Conflict of interest statement
All authors have no conflict of interest to declare.
Reference
Abe, Y., Takashita, E., Sugawara, K., Matsuzaki, Y., Muraki, Y., & Hongo, S. (2004). Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin. J Virol, 78(18), 9605-9611. doi:10.1128/JVI.78.18.9605-9611.2004
Baele, G., Lemey, P., Bedford, T., Rambaut, A., Suchard, M. A., & Alekseyenko, A. V. (2012). Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol Biol Evol, 29(9), 2157-2167. doi:10.1093/molbev/mss084
Baele, G., Li, W. L., Drummond, A. J., Suchard, M. A., & Lemey, P. (2013). Accurate model selection of relaxed molecular clocks in bayesian phylogenetics. Mol Biol Evol, 30(2), 239-243. doi:10.1093/molbev/mss243
Bi, Y., Li, J., Li, S., Fu, G., Jin, T., Zhang, C., . . . Shi, W. (2020). Dominant subtype switch in avian influenza viruses during 2016-2019 in China. Nat Commun, 11(1), 5909. doi:10.1038/s41467-020-19671-3
Crowe, J. E., Jr. (2012). Influenza virus resistance to human neutralizing antibodies. mBio, 3(4), e00213-00212. doi:10.1128/mBio.00213-12
Das, S. R., Hensley, S. E., David, A., Schmidt, L., Gibbs, J. S., Puigbo, P., . . . Yewdell, J. W. (2011). Fitness costs limit influenza A virus hemagglutinin glycosylation as an immune evasion strategy. Proc Natl Acad Sci U S A, 108(51), E1417-1422. doi:10.1073/pnas.1108754108
Drummond, A. J., Nicholls, G. K., Rodrigo, A. G., & Solomon, W. (2002). Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics, 161(3), 1307-1320. doi:10.1093/genetics/161.3.1307
Drummond, A. J., Rambaut, A., Shapiro, B., & Pybus, O. G. (2005). Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol, 22(5), 1185-1192. doi:10.1093/molbev/msi103
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res, 32(5), 1792-1797. doi:10.1093/nar/gkh340
Gao, R., Gu, M., Shi, L., Liu, K., Li, X., Wang, X., . . . Liu, X. (2021). N-linked glycosylation at site 158 of the HA protein of H5N6 highly pathogenic avian influenza virus is important for viral biological properties and host immune responses. Vet Res, 52(1), 8. doi:10.1186/s13567-020-00879-6
Gerloff, N. A., Khan, S. U., Balish, A., Shanta, I. S., Simpson, N., Berman, L., . . . Davis, C. T. (2014). Multiple reassortment events among highly pathogenic avian influenza A(H5N1) viruses detected in Bangladesh. Virology, 450-451, 297-307. doi:10.1016/j.virol.2013.12.023
Hensley, S. E., Das, S. R., Bailey, A. L., Schmidt, L. M., Hickman, H. D., Jayaraman, A., . . . Yewdell, J. W. (2009). Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science, 326(5953), 734-736. doi:10.1126/science.1178258
Hoffmann, E., Stech, J., Guan, Y., Webster, R. G., & Perez, D. R. (2001). Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol, 146(12), 2275-2289. doi:10.1007/s007050170002
Jin, F., Dong, X., Wan, Z., Ren, D., Liu, M., Geng, T., . . . Ye, J. (2019). A Single Mutation N166D in Hemagglutinin Affects Antigenicity and Pathogenesis of H9N2 Avian Influenza Virus. Viruses, 11(8). doi:10.3390/v11080709
Kaverin, N. V., Rudneva, I. A., Ilyushina, N. A., Lipatov, A. S., Krauss, S., & Webster, R. G. (2004). Structural differences among hemagglutinins of influenza A virus subtypes are reflected in their antigenic architecture: analysis of H9 escape mutants. J Virol, 78(1), 240-249. doi:10.1128/jvi.78.1.240-249.2004
Koel, B. F., Burke, D. F., Bestebroer, T. M., van der Vliet, S., Zondag, G. C., Vervaet, G., . . . Smith, D. J. (2013). Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science, 342(6161), 976-979. doi:10.1126/science.1244730
Lewis, N. S., Anderson, T. K., Kitikoon, P., Skepner, E., Burke, D. F., & Vincent, A. L. (2014). Substitutions near the hemagglutinin receptor-binding site determine the antigenic evolution of influenza A H3N2 viruses in U.S. swine. J Virol, 88(9), 4752-4763. doi:10.1128/JVI.03805-13
Li, X., Tian, B., Jianfang, Z., Yongkun, C., Xiaodan, L., Wenfei, Z., . . . Shu, Y. (2017). A comprehensive retrospective study of the seroprevalence of H9N2 avian influenza viruses in occupationally exposed populations in China. PLoS One, 12(6), e0178328. doi:10.1371/journal.pone.0178328
Okamatsu, M., Sakoda, Y., Kishida, N., Isoda, N., & Kida, H. (2008). Antigenic structure of the hemagglutinin of H9N2 influenza viruses. Arch Virol, 153(12), 2189-2195. doi:10.1007/s00705-008-0243-2
Peacock, T., Reddy, K., James, J., Adamiak, B., Barclay, W., Shelton, H., & Iqbal, M. (2016). Antigenic mapping of an H9N2 avian influenza virus reveals two discrete antigenic sites and a novel mechanism of immune escape. Sci Rep, 6, 18745. doi:10.1038/srep18745
Peacock, T. P., Benton, D. J., James, J., Sadeyen, J. R., Chang, P., Sealy, J. E., . . . Iqbal, M. (2017). Immune Escape Variants of H9N2 Influenza Viruses Containing Deletions at the Hemagglutinin Receptor Binding Site Retain Fitness In Vivo and Display Enhanced Zoonotic Characteristics. J Virol, 91(14). doi:10.1128/JVI.00218-17
Peacock, T. P., Harvey, W. T., Sadeyen, J. R., Reeve, R., & Iqbal, M. (2018). The molecular basis of antigenic variation among A(H9N2) avian influenza viruses. Emerg Microbes Infect, 7(1), 176. doi:10.1038/s41426-018-0178-y
Peacock, T. P., Sealy, J. E., Harvey, W. T., Benton, D. J., Reeve, R., & Iqbal, M. (2020). Genetic determinants of receptor-binding preference and zoonotic potential of H9N2 avian influenza viruses. J Virol. doi:10.1128/JVI.01651-20
Poh, Z. W., Wang, Z., Kumar, S. R., Yong, H. Y., & Prabakaran, M. (2020). Modification of neutralizing epitopes of hemagglutinin for the development of broadly protective H9N2 vaccine. Vaccine, 38(6), 1286-1290. doi:10.1016/j.vaccine.2019.11.080
Pybus, O. G., & Rambaut, A. (2002). GENIE: estimating demographic history from molecular phylogenies. Bioinformatics, 18(10), 1404-1405. doi:10.1093/bioinformatics/18.10.1404
Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst Biol, 67(5), 901-904. doi:10.1093/sysbio/syy032
Santos, J. J. S., Abente, E. J., Obadan, A. O., Thompson, A. J., Ferreri, L., Geiger, G., . . . Perez, D. R. (2019). Plasticity of Amino Acid Residue 145 Near the Receptor Binding Site of H3 Swine Influenza A Viruses and Its Impact on Receptor Binding and Antibody Recognition. J Virol, 93(2). doi:10.1128/JVI.01413-18
Song, J., Wang, C., Gao, W., Sun, H., Jiang, Z., Wang, K., . . . Pu, J. (2020). A D200N hemagglutinin substitution contributes to antigenic changes and increased replication of avian H9N2 influenza virus. Vet Microbiol, 245, 108669. doi:10.1016/j.vetmic.2020.108669
Su, H., Zhao, Y., Zheng, L., Wang, S., Shi, H., & Liu, X. (2020). Effect of the selection pressure of vaccine antibodies on evolution of H9N2 avian influenza virus in chickens. AMB Express, 10(1), 98. doi:10.1186/s13568-020-01036-0
Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., & Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol, 4(1), vey016. doi:10.1093/ve/vey016
Sun, Y., Cong, Y., Yu, H., Ding, Z., & Cong, Y. (2021). Assessing the effects of a two-amino acid flexibility in the Hemagglutinin 220-loop receptor-binding domain on the fitness of Influenza A(H9N2) viruses. Emerg Microbes Infect, 10(1), 822-832. doi:10.1080/22221751.2021.1919566
Sun, Y., & Liu, J. (2015). H9N2 influenza virus in China: a cause of concern. Protein Cell, 6(1), 18-25. doi:10.1007/s13238-014-0111-7
Wan, Z., Ye, J., Xu, L., Shao, H., Jin, W., Qian, K., . . . Qin, A. (2014). Antigenic mapping of the hemagglutinin of an H9N2 avian influenza virus reveals novel critical amino acid positions in antigenic sites. J Virol, 88(7), 3898-3901. doi:10.1128/JVI.03440-13
Wu, N. C., & Wilson, I. A. (2020). Structural Biology of Influenza Hemagglutinin: An Amaranthine Adventure. Viruses, 12(9). doi:10.3390/v12091053
Xia, J., Adam, D. C., Moa, A., Chughtai, A. A., Barr, I. G., Komadina, N., & MacIntyre, C. R. (2020). Comparative epidemiology, phylogenetics, and transmission patterns of severe influenza A/H3N2 in Australia from 2003 to 2017. Influenza Other Respir Viruses, 14(6), 700-709. doi:10.1111/irv.12772
Xia, J., Cui, J. Q., He, X., Liu, Y. Y., Yao, K. C., Cao, S. J., . . . Huang, Y. (2017). Genetic and antigenic evolution of H9N2 subtype avian influenza virus in domestic chickens in southwestern China, 2013-2016. PLoS One, 12(2), e0171564. doi:10.1371/journal.pone.0171564
Xia, J., He, X., Yao, K. C., Du, L. J., Liu, P., Yan, Q. G., . . . Huang, Y. (2016). Phylogenetic and antigenic analysis of avian infectious bronchitis virus in southwestern China, 2012-2016. Infect Genet Evol, 45, 11-19. doi:10.1016/j.meegid.2016.08.011
Xia, J., Yao, K. C., Liu, Y. Y., You, G. J., Li, S. Y., Liu, P., . . . Huang, Y. (2017). Isolation and molecular characterization of prevalent Fowl adenovirus strains in southwestern China during 2015-2016 for the development of a control strategy. Emerg Microbes Infect, 6(11), e103. doi:10.1038/emi.2017.91
Zhou, Z. J., Qiu, Y., Pu, Y., Huang, X., & Ge, X. Y. (2020). BioAider: An efficient tool for viral genome analysis and its application in tracing SARS-CoV-2 transmission. Sustain Cities Soc, 63, 102466. doi:10.1016/j.scs.2020.102466
Zhu, Y., Yang, D., Ren, Q., Yang, Y., Liu, X., Xu, X., . . . Liu, X. (2015). Identification and characterization of a novel antigenic epitope in the hemagglutinin of the escape mutants of H9N2 avian influenza viruses. Vet Microbiol, 178(1-2), 144-149. doi:10.1016/j.vetmic.2015.04.012
Table 1 The titer of mutant CQY-2014 H9N2-AIVs in MDCK cells and chicken embryos