References
[1] Ramsden, CE., Ringel, A., Feldstein, AE., Taha, AY., Maclntosh, BA., Hibbeln, JR., et al. (2012). Lowering dietary linoleic acid reduces bioactive oxidized linoleic acid metabolites in humans. Prostaglandins, Leukotrienes and Essential Fatty Acids, 87, 135-141.
[2] Zhang, Y., Wu, Y., Chen, S., Yang, B., Zhang, H., Wang, X., et al. (2021). Flavor of rapeseed oil: An overview of odorants, analytical techniques, and impact of treatment. Comprehensive reviews in food science and food safety, 20, 3983-4018.
[3] Gan, H. L., Man, Che. Y. B., Tan, C. P., NorAini, I., Nazimah, S. A. H. (2005). Characterisation of vegetable oils by surface acoustic wave sensing electronic nose. Food Chemistry, 89, 507-518.
[4] Haddi, Z., Alami, H., Bari, El. N., Tounsi, M., Barhoumi, H., Maaref, A., Jaffrezic-Renault, N., Bouchikhi, B. (2013). Electronic nose and tongue combination for improved classification of Moroccan virgin olive oil profiles. Food Research International, 54, 1488-1498.
[5] Yang, C., Wang, C., Wang, M., Qin, X., Hao, G., Kang, M., et al. (2021). A novel deodorization method of edible oil by using ethanol steam at low temperature. Journal of food science, 86, 394-403.
[6] Guadarrama, A., Mendz, M. L. R., Saja, J. A., Ros, J. L., Olas, J. M. (2000). Array of sensors based on conducting polymers for the quality control of the aroma of the virgin olive oil. Sensors and Actuators B: Chemical, 69, 276–282.
[7] Guadarrama, A., Mendz, M. L. R., Sanz, C., Saja, J. A., Ros, J. L. (2001). Electronic nose based on conducting quality control of the olive oil aroma. Analytica Chimica Acta, 432, 283–292.
[8] Roschel, G., da Silveira, T., Cajaíba, L., Ferrari, R., Castro, I. (2021). Combination of natural strategies to improve the oxidative stability of echium seed oil. Journal of food science, 86, 411-419.
[9] Zhao, Y., Xia, Q., Yin, J., Yu, H., Fu, P. (2011). Photoirradiation of polycyclic aromatic hydrocarbon diones by UVA light leading to lipid peroxidation. Chemosphere, 85, 83-91.
[10] Dutta, R. K., Nenavathu, B. P., Gangishetty, M. K., Reddy, A. V. R. (2012). Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid Peroxidation. Colloids and Surfaces B: Biointerfaces, 94, 143-150.
[11] Zorica, D., Jelena, M., Gordana, Z., Dubravka, B., Nebojša, M., & Katarina, Š. (2020). Effect of pomegranate peel extract on the oxidative stability of pomegranate seed oil. Food chemistry, 333, 127501.
[12] Singh, G., Marimuthu, P., de Heluani, C. S.,  Sreelatha, S.,  Jeyachitra, A., Padma, P., Catalan, C. (2005). Chemical constituents and antimicrobial and antioxidant potentials of essential oil and acetone extract of Nigella sativa seeds. Journal of the Science of Food and Agriculture, 85, 2297–2306.
[13] Mei, L., Decker, E. A., McClements, D. J. (1998). Evidence of iron association with emulsion droplets and its impact on lipid oxidation. Journal of the American Oil Chemists Society, 46, 5072–5077.
[14] Almansa, I., Miranda, M., Jareno, E., Silvestre, D. (2013). Lipid peroxidation in infant formulas: Longitudinal study at different storage temperatures. International Dairy Journal, 33, 83-87.
[15] Ara, K. M., Karami, M., Raofie, F. (2014). Application of response surface methodology for the optimization of supercritical carbon dioxide extraction and ultrasound-assisted extraction of Capparis spinosa seed oil. The Journal of Supercritical Fluids, 85, 173-182.
[16] Buratti, S., Benedetti, S., Cosio, M. S. (2005). An electronic nose to evaluate olive oil oxidation during storage. Italian Journal of Food Science, 2(17), 203–210.
[17] Sassaki, G. L., Souza, L. M., Serrato, R. V., Cipriani, T. R., Gorin, P. A. J., Iacomini, M. (2008). Application of acetate derivatives for gas chromatography–mass spectrometry: Novel approaches on carbohydrates, lipids and amino acids analysis. Journal of Chromatography A, 1208, 215-222.
[18] Li, Y. H., Jiang, B., Zhang, T., Mu, W. M., Liu, J. (2008). Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chemistry 106:444-450.
[19] Wang, C. Y., Wang, S. Y., Yin, J. J., Parry, J., Yu, L. (2007). Enhancing antioxidant, antiproliferation, and free radical scavenging activities in strawberries with essential oils. Journal of Agricultural and Food Chemistry, 55, 6527-6532.
[20] Xie, Y., Zhang, J., Wang, C., Fan, Q., Zhang, Y. (2020). Vanillin an active constituent from Vanilla bean induces apoptosis and inhibits proliferation in human colorectal adenocarcinoma cell line. Pharmacognosy Magazine, 67, 197-200.
[21] Lutterodt, H., Slavin, M., Whent, M., Turner, E., Yu, L. (2011). Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours. Food Chemistry, 128, 391–399.
[22] Truong, T. B., Nguyen, T. H. N., Nguyen, T. M. T., Tran, L. T., Dang, T. P. T. (2020). Elephantopus mollis Kunth extracts induce antiproliferation and apoptosis in human lung cancer and myeloid leukemia cells. Journal of ethnopharmacology, 263, 113222.
[23] Sreelatha, S., Jeyachitra, A., & Padma, P. (2011). Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food & Chemical Toxicology, 49, 1270-1275.
[24] Schweizer-Berberich, P. M., Vaihinger, S., Gopel, W. (1994). Characterisation of food freshness with sensor arrays. Sensors and Actuators B: Chemical, 18 (1-3), 282–290.
[25] Angerosa, F., Basti, C., Vito, R. (1999). Virgin olive oil volatile compounds from lipoxygenase pathway and characterisation of some Italian cultivars. Journal of Agriculture and Food Chemistry, 47, 836–839.
[26] Kalua, C. M., Allen, M. S., Bedgood Jr, D. R., Bishop, A. G., Prenzler, P. D., Robards, K. (2007). Olive oil volatile compounds, flavour development and quality: A critical review. Food Chemistry, 100 (1), 273-286.
[27] Tura, D., Failla, O., Bassi, D., Pedò, S., Serraiocco, A. (2008). Cultivar influence on virgin olive (Olea europea L.) oil flavor based on aromatic compounds and sensorial profile. Scientia Horticulturae, 2008, 118 (2), 139-148.
[28] Becerra-Herrera, M., Sánchez-Astudillo, M., Beltrán, R., Sayago, A. (2014). Determination of phenolic compounds in olive oil: New method based on liquideliquid micro extraction and ultra high performance liquid chromatography-tripleequadrupole mass spectrometry. LWT-Food and Technology, 57, 49-57.
[29] Harbeoui, H., Bettaieb Rebey, I., Ouerghemmi, I., Aidi Wannes, W., Zemni, H., Zoghlami, N., et al. (2018). Biochemical characterization and antioxidant activity of grape (Vitis vinifera L.) seed oils from nine Tunisian varieties. Journal of Food Biochemistry, 42, e12595.
[30] Hostmark, A. T., Haug, A. (2013). Percentage oleic acid is inversely related to percentage arachidonic acid in total lipids of rat serum. Lipids in Health and Disease, 12, 40.
[31] Teres, S. G., Barcelo-Coblijn, M., Benet, R., Alvarez, R., Bressani, R., Halver, J. E., et al. (2008). Oleic acid concentration is responsible for the reduction in blood pressure induced by olive oil. Proceeding of the National Academy of Sciences of the United States of America, 105, 13811–13816.
[32] Niva, S., Joseph, P. (2005). High oleic peanut oil modulates promotion stage in lung tumergenesis of mice treated with methyl nitrosourea. Food Science and Technology Research, 11, 231–235.
[33] Pan L., Zhou, Y., Yin HT., Hui, H., Guo, YZ., Xie, XM. (2022). Omega-3 Polyunsaturated Fatty Acids Can Reduce C-Reactive Protein in Patients with Cancer: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrition and Cancer, 74, 840-851.
[34] Yi, C., Shi, J., Kramer, J., Xue, S., Jiang, Y., Zhang, M., et al. (2009). Fatty acid composition and phenolic antioxidants of winemaking pomace powder. Food Chemistry, 114, 570–576.