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[bookmark: _GoBack]ABSTRACT
Mutations are the cause of several diseases as well as the underlying force of evolution. A thorough understanding of its biophysical consequences is essential. We present a computational framework for evaluating different levels of mutual information (MI) and its dependence on mutation. We used molecular dynamics trajectories of the third PDZ domain and its different mutations. MI calculated from these trajectories shows that: (i) the multivariate Gaussian distribution of joint probabilities characterizes the MI between residue pairs with sufficient accuracy. Nonlinearities in joint probabilities calculated by tensor Hermite polynomials up to the fifth order contribute insignificantly. (ii) Changes in MI between residue pairs show the characteristic patterns resulting from specific mutations. (iii) Triple correlations are characterized by evaluating MI between triplets of residues, certain triplets are strongly affected by mutation. (iv) Susceptibility of residues to perturbation are obtained by MI and discussed in terms of linear response theory.


INTRODUCTION
Residues of proteins communicate with each other by concerted thermal fluctuations. Communication is essential for the function and stability of all proteins. An essential determinant of communication is the jigsaw puzzle like matching of neighboring residues which constrains the fluctuations of atoms significantly and confers the identity to each protein. Consequently, singular information flow pathways are established. The protein behaves like a correlated machine in which the motion of each component is communicated by others, spatially close or distant. Mutation of a residue may change the communication pathways in the protein. In the absence of communication, proteins would not be able to catalyze reactions because the fluctuation synchrony would change, evolution would not be possible because any amino acid replaced by another would still exhibit the thermal fluctuations but of different amplitude and frequency which would be unsuitable for the role of the protein. The jigsaw-like matching of neighboring atoms would be destroyed. At the heart of the problem lies a hidden dynamic harmony that concerns the correlation of fluctuations of not only atom pairs, but of triplets, quadruplets, and so on.



In this paper, we study information transfer features in an allosteric system in depth in terms of Mutual Information (MI). MI between two residues shows the maximum amount of information that may be transferred from one to the other (Lombardi et al., 2016) and is shown to be an accurate measure of allosteric communication in proteins (Guo and Zhou, 2016; Hacisuleyman and Erman, 2017a, b; Lange and Grubmüller, 2006; Lin, 2016; Manley et al., 2013). The established method of determining correlations is based on the expression  where  is the instantaneous fluctuation vector of entity i and is that of j, angular brackets denote the time average, and the dot in between signifies the scalar product. If the fluctuations are not correlated, then the established method gives a value of zero, as it should, but it is not defined when the correlation of the fluctuations of three or more entities are considered. The established method has shortcomings in describing pair correlations as well. For example, correlation between two residues fluctuating perpendicular to each other in perfect harmony would be zero due to the scalar product. Recently, Lange and Grubmuller showed that the established method misses more than 50% of correlations between pairs of residues in a protein and proposed a generalized measure of correlation based on MI (Lange and Grubmüller, 2006). MI serves as the accurate general measure of correlation not only between pairs but between all orders of correlations of fluctuations in a system. As will be detailed below, MI allows for the determination of triple correlations, for example, which are sensitive to mutations. Here, we develop a general scheme of extracting MI in a protein from its molecular dynamics trajectory. A sufficiently long trajectory contains the complete information on the behavior of the protein from which various approximations to MI may be extracted. The simplest approximation that can be extracted is based on the multivariate Gaussian. The multivariate Gaussian description of correlations is based on the linear spring-like interaction forces between atoms. However, not all correlations can be described by a Gaussian. Skewness of interactions between two atoms is one example. In general, non-Gaussian, non-linear interactions between atoms contribute to correlations of fluctuations. However, the importance of these has not been assessed fully yet. In this study, we discuss the contributions of nonlinearities, and three residue correlations to MI. Expressions for MI due to correlations higher than two have been formulated by Matsuda (Matsuda, 2000) which we adopt here for calculating triplet correlations. Higher order correlations did not find wide application in protein physics except recently (Hensen et al., 2010; McClendon et al., 2009). We show that the long neglected triplet interactions in proteins are far more important than those from nonlinearities. 
The importance of MI emerges more clearly when changes in its value upon ligand binding or mutation are considered. Indeed, several studies made use of MI in protein research. The amount of excess MI between a protein residue and a ligand has been used as a criterion of binding stability in hemagglutinin complexes (Kasson et al., 2009). Along the same lines, excess MI values served as criteria for predicting the role of local and allosteric mutations in beta lactamase drug resistance (Cortina and Kasson, 2016). Active and inactive states of β2-adrenergic receptor were studied by monitoring changes in MI of residue pairs (Sogunmez and Akten, 2020). Allosteric information transfer pathways were determined by evaluating MI between pairs of torsion angles (Ma et al., 2021). Correlations between allosteric sites were determined by MI (McClendon et al., 2009). Functional modes of dynamics of proteins were identified using MI (Hub and De Groot, 2009).
In this paper, we consider a widely studied system, the PDZ domain, and try to explain several general features of allosteric communication in terms of MI. We use molecular dynamics trajectories to understand the role of dynamics on change of behavior of a protein upon mutation. We specifically ask four questions and answer them: (i) what is the contribution of nonlinearities in probability distribution functions to MI? Our answer is that it is insignificant. We therefore reach the important conclusion that multivariate Gaussian distribution sufficiently reflects MI, (ii) what is the contribution of triple interactions to MI and how do they change with mutation? Our answer is that triple interactions are significant and they are significantly affected by mutation. We reach the conclusion that changes in pair interactions upon mutation are not always representative and interactions between triples of residues should also be considered, (iii) does allosteric communication proceed along the primary chain and through spatially neighboring contacts? Our answer is that in most instances yes, and they change significantly upon mutation. However, spatially distant pairs also play a role in information transfer. Although studying a single system is not sufficient to explain allosteric communication in general, the conclusions we obtain on this single system are quite transparent and general enough to illustrate our proof of concept approach.




THEORETICAL BACKGROUND
Thermal fluctuations of residues play central role in the function of the protein. In the simplest approximation the probability distribution of these fluctuations are represented by a Gaussian. In more realistic models, fluctuations are represented by more detailed functions that account for the skewness and multiple peaks in their distributions. In this section we consider these characteristics and their effects on information transfer within the protein.






i. Joint probabilities, information content and MI. As a result of chain connectivity and intramolecular interactions, each residue is confined into a small volume in which it fluctuates due to thermal energy. It is covalently bonded to its two neighbors along the chain and non-covalently to other residues in its domain of fluctuation which is the first coordination shell. On average, there are about 4-10 other residues in this volume. Under the constraints imposed by chain connectivity and the forces imparted by the neighboring residues, the given residue obtains a definite mean position which becomes the center of its fluctuations. The simplest picture depicts a spherically symmetric region of fluctuations. A more detailed picture describes the fluctuation volume as an ellipsoid with three axes of unequal length. The simplest model of proteins is a coarse grained model where only the alpha carbon is considered. Throughout the paper, we will focus only on the alpha carbon of each residue. The alpha carbon does not explore its fluctuation volume uniformly. The probability distribution function  describes the fluctuations of each alpha carbon, where is the vector from the center of the ellipsoid to the instantaneous position of the ith alpha carbon.  is a scalar valued function of three variables,  , the cartesian coordinates of residue i. The joint probability of two residues i and j, which is a scalar valued function of six variables, is the basic parameter from which all pair interactions of the protein can be derived. The complete picture of the protein requires the knowledge of full joint probability,  of a protein of N residues. It is a scalar valued function of 3N variables.
Each residue has a specific amount of information content which it can share with other residues. The information content in bits is defined by the Shannon equation,

  						  (1)

where, the summation is over all possible values of. If, for example, an alpha carbon has two equally possible fluctuation values such as +1 and -1, then its information content from the Shannon formula is 1 bit. The information content of another residue may be different depending on its probability distribution. Therefore, probability distributions play major role in protein communications. MI for a residue pair ij is the information that is shared by i and j and is given in terms of joint probabilities as 

 	  (2)





Here, the angular brackets denote the average over all values of and. If the fluctuations of residues i and j are independent, then  and  . Properties of MI and the reason why it is a better measure of correlation than the simple dot product average  are given by Lang and Grubmuller (Lange and Grubmüller, 2006) where they determined the values of MI from molecular dynamics trajectories of proteins.

ii. The multivariate Gaussian, the Gaussian based MI and its isotropic form. The joint probability of fluctuations of two residues may be approximated by the multivariate Gaussian

			  (3)





Where, . The superscript T denotes the transpose, and is the 6x6 correlation matrix of . The singlet probability for is obtained from Eq. 3 by integrating over , resulting in

			  (4)

with similar expression for. The multivariate Gaussian for probabilities, when substituted into Eq. 2 leads to the expression 

 						  (5)



The superscript G indicates that the MI is obtained from a multivariate Gaussian probability function. This relation was given by Lang and Grubweiler (Lange and Grubmüller, 2006) and is derived in the Supplementary Material. Equation 5 reflects the effects from anisotropy of fluctuations because it is derived using the multivariate Gaussian. However, a multivariate Gaussian corresponds to a model where all interactions in the system are from linear spring-like forces. It is worth noting that diverges to  for i=j because  in the numerator of Eq. 5 becomes zero.

When the fluctuations are assumed spherically symmetric, then takes the form (Lange and Grubmüller, 2006)

						(6)



Where the superscript (G,I) denotes that this form of MI is the Gaussian and isotropic version. The derivation of Eq. 6 is given in Supplementary Material. Like, also diverges to when the two residues are identical. Equation 6 will be used below in relating MI to susceptibility of residues to perturbation within the context of linear response theory.
iii. General nonlinear form of MI based on tensor Hermite polynomials. MI obtained using Eqs 5 and 6 do not reflect the skewness and other nonlinear effects and coupling of modes on fluctuations. For this, the multivariate Gaussian distribution is not sufficient and more general distribution functions have to be used. A convenient functional form should reduce to the multivariate Gaussian limit in the absence of nonlinear effect. This functional form is the tensor Hermite series which we describe in detail in the Supplementary Material. Tensor Hermite series were first introduced by Flory (Flory and Yoon, 1974; Yoon and Flory, 1974) for the calculation of the probability distribution of end-to-end vectors of polymer chains and later applied to the calculation of fluctuations in proteins by Kabakcioglu et al (Kabakcioglu et al., 2010; Kabakçıoğlu et al., 2010), and recently to the study of nonlinear entropy transfer by Hacisuleyman and Erman (Hacisuleyman and Erman, 2022). The pairwise joint probability is written in terms of Hermite polynomials as

                                        (7)






Where is the Hermite polynomial of order  and is its average. Here, . Similar forms are written for the singlets, and  where only the argument of the Hermite polynomial changes. Here, the tensor Hermite polynomials should be regarded as symbolic entities representing nonlinearities beyond the Gaussian. The detailed and operational forms of the polynomials and how they are obtained from molecular dynamics trajectories are explained in detail in the Supplementary Material section. The front term in Eq. 7 is the multivariate Gaussian. Since MI is a logarithmic function of probabilities, the logarithm conveniently separates the Gaussian from the nonlinearities, which can now be written as

 									  (8)

Where the first term on the right hand side is given by Eq. 5 and the nonlinear contribution reads as

		  (9)

Here, the Hermite polynomials are functions of their arguments, i.e., in the numerator the arguments ofare six dimensional and in the numerator they are three dimensional each.
Equation 8 is the most general form of MI which contains all contributions from nonlinearities in the system. It is obtained from a moment based expansion and can be evaluated up to any desired order. The moments, i.e., the averages may be obtained from molecular dynamics trajectories as described in the Supplementary Materials section. In the absence of molecular dynamics trajectories, the linearized form of MI, given by Eq. 6 may be used where the correlations may be obtained from the elastic net model of a protein (Erman, 2022). 

iv. Interaction of three residues and the triplet MI: The general expression for MI between a triplet of interacting residues is given by Matsuda (Matsuda, 2000) which is reproduced in the Supplementary Material. Using that definition and the multivariate Gaussian probability distribution function  for residues i, j, and k, we obtain the MI for triple interactions as:

												(10)
where the determinants are of order 9x9, 6x6 and 3x3 in the first second and third lines, respectively. The derivation of Eq. 10 is given in the supplementary Materials section.


RESULTS AND DISCUSSION
In this section we apply various approximations to MI to understand allosteric communication in a PDZ domain. Since the pioneering work of Lockless and Ranganathan (Lockless and Ranganathan, 1999) on the evolution of allostery, the PDZ domain has been the focus of attention and has been studied widely (Gerek and Ozkan, 2011; Modi and Ozkan, 2018; Raman et al., 2016).  In this connection, it is worth citing the important study by Chi et al (Chi et al., 2008) which we discuss in detail below. The protein Data Bank structure 1BE9.pdb for example is a member of the PDZ domain studied recently (Raman et al., 2016),  in which Ranganathan et al (Raman et al., 2016) showed that mutation of two residues G330 and H372 plays significant role in information transfer. In the present paper, we specifically focus on 1BE9.pdb and on these two mutated structures and the doubly mutated structure G330+H372.
[image: ]
Figure 1. The three dimensional crystal structure conformation of the PDZ domain. The two labeled residues that take part in allosteric communication of the protein are shown in yellow.  

1. Nonlinear contributions to MI is negligible
In this section, we use tensor Hermite series up to the fifth order in obtaining MI and compare the contributions from different orders. In Figure 2, we plot the values of pairwise MI between residue G330 and the remaining residues of the protein. The thick line is obtained from Eq. 5 for the multivariate Gaussian. The thin line is obtained from Eqs. 8 and 9 by including terms up to the fifth order Hermite tensors. One sees that the contribution of nonlinearities to MI are insignificant except in the vicinity of residue G330 for which MI from the Gaussian factor diverges and therefore not calculated for i=j and not shown in the figure. However, for j=i±1, the MI is not divergent but it is expected to be large because the correlations of residue i and i±1 are going to be large. Therefore, the residues around the reference residue command more attention, and their MI Gaussian values are given in more detail in the inset of Figure 2. 


[image: ]
Figure 2. MI between residue G330 and the remaining residues of 1BE9.pdb indicated along the abscissa. The thick line is for the multivariate Gaussian and the thin line is the nonlinear case with Hermite tensor polynomials up to the fifth order. Contributions from third and fourth orders lie in between the heavy and thin lines and are not shown in the figure for the sake of clarity. Gaussian MI values in the vicinity of G330 are shown in the inset.
[image: ]
Figure 3. MI between residue H372 and the remaining residues of 1BE9.pdb. See legend for Figure 2.

MI between H372 and the remaining residues of the protein are presented in Figure 3. Again, the contribution of higher order components from the Hermite series shown by the thin line is insignificant. This observation is important because it assures us that the multivariate Gaussian is sufficiently accurate and the complicated calculations of higher order Hermite series are not necessary. This statement should be taken with a caveat, however, because MI is related to entropy but not to energy. The important phenomenon of energy flow between nonlinear coupled modes is an issue independent of entropy and MI. The famous FPU model(Fermi et al., 1955) considers the energy coupling in complex systems.





The curves in Figures 2 and 3 are obtained as follows: All-atom Molecular Dynamics simulations for 1BE9.pdb were performed using NAMD 2.12 (Phillips et al., 2020) simulation program with CHARMM36 (Best et al., 2012) force field. TIP3P water model was used to represent water molecules. Counter ions are placed to neutralize the system. Periodic boundary conditions were applied in an isothermal-isobaric NPT ensemble with constant temperature of 300 K and constant pressure of 1 bar, where temperature and pressure of the system are controlled by Langevin thermostat and Langevin piston barostat, respectively. 1–4 scaling is applied to van der Waals interactions with a cutoff of 12.0 Å. Energy of the system was minimized. After minimization a 100 ns trajectory was generated. System coordinates were saved every 2 ps. The format in which the trajectory is saved is given in Supplementary material. 25,000 snapshots from this trajectory are used. For pair probability,, for each snapshot at time=t, a 6-d vector is used in the form . The 6x6 correlation matrix to be used in Eq. 5 for  is obtained by averaging over the 25,000 time steps. Similar steps are used for determining the singlet probabilities and


, this time using the 3-d vectors            





and , respectively. The determinants in Eq. 5 are calculated as the products of eigenvalues of the respective correlation matrices. Calculation of Hermite tensors is described in detail in the Supplementary material. In each tensor in Eq. 9,  the ‘s are the same as given in the preceding lines. The time average of each Hermite tensor of order is obtained from the 25,000 snapshots. The dot product is obtained by multiplying all elements of the tensors and adding. For more details of the calculations of higher order Hermite polynomials see Supplementary Material section.

2. Effect of mutations on MI for residue pairs
Mutation of a residue may change the dynamics of the protein because the new residue may modify interactions with its neighboring residues plus its interactions with water. Mutations may lead to loss or gain of function, or to conditional neutrality (Gould and Vrba, 1982; Raman et al., 2016) where one mutation may be neutral with regard to existing function but when combined with a subsequent mutation may result in a change of function, an important issue from the point of view of evolution. Therefore, changes in conformational propensities must be well understood. Knowing the changes in MI is important. In this subsection, we analyze the changes in pair MI due to mutations in the PDZ domain. 

There are three different types of pair correlations in a protein. These are correlations between two residues that are (i) close along the primary chain which are necessarily close in space, called Type 1, (ii) distant along the chain but spatially close, called Type 2, and (iii) distant both along the chain and in space, called Type 3. Among this group, one subset where a beta strand interacts with another beta strand with a third beta strand in between occurs frequently, and is named Type 3A. Type 1 correlations are the strongest, Type 2 weaker than Type 1 and Type 3 is the weakest. Here, we study the interactions in four systems, (1) the wild type PDZ, (2) G330T PDZ, (3) H272A PDZ, and (4) double mutated G330T-H372A PDZ. The mutations are generated from 1BE9.pdb using the Mutate Residue mode of the software VMD (Humphrey et al., 1996). Molecular dynamics are obtained in the same way as described in the preceding section. Since the contributions of nonlinear terms to MI are insignificant, only multivariate Gaussian distributions, i.e., , are presented.
Two dimensional MI plots for the four cases are presented in Figure 4. The abscissa and ordinate values indicate the residue indices, and for a given pair of residues, a dot on the figure shows the calculated MI between those two residues. Only the set of MI values larger than 0.4, which includes the top 20% of all points, is shown. Darker regions indicate larger MI values. 

[image: ]Figure 4. Pair correlations in the wild type and mutated PDZ domain. Top left panel shows the wild type PDZ domain, 1BE9.pdb. The other three represent the mutated ones where each mutation is indicated in each panel. Abscissae and ordinates represent residue indices. Values of MI between 0.4 and 4.0 are shown.

The residue R312 is at the start of the helix C and plays a role on allosteric communication in the protein (Gerek and Ozkan, 2011). We therefore study its interactions in some detail. A sample plot for MI between residue 312 and all other residues is presented in Figure 5. The solid line in each panel is the MI for the wild type. The thin line in the left panel is for the G330T mutated protein. 
[image: ] Figure 5. MI between 312 and x, where x is any other residue shown along the abscissae. Solid line in each panel is for the wild type, 1BE9.pdb. Thin lines are for the G330T (left panel), H372A (central panel) and G330T-H372A mutated proteins (right panel).

It shows that MI values between 312 and other residues did not change much upon mutation. The central panel is for the H372A mutated protein which also shows that MI did not change much upon mutation. The right panel compares the MI values for the wild type and the double mutated protein. Here, double mutated protein shows larger MI values relative to the wild type. Several new peaks have emerged. There are three dominant peaks in the wild type at residues 312, 353 and 392. The peak around 312 is of Type 1, i.e., neighboring residues along the chain. The peak at 392 shows an interaction of Type 2 with 312, and the peak at 353 is of Type 3A interaction with 312. These peaks are enhanced in the doubly mutated case. The new peak at 367 on the right panel is of Type 3 interaction with 312.
The highest point of each region in Figure 4 is listed in Table 1. Strongest interactions of Type 1, which are all larger than 0.4, make a long list of all residue pairs along the backbone and therefore are not shown in the table. Table 1 is arranged according to interaction type. The first four rows show Type 2 interactions, of residue pairs distant along the chain but close in space. The G330-H372 interaction is represented by the small isolated region in the upper left panel of Figure 4. This interaction is weakened by mutation as may be seen from the first line of Table 1 and the disappearance of the corresponding regions in Figure 4. Other Type 2 interactions from the upper left panel are as follows: 313-388 between two neighboring beta strand residues, is strengthened with double mutation. 326-340 and 338-357 are also between two neighboring beta strand residues, decreased slightly upon double mutation. The next group is interactions of Type 3A, between pairs distant both along the chain and spatially separated by an intermediate residue in space. The most important interaction group is the third group in Table 1 between the N-terminal residue and the rest of the protein, all of Type 3.
Originally, Ranganathan’s group (Lockless and Ranganathan, 1999; Süel et al., 2003) proposed pair correlations of Type 3 based on evolutionary data on PDZ domains. Later experiments and analysis of Chi et al (Chi et al., 2008) showed that correlations are rather of Type 2 in the PDZ domain. The 330-372 interaction is lost in H372A mutation, upper right panel, and in G330T mutation, lower left panel, but strengthened in the double mutated case, G330T-H372A, shown in the lower right panel. This is the main theme of the recent work of Raman et al (Raman et al., 2016) where mutations that are neutral confer functionality following a subsequent mutation. More explicitly, the G330T and H372A mutations are neutral to the binding of one type of a ligand, but the double mutation increases the binding preference to another ligand significantly. 


Table1. Details of interactions shown in Figure 4
(Boldface numbers indicate increase)
	Residue i
	Residue j
	Interaction
Type
	
	MI of WT
	
	MI of
G330T
	
	MI of
H372A
	
	MI of
G330TH372A

	330
	372
	2
	
	0.67
	
	0.10
	
	0.17
	
	0.04

	313
	388
	2
	
	1.05
	
	1.10
	
	0.42
	
	1.51

	326
	340
	2
	
	1.32
	
	1.28
	
	1.32
	
	1.07

	338
	357
	2
	
	1.14
	
	1.00
	
	1.00
	
	0.72

	
	
	
	
	
	
	
	
	
	
	

	312
	357
	3A
	
	0.42
	
	0.53
	
	0.42
	
	0.86

	314
	344
	3A
	
	0.40
	
	0.3
	
	0.30
	
	0.76

	314
	361
	3A
	
	0.42
	
	0.36
	
	0.34
	
	0.76

	337
	391
	        3A
	
	0.41
	
	0.53
	
	0.63
	
	0.70

	359
	391
	3A
	
	0.48
	
	0.72
	
	0.62
	
	1.08

	
	
	
	
	
	
	
	
	
	
	

	301
	314
	3
	
	0.67
	
	0.50
	
	0.45
	
	0.96

	301
	352
	3
	
	0.71
	
	0.40
	
	0.31
	
	0.85

	301
	392
	3
	
	0.88
	
	0.86
	
	0.60
	
	1.05

	301
	410
	3
	
	0.66
	
	0.40
	
	0.35
	
	0.70



The enhanced interaction between several residue pairs in the double mutated structure is clearly seen in the lower right panel of Figure 4 and in Table1. It is to be noted that the present study addresses changes in MI upon various mutations and does not give information on the changes in the ligand binding affinities which is the subject of another study (Erman, 2022). The role of the c-terminal on the allosteric activity of the PDZ domain has been addressed earlier (Gerek and Ozkan, 2011; Petit et al., 2009). Table 1 shows that the action of the c-terminal is of Type 3, represented by residues 391 and 410, and increases significantly in the doubly mutated protein. 
MI between a pair of residues is a static property and shows the maximum amount of information that may be transferred between the two residues (Lombardi et al., 2016). The actual amount of information transferred between the two residues can be estimated from entropy transfer calculations and is always less than MI (Hacisuleyman and Erman, 2022). Thus, each panel shown in Figure 4 tells us that information will travel in the protein by hopping between the shaded regions. Given a starting residue, it is possible to write a computational scheme showing how information travels between the shaded regions in these figures. The work of Amor et al (Amor et al., 2016) and a recent Hidden Markov model (Haliloglu et al., 2022) are two examples for the computational scheme.

3. Triple MI values are sensitive to mutation

In this section we compare the changes in triple MI values in four proteins, the wild type 1BE9.pdb, and its three mutations G330T, H372A and the double mutant G330T-H372A. In Figure 6, triple MI values obtained from Eq. 10 are presented. The ordinate in the three panels shows the value of calculated from Eq. 10 for i=330, j=372 and k being any other residue shown along the abscissa. The heavy line in each panel is for the wild type, 1BE9.pdb. 
[image: ]
Figure 6. Triple MI changes upon mutation. The triple in the three panels are residues 330-372-x, where x is any other residue shown along the abscissae. Solid line in each panel is for the wild type, 1BE9.pdb. The thin lines are for the G330T mutated protein (left panel), H372A mutated protein (central panel) and G330T-H372A mutated protein (right panel).


The thin lines in the three panels are as follows: The one in the left panel is for the G330T mutated protein, the central panel is for the H372A mutated and the right panel is for the doubly mutated protein. All three panels show that triple MI between 320, 372 and any other residue has vanished upon mutations. However, these three mutations do not lead to the vanishing of MI between other triples. In Figure 7, we show triple MI between residues 312-392-x, where x is any other residue shown along the abscissa. Residues 392-399 are the residues of the  helix (Petit et al., 2009) that has been shown to have important role in the allostery of the PDZ domain. In each figure, three dominant peaks are observed, 312, 357 and 392. The left panel shows a comparison between the triple MI values between the wild type and the G330T mutated protein, which shows that this mutation did not change the MI values. The central panel, comparison of the wild type and H372A mutated protein shows is similar to the left panel. The right panel, on the other hand, shows that double mutation has increased the triple MI values. Several new peaks have emerged upon double mutation. The dominant triplet is 312-357-392 for all three panels in Figure 7. 
[image: ]
Figure 7. Triple MI between three residues 312-392-x, where x is any other residue shown along the abscissae. See legend for Figure

The interaction between the two residues 312 and 357 are of Type 3A where the third residue 392 is in between the two. 

4. Molecular and structural interpretation of the observed MI values.
In this section, we interpret changes in MI in terms of changes in correlations.
In first approximation, residue pair MI is proportional to the correlation of fluctuations of the two residues. This can be shown by writing Eq. 5 in its isotropic form, Eq. 6, and expanding into Taylor’s series and keeping the first term:

 									(11)


where, the normalized fluctuations  and are used. 
We now interpret mutational changes in MI in terms of Eq. 11.
The increase in MI values in the right panel of Figure 5 shows that the correlated fluctuations of residue 312 with the remaining residues of the protein are increased upon double mutation. Figure 8 depicts the alpha carbons of the residues involved in these changes. G330 and H372 are the two residues that are mutated. These are close to the ligand CRIPT that binds to the protein as shown. The double mutation of these, i.e. G330T and H372A, increases the correlations of R312 and Y392 which are close to each other but distant to the location of mutation. As may be seen from the right panel of Figure 5, R312 increases its correlations not only with Y392, but with several spatially distant residues. Triple MI values show a similar pattern. The solid line in Figure 6 shows that the two spatially neighboring residues 330 and 372 are triply correlated with the rest of the protein in the unmutated state. When one or both of these residues are mutated, their triple correlations with the remaining residues of the protein are lost as shown by the thin line in each panel of Figure 6. The right panel of Figure 7 shows that the triple correlations of 312 and 392 with the remaining residues of the protein increase in the case of double mutation. Thus, the triplet MI values gain importance in the double mutated system. The protein becomes a more correlated structure upon double mutation. The mechanism of how this affects the binding affinity of the ligand cannot be answered with the tools developed here, however. The binding affinity may be explained in terms of MI changes between the residues of the protein and of CRIPT which we do not pursue in this paper. 

Next we discuss protein stability changes measured by MI changes.


[image: ]
Figure 8. Ribbon diagram of 1BE9.pdb showing the two mutated residues, G330 and H372, and the two remotely interacting residues R312 and Y382,


5. Relationship between MI changes and protein stability and susceptibility to perturbation: Protein conformational stability is defined as the amount of Gibbs free energy to transform the protein from its folded state to the denatured state, and hence is beyond the scope of this study. Here, we are interested in the fluctuations of the protein around its equilibrium state upon perturbation as in the linear response model. A more suitable measure for this purpose is the susceptibility or ‘perturbability’ of a residue which is defined as the change in its fluctuations when another residue is perturbed. Using linear response theory, we recently showed that (Hacisuleyman et al., 2021) the susceptibility  of a residue i upon perturbation of another residue j is given as

							(12)

where, is the perturbing force acting on residue j. This is a consequence of the linear response model which was first given by Kidera and collaborators (Ikeguchi et al., 2005). Comparing Eqs. 11 and 12 shows that the perturbability of a residue is proportional to MI. If perturbing a residue j communicates with another residue i in the form of a change in its fluctuations then the MI between the two residues changes in the same direction. It is interesting to note from Figure 8 that perturbation produced by mutating both G330 and H372 increases the interaction between two remote residues R312 and Y392 while neither of the single mutations, G330T or H372A do. Thus, susceptibility or perturbability of residue i when j is perturbed may be taken as a measure of MI between the two residues. Inspired by Equation 12, we form the sum 

 						(13)
where the summation is over all residues other than i. The right hand side of Eq. 13 shows the susceptibility of residue i to overall perturbation. The change in susceptibility of a mutated sample relative to the wild type is calculated for the three types of mutation and presented in Figure 9. Interestingly, the mutations G330T or H372A decrease the susceptibilities relative to the wild type whereas double mutation increases it significantly.


[image: ]
Figure 9. Change in susceptibility upon mutation. The lines are obtained as susceptibility differences from that of the wild type.  Thin solid line is for G330T, dot-dashed line is for H372A and the heavy solid line is for the double mutant.

CONCLUSION
Various approximations of MI are considered in this study. Moment based tensor Hermite polynomials are introduced and their evaluation from molecular dynamics simulations are explained. The most general nonlinear form of MI is derived. It is shown that the multivariate Gaussian distribution function is sufficient for an accurate representation of MI and nonlinearities in joint probabilities are not necessary. Effects of mutation are evaluated in terms of different types of intermolecular interactions, providing a detailed look at the structural aspect of information flow in proteins. The theory allows for a straightforward and rapid evaluation of tertiary interactions. Triple MI values obtained in this way shows that they are sensitive to mutation and may be used as a precise indicator of mutation effects. Finally, the concept of MI is explained in terms of the linear response model. Perturbability, which is the susceptibility of a residue to environmental changes can now be calculated in terms of MI.
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