Literature cited
Abrams, P. A., and H. Matsuda. 2004. Consequences of behavioral dynamics
for the population dynamics of predator-prey systems with switching.
Population Ecology 46:13–25.
Agha, R., A. Gross, M. Gerphagnon, T. Rohrlack, and J. Wolinska. 2018.
Fitness and eco-physiological response of a chytrid fungal parasite
infecting planktonic cyanobacteria to thermal and host genotype
variation. Parasitology 145:1279–1286.
Agha, R., M. Saebelfeld, C. Manthey, T. Rohrlack, and J. Wolinska. 2016.
Chytrid parasitism facilitates trophic transfer between bloom-forming
cyanobacteria and zooplankton (Daphnia). Scientific Reports 6:35039.
Banerji, A., A. B. Duncan, J. S. Griffin, S. Humphries, O. L. Petchey,
and O. Kaltz. 2015. Density- and trait-mediated effects of a parasite
and a predator in a tri-trophic food web. Journal of Animal Ecology
84:723–733.
Blanchard, J. L., R. Law, M. D. Castle, and S. Jennings. 2011. Coupled
energy pathways and the resilience of size-structured food webs.
Theoretical Ecology 4:289–300.
Bogard, M. J., R. J. Vogt, N. M. Hayes, and P. R. Leavitt. 2020.
Unabated Nitrogen Pollution Favors Growth of Toxic Cyanobacteria over
Chlorophytes in Most Hypereutrophic Lakes. Environmental Science &
Technology 54:3219–3227.
Buck, J. C., K. I. Scholz, J. R. Rohr, and A. R. Blaustein. 2015.
Trophic dynamics in an aquatic community: interactions among primary
producers, grazers, and a pathogenic fungus. Oecologia 178:239–248.
Buck, J. C., L. Truong, and A. R. Blaustein. 2011. Predation by
zooplankton on Batrachochytrium dendrobatidis: biological control of the
deadly amphibian chytrid fungus? Biodiversity and Conservation
20:3549–3553.
Burson, A., M. Stomp, E. Greenwell, J. Grosse, and J. Huisman. 2018.
Competition for nutrients and light: testing advances in resource
competition with a natural phytoplankton community. Ecology
99:1108–1118.
Cattin, M.-F., L.-F. Bersier, C. Banašek-Richter, R. Baltensperger, and
J.-P. Gabriel. 2004. Phylogenetic constraints and adaptation explain
food-web structure. Nature 427:835–839.
Davis, T. W., D. L. Berry, G. L. Boyer, and C. J. Gobler. 2009. The
effects of temperature and nutrients on the growth and dynamics of toxic
and non-toxic strains of Microcystis during cyanobacteria blooms.
Harmful Algae 8:715–725.
Dhooge, A., W. Govaerts, Y. A. Kuznetsov, W. Mestrom, A. M. Riet, and B.
Sautois. 2006. MATCONT and CL MATCONT: Continuation toolboxes in
matlab:100.
Drossel, B., P. G. Higgs, and A. J. Mckane. 2001. The Influence of
Predator–Prey Population Dynamics on the Long-term Evolution of Food
Web Structure. Journal of Theoretical Biology 208:91–107.
Frenken, T. H. M. 2018, April 18. Live and Let die : How climate change
affects bottom-up and top-down factors regulating phytoplankton disease.
Dissertation, Utrecht University. http://localhost/handle/1874/363352.
Frenken, T., T. Miki, M. Kagami, D. B. Van de Waal, E. Van Donk, T.
Rohrlack, and A. S. Gsell. 2020. The potential of zooplankton in
constraining chytrid epidemics in phytoplankton hosts. Ecology
101:e02900.
Gellner, G., and K. S. McCann. 2016. Consistent role of weak and strong
interactions in high- and low-diversity trophic food webs. Nature
Communications 7:11180.
Gerla, D. J., A. S. Gsell, B. W. Kooi, B. W. Ibelings, E. Van Donk, and
W. M. Mooij. 2013. Alternative states and population crashes in a
resource-susceptible-infected model for planktonic parasites and hosts:Planktonic host-parasite dynamics . Freshwater Biology
58:538–551.
Gibert, J. P., and J. P. DeLong. 2017. Phenotypic variation explains
food web structural patterns. Proceedings of the National Academy of
Sciences 114:11187–11192.
Grossart, H.-P., S. Van den Wyngaert, M. Kagami, C. Wurzbacher, M.
Cunliffe, and K. Rojas-Jimenez. 2019. Fungi in aquatic ecosystems.
Nature Reviews Microbiology 17:339–354.
Gsell, A. S., L. N. de Senerpont Domis, K. J. Verhoeven, E. van Donk,
and B. W. Ibelings. 2013. Chytrid epidemics may increase genetic
diversity of a diatom spring-bloom. The ISME Journal 7:2057–2059.
Hobart, B. K., W. E. Moss, T. McDevitt-Galles, T. E. Stewart Merrill,
and P. T. J. Johnson. 2021. It’s a worm-eat-worm world: Consumption of
parasite free-living stages protects hosts and benefits predators.
Journal of Animal Ecology n/a.
Holling, C. S. 1959. Some Characteristics of Simple Types of Predation
and Parasitism1. The Canadian Entomologist 91:385–398.
Huisman, J., G. A. Codd, H. W. Paerl, B. W. Ibelings, J. M. H.
Verspagen, and P. M. Visser. 2018. Cyanobacterial blooms. Nature Reviews
Microbiology 16:471–483.
Ibelings, B. W., A. S. Gsell, W. M. Mooij, E. Van DONK, S. Van Den
WYNGAERT, and L. N. De SENERPONT DOMIS. 2011. Chytrid infections and
diatom spring blooms: paradoxical effects of climate warming on fungal
epidemics in lakes. Freshwater Biology 56:754–766.
Johnson, P. T. J., A. Dobson, K. D. Lafferty, D. J. Marcogliese, J.
Memmott, S. A. Orlofske, R. Poulin, and D. W. Thieltges. 2010. When
parasites become prey: ecological and epidemiological significance of
eating parasites:10.
Kagami, M., E. von Elert, B. W. Ibelings, A. de Bruin, and E. Van Donk.
2007. The parasitic chytrid, Zygorhizidium, facilitates the growth of
the cladoceran zooplankter, Daphnia, in cultures of the inedible alga,
Asterionella. Proceedings of the Royal Society B: Biological Sciences
274:1561–1566.
Kagami, M., T. Miki, and G. Takimoto. 2014. Mycoloop: chytrids in
aquatic food webs. Frontiers in Microbiology 5:166.
Kiørboe, T., E. Saiz, P. Tiselius, and K. H. Andersen. 2018. Adaptive
feeding behavior and functional responses in zooplankton. Limnology and
Oceanography 63:308–321.
Lafferty, K. D., S. Allesina, M. Arim, C. J. Briggs, G. D. Leo, A. P.
Dobson, J. A. Dunne, P. T. J. Johnson, A. M. Kuris, D. J. Marcogliese,
N. D. Martinez, J. Memmott, P. A. Marquet, J. P. McLaughlin, E. A.
Mordecai, M. Pascual, R. Poulin, and D. W. Thieltges. 2008. Parasites in
food webs: the ultimate missing links. Ecology Letters 11:533–546.
Lafferty, K. D., A. P. Dobson, and A. M. Kuris. 2006. Parasites dominate
food web links. Proceedings of the National Academy of Sciences
103:11211–11216.
Meunier, C. L., M. Boersma, K. H. Wiltshire, and A. M. Malzahn. 2016.
Zooplankton eat what they need: copepod selective feeding and potential
consequences for marine systems. Oikos 125:50–58.
Michalska-Smith, M. J., E. L. Sander, M. Pascual, and S. Allesina. 2018.
Understanding the role of parasites in food webs using the group model.
Journal of Animal Ecology 87:790–800.
Miki, T., G. Takimoto, and M. Kagami. 2011. Roles of parasitic fungi in
aquatic food webs: a theoretical approach. Freshwater Biology
56:1173–1183.
Mougi, A., and Y. Iwasa. 2010. Evolution towards oscillation or
stability in a predator–prey system. Proceedings of the Royal Society
B: Biological Sciences 277:3163–3171.
Ndlovu, M., and L. Combrink. 2015. Feeding preferences of Oxpeckers in
Kruger National Park, South Africa : original research. Koedoe :
African Protected Area Conservation and Science 57:1–6.
O’Gorman, E. J., U. Jacob, T. Jonsson, and M. C. Emmerson. 2010.
Interaction strength, food web topology and the relative importance of
species in food webs. Journal of Animal Ecology 79:682–692.
Prosnier, L., V. Médoc, and N. Loeuille. 2018. Parasitism effects on
coexistence and stability within simple trophic modules. Journal of
Theoretical Biology 458:68–77.
Rasconi, S., B. Grami, N. Niquil, M. Jobard, and T. Sime-Ngando. 2014.
Parasitic chytrids sustain zooplankton growth during inedible algal
bloom. Frontiers in Microbiology 5:229.
Rasconi, S., R. Ptacnik, S. Danner, S. Van den Wyngaert, T. Rohrlack, M.
Pilecky, and M. J. Kainz. 2020. Parasitic Chytrids Upgrade and Convey
Primary Produced Carbon During Inedible Algae Proliferation. Protist
171:125768.
Ray, J. L., J. Althammer, K. S. Skaar, P. Simonelli, A. Larsen, D.
Stoecker, A. Sazhin, U. Z. Ijaz, C. Quince, J. C. Nejstgaard, M.
Frischer, G. Pohnert, and C. Troedsson. 2016. Metabarcoding and
metabolome analyses of copepod grazing reveal feeding preference and
linkage to metabolite classes in dynamic microbial plankton communities.
Molecular Ecology 25:5585–5602.
Rogawa, A., S. Ogata, and A. Mougi. 2018. Parasite transmission between
trophic levels stabilizes predator–prey interaction. Scientific Reports
8:12246.
Rooney, N., K. McCann, G. Gellner, and J. C. Moore. 2006. Structural
asymmetry and the stability of diverse food webs. Nature 442:265–269.
Salmaso, N., and M. Tolotti. 2021. Phytoplankton and anthropogenic
changes in pelagic environments. Hydrobiologia 848:251–284.
Sandhu, S. K., A. Yu. Morozov, A. Mitra, and K. Flynn. 2019. Exploring
nonlinear functional responses of zooplankton grazers in dilution
experiments via optimization techniques. Limnology and Oceanography
64:774–784.
Sommer, U., N. Aberle, K. Lengfellner, and A. Lewandowska. 2012. The
Baltic Sea spring phytoplankton bloom in a changing climate: an
experimental approach. Marine Biology 159:2479–2490.
Stibor, H., O. Vadstein, S. Diehl, A. Gelzleichter, T. Hansen, F.
Hantzsche, A. Katechakis, B. Lippert, K. Løseth, C. Peters, W. Roederer,
M. Sandow, L. Sundt-Hansen, and Y. Olsen. 2004. Copepods act as a switch
between alternative trophic cascades in marine pelagic food webs.
Ecology Letters 7:321–328.
Sukhdeo, M. V. 2012. Where are the parasites in food webs? Parasites &
Vectors 5:239.
Thingstad, T. F., and E. Sakshaug. 1990. Control of phytoplankton growth
in nutrient recycling ecosystems. Theory and terminology. Marine Ecology
Progress Series 63:261–272.
Uszko, W., S. Diehl, N. Pitsch, K. Lengfellner, and T. Müller. 2015.
When is a type III functional response stabilizing? Theory and practice
of predicting plankton dynamics under enrichment. Ecology 96:3243–3256.
Visser, A., and Ø. Fiksen. 2013. Optimal foraging in marine ecosystem
models: selectivity, profitability and switching. Marine Ecology
Progress Series 473:91–101.
Wollrab, S., and S. Diehl. 2015. Bottom-up responses of the lower
oceanic food web are sensitive to copepod mortality and feeding
behavior. Limnology and Oceanography 60:641–656.
Wollrab, S., P. Pondaven, S. Behl, B. Beker, and H. Stibor. 2020.
Differences in size distribution of marine phytoplankton in presence
versus absence of jellyfish support theoretical predictions on top-down
control patterns along alternative energy pathways. Marine Biology
167:9.
Yamamichi, M., T. Klauschies, B. E. Miner, and E. van Velzen. 2019.
Modelling inducible defences in predator–prey interactions: assumptions
and dynamical consequences of three distinct approaches. Ecology Letters
22:390–404.