References

Blowes, S. A., Belmaker, J., & Chase, J. M. (2017). Global reef fish richness gradients emerge from divergent and scale-dependent component changes. Proceedings of the Royal Society B: Biological Sciences ,284 (1867), 20170947. https://doi.org/10.1098/rspb.2017.0947
Blowes, S. A., Chase, J. M., Di Franco, A., Frid, O., Gotelli, N. J., Guidetti, P., … & Belmaker, J. (2020). Mediterranean marine protected areas have higher biodiversity via increased evenness, not abundance. Journal of Applied Ecology, 57(3), 578-589.
Brown, J. H. (2014). Why are there so many species in the tropics?Journal of Biogeography , 41 (1), 8–22. https://doi.org/10.1111/jbi.12228
Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs , 84 (1), 45–67.
Chase, J. M., & Knight, T. M. (2013). Scale-dependent effect sizes of ecological drivers on biodiversity: Why standardised sampling is not enough. Ecology Letters , 16 , 17–26. https://doi.org/10.1111/ele.12112
Chase, J. M., McGill, B. J., McGlinn, D. J., May, F., Blowes, S. A., Xiao, X., Knight, T. M., Purschke, O., & Gotelli, N. J. (2018). Embracing scale‐dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecology Letters ,21 (11), 1737–1751. https://doi.org/10.1111/ele.13151
Coleman, B. D., Mares, M. A., Willig, M. R., & Hsieh, Y.-H. (1982). Randomness, Area, and Species Richness. Ecology , 63 (4), 1121–1133. https://doi.org/10.2307/1937249
Connell, J. H. (1978). Diversity in Tropical Rain Forests and Coral Reefs. Science , 199 (4335), 1302–1310. https://doi.org/10.1126/science.199.4335.1302
Currie, D. J. (1991). Energy and Large-Scale Patterns of Animal- and Plant-Species Richness. The American Naturalist , 137 (1), 27–49.
Dauby, G., & Hardy, O. J. (2012). Sampled-based estimation of diversity sensu stricto by transforming Hurlbert diversities into effective number of species. Ecography , 35 (7), 661–672. https://doi.org/10.1111/j.1600-0587.2011.06860.x
Edgar, G. J., Cooper, A., Baker, S. C., Barker, W., Barrett, N. S., Becerro, M. A., Bates, A. E., Brock, D., Ceccarelli, D. M., Clausius, E., Davey, M., Davis, T. R., Day, P. B., Green, A., Griffiths, S. R., Hicks, J., Hinojosa, I. A., Jones, B. K., Kininmonth, S., … Stuart-Smith, R. D. (2020). Establishing the ecological basis for conservation of shallow marine life using Reef Life Survey.Biological Conservation , 252 , 108855. https://doi.org/10.1016/j.biocon.2020.108855
Edgar, G. J., & Stuart-Smith, R. D. (2014). Systematic global assessment of reef fish communities by the Reef Life Survey program.Scientific Data , 1 (1), 140007. https://doi.org/10.1038/sdata.2014.7
Engel, T., Blowes, S. A., McGlinn, D. J., May, F., Gotelli, N. J., McGill, B. J., & Chase, J. M. (2021). Using coverage-based rarefaction to infer non-random species distributions. Ecosphere ,12 (9), e03745. https://doi.org/10.1002/ecs2.3745
Evans, K. L., Warren, P. H., & Gaston, K. J. (2005). Species–energy relationships at the macroecological scale: A review of the mechanisms.Biological Reviews , 80 (1), 1–25. https://doi.org/10.1017/S1464793104006517
Fine, P. V. A. (2015). Ecological and Evolutionary Drivers of Geographic Variation in Species Diversity. Annual Review of Ecology, Evolution, and Systematics , 46 (1), 369–392. https://doi.org/10.1146/annurev-ecolsys-112414-054102
Gaston, K. J. (2000). Global patterns in biodiversity. Nature ,405 (6783), 220–227. https://doi.org/10.1038/35012228
Gooriah, L., Blowes, S. A., Sagouis, A., Schrader, J., Karger, D. N., Kreft, H., & Chase, J. M. (2021). Synthesis reveals that island species–area relationships emerge from processes beyond passive sampling. Global Ecology and Biogeography, 30(10), 2119-2131.
Gotelli, N. J., & Chao, A. (2013). Measuring and Estimating Species Richness, Species Diversity, and Biotic Similarity from Sampling Data. In Encyclopedia of Biodiversity (pp. 195–211). Elsevier. https://doi.org/10.1016/B978-0-12-384719-5.00424-X
Gotelli, N. J., & Colwell, R. K. (2001). Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters , 4 (4), 379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x
He, F., & Legendre, P. (2002). Species Diversity Patterns Derived from Species-Area Models. Ecology , 83 (5), 1185. https://doi.org/10.2307/3071933
Hill, M. O. (1973). Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology , 54 (2), 427–432. https://doi.org/10.2307/1934352
Hillebrand, H. (2004). On the Generality of the Latitudinal Diversity Gradient. The American Naturalist , 163 (2), 192–211. https://doi.org/10.1086/381004
Hurlbert, S. H. (1971). The Nonconcept of Species Diversity: A Critique and Alternative Parameters. Ecology , 52 (4), 577–586. https://doi.org/10.2307/1934145
Jost, L. (2006). Entropy and diversity . Oikos ,113 (2), 363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x
Kreft, H., Jetz, W., Mutke, J., Kier, G., & Barthlott, W. (2008). Global diversity of island floras from a macroecological perspective.Ecology Letters , 11 (2), 116–127. https://doi.org/10.1111/j.1461-0248.2007.01129.x
MacArthur, R. H. (1965). Patterns of species diversity. Biological reviews, 40(4), 510-533.
Maitner, B. S., Boyle, B., Casler, N., Condit, R., Donoghue, J., Durán, S. M., Guaderrama, D., Hinchliff, C. E., Jørgensen, P. M., Kraft, N. J. B., McGill, B., Merow, C., Morueta-Holme, N., Peet, R. K., Sandel, B., Schildhauer, M., Smith, S. A., Svenning, J.-C., Thiers, B., … Enquist, B. J. (2018). The bien r package: A tool to access the Botanical Information and Ecology Network (BIEN) database. Methods in Ecology and Evolution , 9 (2), 373–379. https://doi.org/10.1111/2041-210X.12861
May, F., Gerstner, K., McGlinn, D.J., Xiao, X. & Chase, J.M. (2018) mobsim: An r package for the simulation and measurement of biodiversity across spatial scales. Methods in Ecology and Evolution, 9, 1401–1408.
McGill, B. J. (2011). Linking biodiversity patterns by autocorrelated random sampling. American Journal of Botany , 98 (3), 481–502. https://doi.org/10.3732/ajb.1000509
McGlinn, D. J., Engel, T., Blowes, S. A., Gotelli, N. J., Knight, T. M., McGill, B. J., Sanders, N. J., & Chase, J. M. (2021). A multiscale framework for disentangling the roles of evenness, density, and aggregation on diversity gradients. Ecology , 102 (2). https://doi.org/10.1002/ecy.3233
McGlinn, D. J., Xiao, X., May, F., Gotelli, N. J., Engel, T., Blowes, S. A., Knight, T. M., Purschke, O., Chase, J. M., & McGill, B. J. (2019). Measurement of Biodiversity (MoB): A method to separate the scale‐dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods in Ecology and Evolution , 10 (2), 258–269. https://doi.org/10.1111/2041-210X.13102
Miller, A. D., Roxburgh, S. H., & Shea, K. (2011). How frequency and intensity shape diversity-disturbance relationships. Proceedings of the National Academy of Sciences , 108 (14), 5643–5648. https://doi.org/10.1073/pnas.1018594108
Mittelbach, G. G., Steiner, C. F., Scheiner, S. M., Gross, K. L., Reynolds, H. L., Waide, R. B., Willig, M. R., Dodson, S. I., & Gough, L. (2001). WHAT IS THE OBSERVED RELATIONSHIP BETWEEN SPECIES RICHNESS AND PRODUCTIVITY? Ecology , 82 (9), 2381–2396. https://doi.org/10.1890/0012-9658(2001)082[2381:WITORB]2.0.CO;2
Olszewski, T. D. (2004). A unified mathematical framework for the measurement of richness and evenness within and among multiple communities. Oikos , 104 (2), 377–387. https://doi.org/10.1111/j.0030-1299.2004.12519.x
Paine, R. T. (1974). Intertidal community structure. Oecologia, 15(2), 93-120.
Qian, H., & Ricklefs, R. E. (2000). Large-scale processes and the Asian bias in species diversity of temperate plants. Nature ,407 (6801), 180–182. https://doi.org/10.1038/35025052
Rényi, A. (1961). On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics (Vol. 4, pp. 547-562). University of California Press.
Rahbek, C. (1995). The elevational gradient of species richness: A uniform pattern? Ecography , 18 (2), 200–205. https://doi.org/10.1111/j.1600-0587.1995.tb00341.x
Randall Hughes, A., Byrnes, J. E., Kimbro, D. L., & Stachowicz, J. J. (2007). Reciprocal relationships and potential feedbacks between biodiversity and disturbance. Ecology Letters , 10 (9), 849–864. https://doi.org/10.1111/j.1461-0248.2007.01075.x
Rosenzweig, M. L. (1995). Species Diversity in Space and Time . Cambridge University Press. https://doi.org/10.1017/CBO9780511623387
Roswell, M., Dushoff, J., & Winfree, R. (2021). A conceptual guide to measuring species diversity. Oikos , 130 (3), 321–338. https://doi.org/10.1111/oik.07202
Scheiner, S. M., & Willig, M. R. (2005). Developing Unified Theories in Ecology as Exemplified with Diversity Gradients. The American Naturalist , 166 (4), 458–469. https://doi.org/10.1086/444402
Srivastava, D. S., & Lawton, J. H. (1998). Why More Productive Sites Have More Species: An Experimental Test of Theory Using Tree‐Hole Communities. The American Naturalist , 152 (4), 510–529. https://doi.org/10.1086/286187
Storch, D., Bohdalková, E., & Okie, J. (2018). The more-individuals hypothesis revisited: The role of community abundance in species richness regulation and the productivity-diversity relationship.Ecology Letters , 21 (6), 920–937. https://doi.org/10.1111/ele.12941
Tilman, D., 1982. Resource competition and community structure. Princeton University Press.Ulrich, W., Kusumoto, B., Shiono, T., & Kubota, Y. (2016). Climatic and geographic correlates of global forest tree species–abundance distributions and community evenness.Journal of Vegetation Science , 27 (2), 295–305. https://doi.org/10.1111/jvs.12346
Willig, M. R., Kaufman, D. M., & Stevens, R. D. (2003). Latitudinal Gradients of Biodiversity: Pattern, Process, Scale, and Synthesis.Annual Review of Ecology, Evolution, and Systematics , 3 , 273–309.
Wright, D. H. (1983). Species-Energy Theory: An Extension of Species-Area Theory. Oikos , 41 (3), 496. https://doi.org/10.2307/3544109

Supplementary figures