References
1. Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Na.t Rev. Neurosci.13 : 701-712. (2012) doi: 10.1038/nrn3346
2. Thaiss, C. A., Zmora, N., Levy, M. & Elinav, E. The microbiome and innate immunity. Nature 535 : 65-74. (2016) doi: 10.1038/nature18847
3. Martin, R., Miquel, S., Langella, P. & Bermudez-Humaran, L. G. The role of metagenomics in understanding the human microbiome in health and disease. Virulence 5 : 413-423. (2014) doi: 10.4161/viru.27864
4. Boursier, J., et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 63 : 764-775. (2016) doi: 10.1002/hep.28356
5. Rowland, I. et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57 : 1-24. (2018) doi: 10.1007/s00394-017-1445-8
6. Vavre, F., Kremer, N. Microbial impacts on insect evolutionary diversification: from patterns to mechanisms. Curr. Opin. Insect. Sci. 4 : 29-34 (2014) doi: 10.1016/j.cois.2014.08.003
7. Delsuc, F., Metcalf, J. L., Wegener Parfrey, L., Song, S. J., Gonzalez, A. & Knight, R. Convergence of gut microbiomes in myrmecophagous mammals. Mol Ecol 23 : 1301-1317 (2014) doi: 10.1111/mec.12501
8. Hammer, T. J. & Bowers, M. D. Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179 : 1-14 (2015) doi: 10.1007/s00442-015-3327-1
9. Xavier, R. et al. A Risky Business? Habitat and Social Behavior Impact Skin and Gut Microbiomes in Caribbean Cleaning Gobies.Front Microbiol 10 : 716 (2019) doi: 10.3389/fmicb.2019.00716
10. Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans.Science 332 : 970-974 (2011) doi: 10.1126/science.1198719
11. Archie, E. A. & Tung, J. Social behavior and the microbiome.Curr. Opin. Behav. Sci. 6 : 28-34 (2015) doi: 10.1016/j.cobeha.2015.07.008
12. Hird, S. M., Sanchez, C., Carstens, B. C. & Brumfield, R. T. Comparative Gut Microbiota of 59 Neotropical Bird Species. Front. Microbiol. 6 : 1403 (2015) doi: 10.3389/fmicb.2015.01403
13. Xavier, .R et al . The effects of environment and ontogeny on the skin microbiome of two Stegastes damselfishes (Pomacentridae) from the eastern Caribbean Sea. Mar. Biol . 167 , 102 (2020). doi: 10.1007/s00227-020-03717-7
14. Bletz, M. C., et al. Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat. Commun. 7 : 13699 (2016). doi: 10.1038/ncomms13699
15. Colston, T. J., & Jackson, C. R. Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol. Ecol.  25 : 3776–3800 (2016). https://doi.org/10.1111/mec.13730
16. Jiang, H. Y. et al. Diets Alter the Gut Microbiome of Crocodile Lizards. Front. Microbiol. 8 : 2073 (2017). doi: 10.3389/fmicb.2017.02073
17. Littleford-Colquhoun, B. L., Weyrich, L. S., Kent, N. & Frere, C. H. City life alters the gut microbiome and stable isotope profiling of the eastern water dragon (Intellagama lesueurii ). Mol. Ecol. 28 : 4592-4607 (2019). doi: 10.1111/mec.15240
18. Smith, S. N., Colston, T. J., Siler, C. D. Venomous Snakes Reveal Ecological and Phylogenetic Factors Influencing Variation in Gut and Oral Microbiomes. Front. Microbiol. 12 : 657754 (2021). doi: 10.3389/fmicb.2021.657754
19. Bicho, R. C. et al . Thyroid disruption in the lizardPodarcis bocagei exposed to a mixture of herbicides: a field study. Ecotoxicology 22 : 156-165 (2013). doi: 10.1007/s10646-012-1012-2
20. Luís, C., Rodrigues, I., Guerreiro, S. G., Fernandes, R. & Soares, R. Regeneration in the Podarcis bocagei model organism: a comprehensive immune-/histochemical analysis of the tail.Zoomorphology 138 : 399-407 (2019). doi: 10.1007/s00435-019-00452-6
21. Baldo, L., Riera, J. L., Mitsi, K. & Pretus, J. L. Processes shaping gut microbiota diversity in allopatric populations of the endemic lizard Podarcis lilfordi  from Menorcan islets (Balearic Islands). FEMS Microb. Ecol. 94 : fix186 (2018). doi:10.1093/femsec/fix186
22. Bunker, M. E., Martin, M. O., Weiss, S. L. Recovered microbiome of an oviparous lizard differs across gut and reproductive tissues, cloacal swabs, and faeces. Mol. Ecol. Res. (2021) Doi:10.1111/1755-0998.13573
23. Carretero, M. A., Galán, P. & Salvador, A. Lagartija lusitana–Podarcis guadarramae (Boscá, 1916). (Eds. Enciclopedia Virtual de los Vertebrados Españoles). Museo Nacional de Ciencias Naturales, Madrid. (2015)
24. Kaliontzopoulou, A., Adams, D. C., van der Meijden, A., Perera, A. & Carretero, M. A. Relationships between head morphology, bite performance and ecology in two species of Podarcis wall lizards.Evol. Ecol . 26 : 825-845 (2011). doi: 10.1007/s10682-011-9538-y
25. González de la veja, J. P., González-García, J. P., García-Pulido, T. & González-García, G. Podarcis sicula (Lagartija italiana), primera cita para Portugal. Boletín de la Asociación Herpetológica Española 12 (2001).
26. Vervust, B., Pafilis, P., Valakos, E. D. & Van Damme, R. Anatomical and physiological changes associated with a recent dietary shift in the lizard Podarcis sicula . Physiol. Biochem. Zool.83 : 632-642 (2010). doi: 10.1086/651704
27. Carretero, M. A. & Silva-Rocha, I. La lagartija italiana (Podarcis sicula ) en la península ibérica e islas Baleares.Ecology 22 : 4829-4841 (2015).
28. Damas-Moreira, I., Riley, J. L., Harris, D. J. & Whiting, M. J. Can behaviour explain invasion success? A comparison between sympatric invasive and native lizards. Animal Behaviour 151 : 195-202 (2019). doi: 10.1016/j.anbehav.2019.03.008
29. Damas-Moreira, I., Riley, J. L., Carretero, M. A., Harris, D. J. & Whiting, M. J. Getting ahead: exploitative competition by an invasive lizard. Behav. Ecol. Soc . 74 (2020). doi: 10.1007/s00265-020-02893-2
30. Mačát, Z., Veselý, M. & Jablonski, D. New case of fruit eating observation in Podarcis siculus (Rafinesque-Schmaltz, 1810) (Lacertidae) from Croatia. Biharean Biologist 9 : 158-159 (2005).
31. Juan, F. La lagartija ibérica (Podarcis hispanica ) en la Sierra de Segura, Albacete: biometría, etología y folidosis.Al-Basit: Revista de Estudios Albacetenses 40 : 111-134 (1997).
32. Sá-Sousa, P. The introduced Madeiran lizard, Lacerta(Teira ) dugesii in Lisbon. Amphibia-Reptilia16 : 211-214 (1995).
33. Sadek, R. A. The diet of the Madeiran lizard Lacerta dugesii .Zool. J. Linn. Soc. , 73 : 313-341 (1981).
34. Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79 : 5112-5120 (2013). doi: 10.1128/AEM.01043-13
35. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. & Holmes, S. P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13 : 581-583 (2016). doi: 10.1038/nmeth.3869
36. Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35 : 7188-7196 (2007). doi: 10.1093/nar/gkm864
37. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41 : D590-596 (2013). doi: 10.1093/nar/gks1219
38. McMurdie, P. J, & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8 : e61217 (2013). doi: 10.1371/journal.pone.0061217
39. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol15 : 550 (2014). doi: 10.1186/s13059-014-0550-8
40. Oksanen, J. et al. Package ‘vegan’. Community ecology package 2: 1-295 (2013). https://cran.r-project.org/web/packages/vegan/index.html
41. Kassambara, A & Kassambara, M. A. Package ‘ggpubr’. (2020)https://CRAN.R-project.org/package=ggpubr
42. Shenhav, L. et al. FEAST: fast expectation-maximization for microbial source tracking. Nat Methods 16 : 627-632 (2019). doi: 10.1038/s41592-019-0431-x
43. Holmes, I. A., Monagan IV, Jr., Rabosky, D. L. & Davis Rabosky, A. R. Metabolically similar cohorts of bacteria exhibit strong cooccurrence patterns with diet items and eukaryotic microbes in lizard guts.Ecol Evol 9 : 12471-12481 (2019). doi: 10.1002/ece3.5691
44. Montoya-Ciriaco, N. et al. Dietary effects on gut microbiota of the mesquite lizard Sceloporus grammicus (Wiegmann, 1828) across different altitudes. Microbiome 8 : 6 (2020). doi: 10.1186/s40168-020-0783-6
45. Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra ) gastrointestinal microbiomes. ISME J 7 : 1344-1353 (2013). doi: 10.1038/ismej.2013.16
46. Moeller, A. H., Peeters, M., Ndjango, J. B., Li, Y., Hahn, B. H. & Ochman, H. Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Res 23 : 1715-1720 (2013). doi: 10.1101/gr.154773.113
47. Moeller, A. H. et al. Rapid changes in the gut microbiome during human evolution. Proc Natl Acad Sci USA 111 : 16431-16435 (2014). doi: 10.1073/pnas.1419136111
48. Martin, M. O., Gilman, F. R. & Weiss SL Sex-specific asymmetry within the cloacal microbiota of the striped plateau lizard,Sceloporus virgatus . Symbiosis 51 : 97-105 (2010). doi: 10.1007/s13199-010-0078-y
49. Downes, S. & Bauwens, D. An experimental demonstration of direct behavioural interference in two Mediterranean lacertid lizard species.Animal Behaviour 63 : 1037-1046 (2002). doi: 10.1006/anbe.2002.3022
50. Ribeiro, R. & Sá-Sousa, P. Where to live in Lisbon: urban habitat used by the introduced Italian wall lizard (Podarcis siculus ).Basic and Applied Herpetology 32 : 57-70 (2018). doi: 10.11160/bah.101
Acknowledgements: The authors would like to thank Isabel Ferreira for her help during fieldwork. Work supported by National Funds through FCT-Fundação para a Ciência e a Tecnologia in the scope of the project UIDB/50027/2020. This work was also partially funded by the European Regional Development Fund (ERDF) through the COMPETE program and by National Funds through FCT - Foundation for Science and Technology (project PTDC/BIA-MIC/27995/2017 POCI01-0145- FEDER-027995); RX was supported by FCT under the Programa Operacional Potencial Humano – Quadro de Referência Estratégico Nacional funds from the European Social Fund and Portuguese Ministério da Educação e Ciência (2020.00854.CEECIND/CP1601/CT0001), AP was supported by FCT (SFRH/BD/144928/2019).
Data Accessibility: Data will be deposited in NCBI’s Short Read Archive (SRA) upon acceptance.
Competing Interests: The authors have no competing interests.
Author Contributions: All authors contributed to the writing of the manuscript; DV collected samples, performed laboratory work and analyzed the data; DJH conceived the work, collected samples and contributed with funding; ID-M collected samples; AP performed laboratory work; RX conceived the work, supervised data analysis and contributed with funding.
Ethics approval: Experimental protocols and research were approved by the Portuguese Institute for Conservation of Nature and Forests (ICNF) (License 703/2021/CAPT).