3 =
Λ1

𝛾

(
𝑒𝛾(ℎ1−𝜎−𝛿) − 1

)
, and there exists a constant Λ2 > 0 such that||𝑈 (𝜂𝛿,4) − 𝑈𝛿(𝜂𝛿,4)|| ⩽ Λ2𝜀. (35)

Now, whenever 𝑡 ∈ [𝜂𝛿,4, 𝜂𝛿,5) we also require an upper bound for ∫ 𝜂𝛿,2
𝜂𝛿,1

||| d
d𝑡
𝑈 (𝑡) − d

d𝑡
𝑈𝛿(𝑡)

||| d𝑡. To this end, we can verify from
(13) and the Lipschitz condition (24) that

𝜂𝛿,2

∫
𝜂𝛿,1

|||| d
d𝑡
𝑈 (𝑡) − d

d𝑡
𝑈𝛿(𝑡)

|||| d𝑡 ⩽ 𝛾Δ1(1 + 𝜀).

This inequality together with the preceding arguments, for 𝛿 ∈ (0, 𝛿] results
𝜂𝛿,5

∫
𝜂𝛿,4

||𝑈 (𝑡) − 𝑈𝛿(𝑡)|| d𝑡 ⩽ Δ4𝜀,
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where Δ4 =
(
Δ1 + 𝛾Δ1 +

Δ2

𝛾

)
𝜀 + 𝛾Λ1. In addition, we have||𝑈 (𝜂𝛿,5) − 𝑈𝛿(𝜂𝛿,5)|| ⩽ Λ2𝜀. (36)

By induction, for each subinterval [𝜂𝛿,𝑖, 𝜂𝛿,𝑖+1), whenever 𝛿 ∈ (0, 𝛿], there exists a positive value Δ𝑖 such that
𝜂𝛿,𝑖+1

∫
𝜂𝛿,𝑖

||𝑈 (𝑡) − 𝑈𝛿(𝑡)|| d𝑡 ⩽ Δ𝑖 𝜀.

This discussion together with the uniqueness of the solution of (13) implies that 𝑈𝛿(𝑡) converges in the mean to 𝑈 (𝑡) as 𝛿 → 0.

□

5 PERTURBATION–COLLOCATION METHOD FOR APPROXIMATING
DISCONTINUOUS SOLUTIONS

Consider the subintervals 𝐼 (𝑘), 𝑘 = 1, 2,… , 𝐾 described in Subsection 3.1. On each 𝐼 (𝑘) the local solution 𝑈𝑘(𝑡) of the NDDE
(13) is smooth but the global solution 𝑈 (𝑡) may have jump discontinuities at some of the points 𝜁𝑘, which are caused by discon-
tinuity in the initial function. Therefore, the numerical scheme presented in Subsection 3.1 is no longer valid. The reason is that
the continuity condition at the interface of mesh intervals is generally not satisfied. Moreover, the size of the jumps at points
where the solution is discontinuous are not governed by the scheme (16). Nevertheless, the solution on the mesh interval 𝐼 (𝑘) is
defined by a differential equation in terms of the solutions obtained in preceding mesh intervals. Hence, a modification of the
scheme (16) can be derived over a successive new mesh intervals provided that the size of the jumps can be governed properly.

To this end, we first consider a perturbed initial function 𝜙𝛿(𝑡) as discussed in Subsection 3.2. Then, we utilize the perturbing
scheme proposed in11 and combine it with the multistep LGR collocation method of Subsection 3.1 to compute a continuous
numerical approximation 𝑈𝑁

𝛿 (𝑡) to 𝑈𝛿(𝑡). Since 𝑈𝛿(𝑡) has large derivatives in the vicinity of points where 𝑈 (𝑡) has jump dis-
continuities, a robust numerical procedure for computing approximations to 𝑈𝛿(𝑡) should take appropriately a small step-size
in the neighbourhood of discontinuity points. To meet this requirement in the explained multistep LGR collocation method, we
consider the set of mesh points 𝑀 = {𝜂𝛿,𝑖}3𝐾𝑖=−3 described in Theorem 3. We then follow the numerical scheme (16).

Note that, when 𝜎 = 0 it is desirable that 𝜙𝛿(𝑡) satisfies a sewing condition, which provides two-sided derivative for 𝑈𝛿(𝑡)
at all breaking points and more accurate numerical results would be obtained. In numerical experiments, we will show that the
multistep LGR collocation method interacts well with the proposed perturbation scheme even for small values of 𝛿.

Remark 1. It follows from Theorems 2 and 3 that, when the initial function is discontinuous, the NDDE (13) could be relatively
ill-condition with respect to the perturbation in the initial function. Indeed, due to accumulation of pointwise errors in a step
by step calculation, very small values of 𝛿 may be required to retrieve the accuracy of the solution on very large intervals that
could be numerically challenging.

6 NUMERICAL RESULTS

Consider the following nonlinear explicit NDDE,
d
d𝑡
𝑈 (𝑡) = 𝑈 (𝑡 − 1) d

d𝑡
𝑈 (𝑡 − 𝜏), (37)

with discontinuous initial functions

𝜙(𝑡) =
{

𝑡, 𝑡 < 0
1, 𝑡 = 0

d
d𝑡
𝜙(𝑡) =

{
1, 𝑡 < 0

−1, 𝑡 = 0. (38)

The condition d
d𝑡
𝜙(0) = −1 is imposed to fulfill the sewing condition. This problem attracts attention in11,37 because it can

only be rewritten in Hale’s form when 𝜏 = 1. We solve this problem for 𝜏 = 1 and 𝜏 = 2 by smoothing the initial functions as
described in Section 3.
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FIGURE 1 Numerical solutions of the perturbed problem (39)-(41) for 𝜏 = 1.

TABLE 1 The numerical errors at 𝑡 = 10 for 𝜏 = 1

𝛿 10−1 10−2 10−3 10−4

𝑁 = 5 5.02e − 02 3.10e − 02 2.92e − 02 2.90e − 02
𝑁 = 25 2.71e − 09 3.06e − 10 1.50e − 10 9.92e − 11

Derivatives must be interpreted as right-hand derivatives at the points {𝑛𝜏} for 𝑛 ∈ ℤ+. Figs. 1 –2 illustrate numerical
approximations to the solution of the perturbed problem

d
d𝑡
𝑈𝛿(𝑡) = 𝑈𝛿(𝑡 − 1) d

d𝑡
𝑈𝛿(𝑡 − 𝜏), 𝑡 ⩾ 0, (39)

𝜙𝛿(𝑡) =

{
𝑡, −𝜏 ⩽ 𝑡 ⩽ −𝛿
−2(1+𝛿)

𝛿3
𝑡3 − 3+4𝛿

𝛿2
𝑡2 − 𝑡 + 1, −𝛿 < 𝑡 ⩽ 0 , (40)

d
d𝑡
𝑈𝛿(𝑡) =

d
d𝑡
𝜙𝛿(𝑡), 𝑡 < 0. (41)

The qualitative behaviour of the approximate solution is clearly sensitive to the time lag value 𝜏. Moreover, it is observed that
the size of the jumps are governed properly in our method. Table 1 shows the numerical errors at 𝑡 = 10 for 𝜏 = 1 and various
values of 𝛿. The exact value of this case is 𝑈 (10) = 1. It is seen that the numerical errors decrease exponentially as 𝑁 increases.
Moreover, they decrease linearly as 𝛿 decreases. This demonstrates the efficiency and accuracy of the method explained in
Section 5.
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FIGURE 2 Numerical solutions of the perturbed problem (39)-(41) for 𝜏 = 2.

7 CONCLUSIONS

We have developed an efficient approach based on the hybrid of perturbation scheme and the adaptive LGR collocation method
for approximating discontinuous solutions of explicit NDDEs with constant or time dependent delays. The limiting behavior of
the solution 𝑈𝛿(𝑡) as 𝛿 → 0 was also discussed. The pointwise and mean convergence of the continuous solution of the perturbed
NDDE to the discontinuous solution of the original NDDE has been proved. There is scope for further work on the treatment of
NDDEs with vanishing and state-dependent delays.
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