References
[1] Ramsden, CE., Ringel, A., Feldstein, AE., Taha, AY., Maclntosh,
BA., Hibbeln, JR., et al. (2012). Lowering dietary linoleic acid reduces
bioactive oxidized linoleic acid metabolites in humans. Prostaglandins,
Leukotrienes and Essential Fatty Acids, 87, 135-141.
[2] Zhang, Y., Wu, Y., Chen, S., Yang, B., Zhang, H., Wang, X., et
al. (2021). Flavor of rapeseed oil: An overview of odorants, analytical
techniques, and impact of treatment. Comprehensive reviews in food
science and food safety, 20, 3983-4018.
[3] Gan, H. L., Man, Che. Y. B., Tan, C. P., NorAini, I., Nazimah,
S. A. H. (2005). Characterisation of vegetable oils by surface acoustic
wave sensing electronic nose. Food Chemistry, 89, 507-518.
[4] Haddi, Z., Alami, H., Bari, El. N., Tounsi, M., Barhoumi, H.,
Maaref, A., Jaffrezic-Renault, N., Bouchikhi, B. (2013). Electronic nose
and tongue combination for improved classification of Moroccan virgin
olive oil profiles. Food Research International, 54, 1488-1498.
[5] Yang, C., Wang, C., Wang, M., Qin, X., Hao, G., Kang, M., et al.
(2021). A novel deodorization method of edible oil by using ethanol
steam at low temperature. Journal of food science, 86, 394-403.
[6] Guadarrama, A., Mendz, M. L. R., Saja, J. A., Ros, J. L., Olas,
J. M. (2000). Array of sensors based on conducting polymers for the
quality control of the aroma of the virgin olive oil. Sensors and
Actuators B: Chemical, 69, 276–282.
[7] Guadarrama, A., Mendz, M. L. R., Sanz, C., Saja, J. A., Ros, J.
L. (2001). Electronic nose based on conducting quality control of the
olive oil aroma. Analytica Chimica Acta, 432, 283–292.
[8] Roschel, G., da Silveira, T., Cajaíba, L., Ferrari, R., Castro,
I. (2021). Combination of natural strategies to improve the oxidative
stability of echium seed oil. Journal of food science, 86, 411-419.
[9] Zhao, Y., Xia, Q., Yin, J., Yu, H., Fu, P. (2011).
Photoirradiation of polycyclic aromatic hydrocarbon diones by UVA light
leading to lipid peroxidation. Chemosphere, 85, 83-91.
[10] Dutta, R. K., Nenavathu, B. P., Gangishetty, M. K., Reddy, A.
V. R. (2012). Studies on antibacterial activity of ZnO nanoparticles by
ROS induced lipid Peroxidation. Colloids and Surfaces B: Biointerfaces,
94, 143-150.
[11] Zorica, D., Jelena, M., Gordana, Z., Dubravka, B., Nebojša, M.,
& Katarina, Š. (2020). Effect of pomegranate peel extract on the
oxidative stability of pomegranate seed oil. Food chemistry, 333,
127501.
[12] Singh, G., Marimuthu, P., de Heluani, C. S.,
Sreelatha,
S., Jeyachitra, A., Padma, P., Catalan, C. (2005). Chemical
constituents and antimicrobial and antioxidant potentials of essential
oil and acetone extract of Nigella sativa seeds. Journal of the Science
of Food and Agriculture, 85, 2297–2306.
[13] Mei, L., Decker, E. A., McClements, D. J. (1998). Evidence of
iron association with emulsion droplets and its impact on lipid
oxidation. Journal of the American Oil Chemists Society, 46, 5072–5077.
[14] Almansa, I., Miranda, M., Jareno, E., Silvestre, D. (2013).
Lipid peroxidation in infant formulas: Longitudinal study at different
storage temperatures. International Dairy Journal, 33, 83-87.
[15] Ara, K. M., Karami, M., Raofie, F. (2014). Application of
response surface methodology for the optimization of supercritical
carbon dioxide extraction and ultrasound-assisted extraction of Capparis
spinosa seed oil. The Journal of Supercritical Fluids, 85, 173-182.
[16] Buratti, S., Benedetti, S., Cosio, M. S. (2005). An electronic
nose to evaluate olive oil oxidation during storage. Italian Journal of
Food Science, 2(17), 203–210.
[17] Sassaki, G. L., Souza, L. M., Serrato, R. V., Cipriani, T. R.,
Gorin, P. A. J., Iacomini, M. (2008). Application of acetate derivatives
for gas chromatography–mass spectrometry: Novel approaches on
carbohydrates, lipids and amino acids analysis. Journal of
Chromatography A, 1208, 215-222.
[18] Li, Y. H., Jiang, B., Zhang, T., Mu, W. M., Liu, J. (2008).
Antioxidant and free radical-scavenging activities of chickpea protein
hydrolysate (CPH). Food Chemistry 106:444-450.
[19] Wang, C. Y., Wang, S. Y., Yin, J. J., Parry, J., Yu, L. (2007).
Enhancing antioxidant, antiproliferation, and free radical scavenging
activities in strawberries with essential oils. Journal of Agricultural
and Food Chemistry, 55, 6527-6532.
[20] Xie, Y., Zhang, J., Wang, C., Fan, Q., Zhang, Y. (2020).
Vanillin an active constituent from Vanilla bean induces apoptosis and
inhibits proliferation in human colorectal adenocarcinoma cell line.
Pharmacognosy Magazine, 67, 197-200.
[21] Lutterodt, H., Slavin, M., Whent, M., Turner, E., Yu, L.
(2011). Fatty acid composition, oxidative stability, antioxidant and
antiproliferative properties of selected cold-pressed grape seed oils
and flours. Food Chemistry, 128, 391–399.
[22] Truong, T. B., Nguyen, T. H. N., Nguyen, T. M. T., Tran, L. T.,
Dang, T. P. T. (2020). Elephantopus mollis Kunth extracts induce
antiproliferation and apoptosis in human lung cancer and myeloid
leukemia cells. Journal of ethnopharmacology, 263, 113222.
[23] Sreelatha, S., Jeyachitra, A., & Padma, P. (2011).
Antiproliferation and induction of apoptosis by Moringa oleifera leaf
extract on human cancer cells. Food & Chemical Toxicology, 49,
1270-1275.
[24] Schweizer-Berberich, P. M., Vaihinger, S., Gopel, W. (1994).
Characterisation of food freshness with sensor arrays. Sensors and
Actuators B: Chemical, 18 (1-3), 282–290.
[25] Angerosa, F., Basti, C., Vito, R. (1999). Virgin olive oil
volatile compounds from lipoxygenase pathway and characterisation of
some Italian cultivars. Journal of Agriculture and Food Chemistry, 47,
836–839.
[26] Kalua, C. M., Allen, M. S., Bedgood Jr, D. R., Bishop, A. G.,
Prenzler, P. D., Robards, K. (2007). Olive oil volatile compounds,
flavour development and quality: A critical review. Food Chemistry, 100
(1), 273-286.
[27] Tura, D., Failla, O., Bassi, D., Pedò, S., Serraiocco, A.
(2008). Cultivar influence on virgin olive (Olea europea L.) oil flavor
based on aromatic compounds and sensorial profile. Scientia
Horticulturae, 2008, 118 (2), 139-148.
[28] Becerra-Herrera, M., Sánchez-Astudillo, M., Beltrán, R.,
Sayago, A. (2014). Determination of phenolic compounds in olive oil: New
method based on liquideliquid micro extraction and ultra high
performance liquid chromatography-tripleequadrupole mass spectrometry.
LWT-Food and Technology, 57, 49-57.
[29] Harbeoui, H., Bettaieb Rebey, I., Ouerghemmi, I., Aidi Wannes,
W., Zemni, H., Zoghlami, N., et al. (2018). Biochemical characterization
and antioxidant activity of grape (Vitis vinifera L.) seed oils from
nine Tunisian varieties. Journal of Food Biochemistry, 42, e12595.
[30] Hostmark, A. T., Haug, A. (2013). Percentage oleic acid is
inversely related to percentage arachidonic acid in total lipids of rat
serum. Lipids in Health and Disease, 12, 40.
[31] Teres, S. G., Barcelo-Coblijn, M., Benet, R., Alvarez, R.,
Bressani, R., Halver, J. E., et al. (2008). Oleic acid concentration is
responsible for the reduction in blood pressure induced by olive oil.
Proceeding of the National Academy of Sciences of the United States of
America, 105, 13811–13816.
[32] Niva, S., Joseph, P. (2005). High oleic peanut oil modulates
promotion stage in lung tumergenesis of mice treated with methyl
nitrosourea. Food Science and Technology Research, 11, 231–235.
[33] Pan L., Zhou, Y., Yin HT., Hui, H., Guo, YZ., Xie, XM. (2022).
Omega-3 Polyunsaturated Fatty Acids Can Reduce C-Reactive Protein in
Patients with Cancer: A Systematic Review and Meta-Analysis of
Randomized Controlled Trials. Nutrition and Cancer, 74, 840-851.
[34] Yi, C., Shi, J., Kramer, J., Xue, S., Jiang, Y., Zhang, M., et
al. (2009). Fatty acid composition and phenolic antioxidants of
winemaking pomace powder. Food Chemistry, 114, 570–576.