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Abstract. This paper is concerned with a class of fractional Schrödinger equation with Hardy
potential

(−∆)su+ V (x)u−
κ

|x|2s
u = f(x, u), x ∈ RN ,

where s ∈ (0, 1) and κ ≥ 0 is a parameter. Under some suitable conditions on the potential V
and the nonlinearity f , we prove the existence of ground state solutions when the parameter
κ lies in a given range by using the non-Nehari manifold method. Moreover, we investigate

the continuous dependence of ground state energy about κ. Finally, we are able to explore the
asymptotic behaviors of ground state solutions as κ tends to 0.

1. Introduction and main results

We consider the following nonlinear fractional Schrödinger equation with Hardy potential

(1.1) (−∆)su+ V (x)u− κ

|x|2s
u = f(x, u), x ∈ RN ,

where s ∈ (0, 1), κ ≥ 0, N > 2s, V is external potential, f is nonlinear function with subcritical
growth, (−∆)s is the usual fractional Laplacian operator, defined by

(1.2) (−∆)su = CN,sP.V.

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dy, ∀x ∈ RN ,

here P.V. stands for the Cauchy principal value, and

CN,s :=
22sΓ(N+2s

2 )

2π
N
2 |Γ(−s)|

> 0

is a normalized constant and Γ is the usual Gamma function.
As well known, problem (1.1) arises when one considers standing wave solutions of the following

time-dependent fractional Schrödinger equation

i~
∂Ψ

∂t
=

~2s

2m
(−∆)sΨ+

(
V (x)− κ

|x|2s
+ E

)
Ψ− g(x, |Ψ|), (x, t) ∈ RN × R,

where Ψ represents the wave function, V is an external potential, κ
|x|2s is Hardy potential, m is the

mass of free particle and the nonlinear coupling g describes a self-interaction among many parti-
cles. We note that fractional Schrödinger equation was first introduced by Laskin [20], and comes
from an expansion of the Feynman path integral from Brownian-like to Lévy-like quantum me-
chanical paths. In Laskin’s studies, the Feynman path integral leads to the classical Schrödinger
equation and the path integral over Lévy trajectories leads to the fractional Schrödinger equation.
More in general, the study of nonlinear elliptic equations involving nonlocal and fractional oper-
ators has gained tremendous popularity during the last decade, because of intriguing structure
of these operators and their application in many areas of research such as optimization, finance,
phase transition phenomena, minimals surfaces, game theory, and population dynamics.
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On the other hand, the other feature of problem (1.1) is that the equation includes the singular
Hardy potential κ

|x|2s . Physically, the Hardy potential describes the motion and the interactions

(attractive and repulsive) between two charged particles, which plays a crucial role in quantum
mechanics. Besides, it also arises in many other areas such as nuclear physics, molecular physics
and quantum cosmology, see [14] for more background and applications. We note that the main
reason of interest in Hardy potential relies in their criticality: indeed it has the same homogeneity
as the operator (−∆)s + V and does not belong to the Kato’s class, hence it cannot be regarded
as a lower order perturbation term, This feature causes some new difficulties for overcoming the
lack of compactness, and this is one of the main motivations why we investigate problem (1.1).

It is known, but not completely trivial, that (−∆)s reduces to the classical Laplacian −∆ as
s → 1. To be more precise, when s = 1, the classical nonlinear Schrödinger equation with Hardy
potential

−∆u+ V (x)u− κ

|x|2
u = f(x, u), x ∈ RN ,

has received extensive attention in recent years by many researchers. Applying the topological
and variational arguments, some authors studied the existence of positive solutions, sign-changing
solutions, multiple solutions, ground state solutions and some related properties of solutions under
some suitable conditions, respectively. We refer the readers to see the papers [4, 5, 7, 16, 17, 19, 28]
and the references therein. In addition, for other related results about the coupled Schrodinger
system with Hardy potential, see for instance [35, 36, 39]. These works also motivate us to study
the fractional Schrödinger equations with Hardy potential in the present work.

Concerning the nonlocal framework, from the mathematical point of view, the main difficulty
of the fractional problem lies in that the fractional Laplacian (−∆)s has nonlocal characteristic.
Accordingly, some arguments used to deal with the local case do not work in nonlocal case,
and some nontrivial additional technical difficulties also arise. The seminal work initiated by
Caffarelli and Silvestre [8] in which the authors made greatest achievement in overcoming this
difficulty by the extension method. Under this framework of extension, the nonlocal problem can
be transformed into the local problem. Recently, for the case κ = 0, there have been many works
focused on the study of fractional Schrödinger equation (1.1) by using variational method and
the extension method. For instance, the papers [3, 6, 9, 13, 18, 22, 26, 34] studied the existence,
multiplicity and regularity results of solutions under different assumptions on the potential and
nonlinearity. We also refer to the monograph by Molica Bisci, Rădulescu and Servadei [23] for a
very nice introduction for the nonlocal fractional variational problems.

Regarding the study of fractional nonlocal equations with Hardy potential we would like to
mention the recent papers [1, 2, 11, 12]. More precisely, Bieganowski [1] studied the existence and
asymptotic behaviors of ground state solutions to problem (1.1) with sign-changing nonlinearities
by using the mountain pass argument and Nehari manifold method. It should be pointed that, in
[1], the author supposed that the potential V is positive and satisfies the asymptotically periodic
condition. After that, Bieganowski and co-authors [2] generalized these results to semirelativistic
Choquard equations. Fall and Felli [11, 12] also proved some properties of relativistic Schrödinger
opeartor with Hardy potential, such as the unique continuation properties and sharp essential
self-adjointness, and carefully analyzed the asymptotics of solutions at the singularity.

Inspired by the papers [1], in this paper we are interested in problem (1.1) with general periodic
indefinite potential. In order to better understand our purpose, we would like to introduce the
recent paper by Fang and Ji [13]. Indeed, under the condition of periodic and sign-changing for
the potential, Fang and Ji [13] proved the fractional Schrödinger operator (−∆)s + V has purely
continuous spectrum which is bounded below and consists of closed disjoint intervals, see [13,
Theorem 1.1]. So, in this framework, we can know that such problem has the strongly indefinite
variational structure. In the sense it is easy to see that zero is no longer a local minimum point
of the energy functional, thus the usual mountain pass theorem and Nehari manifold method do
not work. Naturally, we require more delicate approach to treat our problem. Therefore, the
problem we considered is completely different from the problem studied by Bieganowski [1], This
is the main motivation of the present paper and we will give an affirmative answer, which also
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complement and extend the results before. To the best of our knowledge, it seems that there is
no work considered this problem in the literature up to now.

More specifically, the main ingredients of the present paper are three aspects as follows. Firstly,
we prove the existence of ground state solutions for sufficiently small κ ≥ 0 under periodic and
asymptotically periodic conditions. Secondly, we investigate the continuous dependence of ground
state energy about parameter κ. Finally, we analyze the asymptotic convergence of ground state
solutions as κ → 0.

Moreover, throughout the paper, we introduce the following hypotheses on the potential V :
(V) V ∈ C(RN ,R) is ZN -periodic in x and 0 ̸∈ σ((−∆)s+V ) and σ((−∆)s+V )∩(−∞, 0) ̸= ∅,

where σ ((−∆)s + V ) denotes the spectrum of Schrödinger operator (−∆)s + V .

Before stating the results, we introduce the following notation. We use W to denote the class of
functions g ∈ C(RN ,R+)∩L∞(RN ,R+) such that for every ϵ > 0, the set

{
x ∈ RN : |g(x)| ≥ ϵ

}
has finite Lebesgue measure. Meanwhile, we assume that f satisfies the following conditions:

(f1) f ∈ C(RN × R,R) and there exist p ∈ (2, 2∗s) and c > 0 such that

|f(x, s)| ≤ c(1 + |s|p−1) for all (x, s),

where 2∗s = 2N
N−2s is the fractional Sobolev critical exponent;

(f2) f(x, s) = o(|s|) as |s| → 0 uniformly in x;

(f3)
F (x,s)

s2 → ∞ as s → ∞ uniformly in x, where F (x, s) =
∫ s

0
f(x, t)dt;

(f4) f(x, s) is ZN -periodic in x;

(f5)
f(x,s)
|s| is non-decreasing on (−∞, 0) and (0,∞);

(f6) there exist constant p0 ∈ (2, 2∗s) and function a ∈ W , f̂ ∈ C(RN × R,R) is ZN -periodic
in x such that
(i) F (x, s) > F̂ (x, s) =

∫ s

0
f̂(x, t)dt for all (x, s),

(ii) |f(x, s)− f̂(x, s)| ≤ a(x)(1 + |s|p0−1) for all (x, s),

(iii) f̂(x,s)
|s| is non-decreasing in s on (0,+∞) and (0,∞);

(f7) there exist c0 > 0 and 2 < q ≤ p such that

1

2
f(x, s)s− F (x, s) ≥

{
c0|s|2, for |s| < 1,
c0|s|q, for |s| ≥ 1.

Let κ∗ and ν0 be two positive constants and mκ denote the ground state energy of problem
(1.1), where κ∗, ν0 and mκ will be given in Section 2. Now we introduce the main results of this
paper. First, for the periodic case we have the following theorem.

Theorem 1.1. Assume that (V ) and (f1)-(f5) are satisfied and 0 ≤ κ < κ∗ν20 . Then problem
(1.1) has at least a ground state solutions.

For the asymptotically periodic case we have the following result.

Theorem 1.2. Suppose that (V ), (f1)-(f3), (f5) and (f6) are satisfied and 0 ≤ κ < κ∗ν20 . Then
problem (1.1) has at least a ground state solutions.

We also show the convergence property of the ground state energy as follows.

Theorem 1.3. Assume that (V ), (f1)-(f3), (f5) and (f4) (or (f6) ) hold. Then the ground state
energy has the convergence property: limκ→0+ mκ = m0.

Evidently, the ground state solutions uκ obtained in Theorems 1.1 and 1.2 is related to param-
eter κ. The following theorem shows the asymptotic behavior of uκ as κ → 0, which illustrate
the relationship between κ > 0 and κ = 0 in problem (1.1).

Theorem 1.4. Under the conditions of Theorem 1.1 or Theorem 1.2, let uκ be a ground state
solution of problem (1.1). Then for any sequence {κn} with κn → 0 as n → ∞, passing to a
subsequence, uκn → u0 as n → ∞ in Hs(RN ), where u0 is a ground state solution of the following
problem

(−∆)su+ V (x)u = f(x, u), x ∈ RN .
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To complete the proofs of main results, let us now outline the main strategies and approach-
es. Our strategies are based on variational arguments and refined analysis techniques. Firstly,
we note that the conditions (f5) and (f6)-(iii) are not strictly increasing, so we do not use the
generalized Nehari manifold method introduced by Szulkin and Weth [29] to find ground state
solutions. To circumvent this obstacle created by the non-decreasing, we intend to adapt the
non-Nehari manifold method developed by Tang [31] to handle the present problem. The main
idea of this method is to construct a special Cerami sequence at some level outside the generalized
Nehari manifold by combining the generalized linking theorem and the diagonal method, then
show that the Cerami sequence is bounded. Secondly, we will make use of the technique of limit
problem to analyze carefully the behavior of Cerami sequence, and establish two global com-
pactness results for bounded Cerami sequences to overcome the lack of embedding compactness.
Moreover, combining the global compactness results and the energy comparison argument, we
can establish the existence of ground state solutions. Thirdly, using some analysis techniques, we
prove the convergence property of the ground state energy and asymptotic behaviors of ground
state solutions.

The structure of this paper is the following. In Section 2, we establish the variational frame-
work to problem (1.1) and give some useful preliminary lemmas. In Section 3, we prove two global
compactness results by analyzing the properties of Cerami sequence, and we give the completed
proofs of Theorems 1.1 and 1.2. In Section 4, we prove the asymptotic behaviors of solutions and
finish the proofs of Theorems 1.3 and 1.4.

2. Variational setting and preliminary results

Throughout the paper, we use | · |q to denote the usual Lq-norm, and use (·, ·)2 to denote the
usual L2 inner product, c, ci or Ci stand for different positive constants.

In the following we introduce the fractional Sobolev spaces [23] and some related conclusions.
For any s ∈ (0, 1), we define Ds,2(RN ) as the completion of C∞

0 (RN ) with respect to

[u]2Ds,2 =

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dydx.

Let us introduce the fractional Sobolev space

Hs(RN ) =

{
u ∈ L2(RN ) :

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dydx < +∞

}
endowed with the natural norm

∥u∥Hs =

(
CN,s

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dydx+

∫
RN

|u|2dx
) 1

2

.

We note that Hs(RN ) can be also equivalently represented as

Hs(RN ) =
{
u ∈ L2(RN ) : (−∆)

s
2u ∈ L2(RN )

}
,

and the norm ∥u∥Hs can be rewritten as

∥u∥Hs =

(∫
RN

[
|(−∆)

s
2u|2 + |u|2

]
dx

) 1
2

.

Let H = (−∆)s + V denote the fractional Schrödinger operator. According to the continuity
of V , we can see that V is bounded in RN . Moreover, under the condition (V ), H is a self-adjoint
operator, and it has purely continuous spectrum which is bounded below and consists of closed
disjoint intervals due to [13, Theorem 1.1]. Then L2 have the orthogonal decomposition

L2 = L− ⊕ L+, u = u− ⊕ u+,

such that H is negative definite in L− and positive definite in L+. Let |H| be the absolute value

of H, |H| 12 be its square root, and let E = D(|H| 12 ) be the Hilbert space equipped with the inner
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product

(u, v) = (|H| 12u, |H| 12 v)2 =

∫
RN

|H| 12u|H| 12 vdx,

then the induced norm ∥u∥ = (u, u)
1
2 . From the boundedness of V , we know that the norm ∥u∥

is equivalent to ∥u∥Hs , that is, there exist ν0 and ν1 such that

(2.1) ν0∥u∥Hs ≤ ∥u∥ ≤ ν1∥u∥Hs .

Therefore E = Hs(RN ). Furthermore, according to the orthogonal decomposition of L2, we have
the decomposition of E:

E = E− ⊕ E+,where E− = E ∩ L−, E+ = E ∩ L+,

Clearly, E is orthogonal with respect to the two inner products (·, ·) and (·, ·)2. Using the polar
decomposition of operator, we also have

Hu− = −|H|u−,Hu+ = |H|u+, for all u = u− + u+ ∈ E.

Define a bilinear map B(u, v) as follows

(2.2) B(u, v) =

∫
RN

[
(−∆)

s
2u(−∆)

s
2 v + V (x)uv

]
dx.

Then, according to the above decomposition, for each u ∈ E we have

(2.3) B(u, u) = B(u+, u+) +B(u−, u−) = (u+, u+)− (u−, u−) = ∥u+∥2 − ∥u−∥2.
Let us recall the following embedding property for fractional Sobolev spaces, see the monograph

by Molica Bisci-Rădulescu-Servadei [23] for more details.

Lemma 2.1. The embedding E ↪→ Lq(RN ) is continuous for any 2 ≤ q ≤ 2∗s. Moreover, the
embedding E ↪→ Lq(RN ) is locally compact for any 2 ≤ q < 2∗s.

From Lemma 2.1, we can see that there exists constant γq > 0 such that

(2.4) |u|q ≤ γq∥u∥, ∀ u ∈ E, q ∈ [2, 2∗s].

We also recall the fractional Hardy inequality (see [15, Theorem 1.1]), which is very crucial to
deal with Hardy potential.

Lemma 2.2. There exists ΛN,s > 0 such that for every u ∈ E and N > 2s, then there holds

(2.5) ΛN,s

∫
RN

|u(x)|2

|x|2s
dx ≤

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dydx,

where

ΛN,s = 2π
N
2

Γ(N+2s
4 )2|Γ(−s)|

Γ(N−2s
4 )2Γ(N+2s

2 )
.

We define

κ∗ = ΛN,sCN,s = 4s

[
Γ(N+2s

4 )

Γ(N−2s
4 )

]2

.

In particular, for the local case (s = 1) we obtain

κ∗ = 4

[
Γ(N+2

4 )

Γ(N−2
4 )

]2

= 4(
N

4
− 1

2
)2 =

(N − 2)2

4
.

From (2.1) and (2.5) we can deduce that

(2.6)

κ∗
∫
RN

|u(x)|2

|x|2s
dx ≤ CN,s

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dydx

≤ ∥u∥2Hs ≤ 1

ν20
∥u∥2.



6

Now, on E we define the the energy functional corresponding to problem (1.1)

Φκ(u) =
1

2

∫
RN

[
|(−∆)

s
2u|2 + V (x)|u|2

]
dx− κ

2

∫
RN

|u|2

|x|2s
dx−

∫
RN

F (x, u)dx.

In view of (2.2) and (2.3) we get

Φκ(u) =
1

2
B(u, u)− κ

2

∫
RN

|u|2

|x|2s
dx−

∫
RN

F (x, u)dx

=
1

2
(∥u+∥2 − ∥u−∥2)− κ

2

∫
RN

|u|2

|x|2s
dx−

∫
RN

F (x, u)dx

for u = u+ + u− ∈ E. Since E+ and E− are infinite dimensional, then Φκ is strongly indefinite.
We deduce from the assumptions (f1), (f2) and (f5) that for any ϵ > 0, there exists positive

constant Cϵ such that

(2.7)

{
f(x, s) ≤ ϵs+ Cϵ|s|p−1

F (x, s) ≤ ϵ|s|2 + Cϵ|s|p
for all (x, s) ∈ RN × R and p ∈ (2, 2∗s)

and

(2.8)
1

2
f(x, s)s ≥ F (x, s) ≥ 0, for all (x, s) ∈ RN × R.

Therefore, according to (2.6) and (2.7) and using a standard argument, we can show that Φκ ∈
C1(E,R). Clearly, the critical points of Φκ are solutions of problem (1.1), and

⟨Φ′
κ(u), v⟩ = (u+, v+)− (u−, v−)− κ

∫
RN

uv

|x|2s
dx−

∫
RN

f(x, u)vdx, for u, v ∈ E.

For more information about the strongly indefinite variational problems, we refer to the mono-
graphs by Ding [10] and Willem [33].

Below we recall that a functional Φ ∈ C1(E,R) is said to be weakly sequentially lower semi-
continuous

“if for any un ⇀ u in E ⇒ Φ(u) ≤ lim inf
n→∞

Φ(un); ”

and Φ′ is said to be weakly sequentially continuous

“if lim
n→∞

⟨Φ′(un), φ⟩ = ⟨Φ′(u), φ⟩ for each φ ∈ E.”

We say that Φ satisfies that “Cerami condition”, if the following property holds:

“if {un} ⊆ E is a Cerami sequence such that

{Φ(un)} ⊆ R is bounded,

and (1 + ∥un∥)Φ′(un) → 0 in E∗ as n → ∞,

then it has a strongly convergent subsequence.”

For the sake of simplicity, let

Ψκ(u) =
κ

2

∫
RN

|u|2

|x|2s
dx+

∫
RN

F (x, u)dx.

Using Lemma 2.1, Lemma 2.2 and Fatou’s lemma, we can easily check the following result.

Lemma 2.3. Assume that (V ), (f1),(f2) and (f5) are satisfied and κ ≥ 0. Then Ψκ is weakly
sequentially lower semi-continuous, and Ψ′

κ is weakly sequentially continuous.

In order to find the ground state solutions of the problem (1.1), we define the following Nehari-
Pankov manifold Nκ (also called generalized Nehari manifold [29])

Nκ = {u ∈ E\E− : ⟨Φ′
κ(u), u⟩ = 0 and ⟨Φ′

κ(u), v⟩ = 0, ∀v ∈ E−}.
and the ground state energy mκ of Φκ defined by

mκ = inf
u∈Nκ

Φκ(u).
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Lemma 2.4. Assume that (V ), (f1), (f2), (f3) and (f5) are satisfied and 0 ≤ κ < κ∗ν20 , and let
u ∈ E, w ∈ E− and t ≥ 0. Then we have

(2.9) Φκ(u) ≥ Φκ(tu+ w) +
1− t2

2
⟨Φ′

κ(u), u⟩ − t⟨Φ′
κ(u), w⟩.

In particular, let u ∈ Nκ, w ∈ E− and t ≥ 0, there holds

(2.10) Φκ(u) ≥ Φκ(tu+ w).

Proof. By the virtue of (f5), due to [31, Lemma 2.3], for any x ∈ RN we have

f(x, s) ≤ f(x, τ)

|τ |
|s|, s ≤ τ ; f(x, s) ≥ f(x, τ)

|τ |
|s|, s ≥ τ ;

and

(2.11)

(
1− t2

2
τ2 − tτσ

)
f(x, τ)

|τ |
≥

∫ τ

tτ+σ

f(x, s)ds, τ ≥ 0, σ ∈ R.

By a direct computation we can obtain

Φκ(u)− Φκ(tu+ w)− 1− t2

2
⟨Φ′

κ(u), u⟩+ t⟨Φ′
κ(u), w⟩

=

∫
RN

[
1− t2

2
f(x, u)− tf(x, u)w −

∫ u

tu+w

f(x, s)ds

]
+

1

2
∥w∥2 + κ

2

∫
RN

|w|2

|x|2s
dx.

Thus, taking advantage of (2.11) we can see easily that (2.9) holds.
Evidently, let u ∈ Nκ and w ∈ E−, then

⟨Φ′
κ(u), u⟩ = ⟨Φ′

κ(u), w⟩ = 0.

Consequently, (2.10) holds. This ends the proof of the lemma. �

Next we need the generalized linking theorem and show that Φκ has linking structure.

Lemma 2.5. Let X be a real Hilbert space with X = X− ⊕X+, and let Φ ∈ C1(X,R) be of the
form

Φ(u) =
1

2

(
∥u+∥2 − ∥u−∥2

)
−Ψ(u), u = u− + u+ ∈ X− ⊕X+.

Assume that the following conditions hold:

(Ψ1) Ψ ∈ C1(X,R) is bounded from below and weakly sequentially lower semi-continuous;
(Ψ2) Ψ′ is weakly sequentially continuous;
(Ψ3) there exist R > ρ > 0 and e ∈ X+ with ∥e∥ = 1 such that

α := inf Φ(S+
ρ ) > supΦ(∂Q),

where

S+
ρ =

{
u ∈ X+ : ∥u∥ = ρ

}
, Q =

{
v + se : v ∈ X−, s ≥ 0, ∥v + se∥ ≤ R

}
.

Then there exist a constant c ∈ [α, supΦ(Q)] and a sequence {un} ⊂ X satisfying

Φ(un) → c and (1 + ∥un∥)∥Φ′(un)∥ → 0.

Lemma 2.6. Assume that (V ), (f1), (f2), (f3) and (f5) are satisfied and 0 ≤ κ < κ∗ν20 . Then

(i) there exists ρ > 0 such that

mκ ≥ α := inf
{
Φκ(u) : u ∈ E+, ∥u∥ = ρ

}
> 0.

(ii) ∥u+∥2 ≥ max
{
∥u−∥2, 2mκ

}
for all u ∈ Nκ.
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Proof. (i) Clearly, from Lemma 2.4 we can easily see thatmκ ≥ α := inf {Φκ(u) : u ∈ E+, ∥u∥ = ρ}.
So, we only need to show that α > 0. Indeed, let u ∈ E+ and 0 ≤ κ < κ∗ν20 . Using (2.4), (2.6)
and (2.7) we have

Φκ(u) =
1

2
∥u∥2 − κ

2

∫
RN

|u|2

|x|2s
dx−

∫
RN

F (x, u)dx

≥ 1

2

(
1− κ

κ∗ν20

)
∥u∥2 − ϵγ2

2∥u∥2 − γp
pCϵ∥u∥p.

Since 0 ≤ κ < κ∗ν20 and p > 2, we infer that there exists ρ > 0 small enough such that

α := inf
{
Φκ(u) : u ∈ E+, ∥u∥ = ρ

}
> 0.

(ii) Let u ∈ Nκ, by (2.8), it is easy to see that

mκ ≤1

2
(∥u+∥2 − ∥u−∥2)− κ

2

∫
RN

|u|2

|x|2s
dx−

∫
RN

F (x, u)dx

≤1

2
(∥u+∥2 − ∥u−∥2),

which implies that ∥u+∥2 ≥ max
{
∥u−∥2, 2mκ

}
. So, we finish the proof. �

Lemma 2.7. Assume that (V ), (f1), (f2), (f3) and (f5) are satisfied and 0 ≤ κ < κ∗ν20 . Then
for any e ∈ E+, supΦκ(E

− ⊕ R+e) < ∞, and there is Re > 0 independent of κ such that

Φκ(u) < 0, ∀ u ∈ E− ⊕ R+e, ∥u∥ ≥ Re.

In particular, there is a R0 > ρ independent of κ such that supΦ(∂QR) ≤ 0 for R ≥ R0, where

(2.12) QR =
{
se+ w : w ∈ E−, s ≥ 0, ∥se+ w∥ ≤ R

}
.

Proof. Let e ∈ E+, t ≥ 0 and u = te+ u− ∈ E− ⊕ R+e. Note that κ ≥ 0, then

Φκ(u) ≤ Φ0(u) =
1

2
(∥u+∥2 − ∥u−∥2)−

∫
RN

F (x, u)dx.

Consequently, we only need to demonstrate the result holds for the functional Φ0, and the proof
of the functional Φ0 is standard, see [10, 35]. So we omit the details. �

From Lemmas 2.3, 2.5, 2.6 and 2.7, we can deduce easily that the following conclusion holds.

Lemma 2.8. Assume that (V ), (f1), (f2), (f3) and (f5) are satisfied and 0 ≤ κ < κ∗ν20 . Then
there exist a constant c̃κ ∈ [α, supΦκ(Q)] and a correspond sequence {un} ⊂ E such that

Φκ(un) → c̃κ and ∥Φ′
κ(un)∥(1 + ∥un∥) → 0.

In what follows we will take advantage of the non-Nehari method developed by Tang [31] to
construct a special (C)cκ -sequence for some cκ ∈ [α,mκ], which is very crucial in our analysis.

Lemma 2.9. Assume that (V ), (f1), (f2), (f3) and (f5) are satisfied and 0 ≤ κ < κ∗ν20 . Then
there exist a constant cκ ∈ [α,mκ] and a correspond sequence {un} ⊂ E such that

Φκ(un) → cκ and ∥Φ′
κ(un)∥(1 + ∥un∥) → 0.

Proof. We follow the idea of [31] to complete the proof. Note that, according to the definition of
mκ we can choose vk ∈ Nκ such that

(2.13) mκ ≤ Φκ(vk) < mκ +
1

k
, k ∈ N.

From Lemma 2.6, we can see that ∥v+k ∥2 ≥ 2mκ > 0. Denote ek = v+k /∥v
+
k ∥. Then ek ∈ E+

and ∥ek∥ = 1. According to Lemma 2.7, we infer that there exists Rk > max{ρ, ∥vk∥} such that
supΦκ(∂Qk) ≤ 0, where

(2.14) Qk = {sek + w : w ∈ E−, s ≥ 0, ∥sek + w∥ ≤ Rk}, k ∈ N.
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Thus, using Lemma 2.8 we can get a constant cκ,k ∈ [α, supΦκ(Qk)] and a correspond sequence
{uk,n} ⊂ E such that

(2.15) Φκ(uk,n) → cκ,k and ∥Φ′
κ(uk,n)∥(1 + ∥uk,n∥) → 0, k ∈ N.

We observe that from Lemma 2.4 we can obtain

(2.16) Φκ(vk) ≥ Φκ(tvk + z), ∀ t ≥ 0, z ∈ E−.

Since vk ∈ Qk, we deduce from (2.14) and (2.16) that supΦκ(Qk) = Φκ(vk). Therefore, according
to (2.13) and (2.15) we have

Φκ(uk,n) → cκ,k < mκ +
1

k
and ∥Φ′

κ(uk,n)∥(1 + ∥uk,n∥) → 0, k ∈ N.

Using the diagonal method, we can choose a sequence {nk} ⊂ N such that

Φκ(uk,nk
) < mκ +

1

k
and ∥Φ′

κ(uk,nk
)∥(1 + ∥uk,nk

∥) < 1

k
, k ∈ N.

Let uk = uk,nk
, k ∈ N. Up to a subsequence, we see that

Φκ(uk) → cκ ∈ [α,mκ] and ∥Φ′
κ(uk)∥(1 + ∥uk∥) → 0.

So, we complete the proof. �

Similarly to the proof [29, Lemma 2.6], one can get the following important conclusion which
will be very useful later.

Lemma 2.10. Assume that (V ), (f1), (f2), (f3) and (f5) are satisfied and 0 ≤ κ < κ∗ν20 , and let
u ∈ E \E−. Then Nκ∩ (E−⊕R+u) ̸= ∅, i.e., there are t > 0 and v ∈ E− such that tu+v ∈ Nκ.

3. Ground state solutions

In this section, we are going to prove the existence of ground state solutions to problem (1.1).
That is, we give the completed proofs of Theorem 1.1 and Theorem 1.2. We begin by analyzing
the behaviors of (C)cκ -sequence which play a fundamental role in the study.

Lemma 3.1. Assume that (V ), (f1), (f2), (f3) and (f5) are satisfied and 0 ≤ κ < κ∗ν20 . Then
the (C)cκ-sequence {un} ⊂ E obtained in Lemma 2.9 is bounded.

Proof. Let {un} ⊂ E be a (C)cκ-sequence satisfying

(3.1) (1 + ∥un∥)Φ′
κ(un) → 0 and Φκ(un) → cκ.

We argue by contradiction, assume that ∥un∥ → ∞ as n → ∞. Setting vn = un/∥un∥, then
∥vn∥ = 1. After passing to a subsequence, we may assume that vn ⇀ v in E, vn → v in Lq

loc(RN )
for q ∈ [2, 2∗s) and vn(x) → v(x) a.e. x ∈ RN . Let

δ := lim
n→∞

sup
y∈RN

∫
B(y,1)

|v+n |2dx.

If δ = 0, using the Lions concentration compactness lemma (see [21]), we know that v+n → 0 in
Lq(RN ) for any q ∈ (2, 2∗s). Employing (2.7), we can deduce that

(3.2)

∫
RN

F (x, sv+n )dx → 0 as n → ∞, for any s > 0.
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Let tn = s/∥un∥, from (2.6), (2.9), (3.1) and (3.2) we can infer that there exists C > 0,

(3.3)

C ≥ Φκ(un) ≥ Φκ(tnun + (−tnu
−
n ))−

t2n − 1

2
⟨Φ′

κ(un), un⟩+ t2n⟨Φ′
κ(un), u

−
n ⟩

= Φκ(sv
+
n ) + o(1)

=
s2

2

(
∥v+n ∥2 − κ

∫
RN

|v+n |2

|x|2s
dx

)
+ o(1)

≥ s2

2

(
1− κ

κ∗ν20

)
∥v+n ∥2 + o(1).

On the other hand, from (2.8) we can deduce that

Φ′
κ(un), un⟩ =∥u+

n ∥2 − ∥u−
n ∥2 −

∫
RN

[
1

2
f(x, un)un − F (x, un)

]
dx

≤∥u+
n ∥2 − ∥u−

n ∥2,

consequently, from Lemma 2.6-(ii), we can get

2∥u+
n ∥2 ≥ ∥u+

n ∥2 + ∥u−
n ∥2 + ⟨Φ′

κ(un), un⟩ = ∥un∥2 + ⟨Φ′
κ(un), un⟩.

Evidently, we can see that ∥v+n ∥2 ≥ c3 > 0. Therefore, we can get a contradiction in (3.3) if s is
large enough.

From the above discussions, we know δ = 0 does not occur, and we may assume that δ > 0.
Up to a subsequence, there exists {kn} ⊂ ZN such that∫

B(kn,1+
√
N)

|v+n |2dx >
δ

2
.

Let us define v̂n(x) = vn(x+ kn), then we have∫
B(0,1+

√
N)

|v̂+n |2dx >
δ

2
.

Passing to a subsequence, v̂+n → v̂+ in L2
loc(RN ) and v̂+ ̸= 0, which implies that |un(x+ kn)| =

|v̂n(x)|∥un∥ → ∞. According to (f3) we obtain

F (x+ kn, un(x+ kn))

∥un∥2
=

F (x+ kn, un(x+ kn))

|un(x+ kn)|2
|v̂n|2 → ∞ for x ∈ {v̂ ̸= 0}.

Thus, it follows from Fatou’s lemma that

0 = lim
n→∞

Φκ(un)

∥un∥2

≤ lim
n→∞

[
1

2

(
∥v+n ∥2 − ∥v−n ∥2 − κ

∫
RN

|vn|2

|x|2s
dx

)
−

∫
{v̂ ̸=0}

F (x+ kn, un(x+ kn))

∥un∥2
dx

]

≤ 1

2
−
∫
{v̂ ̸=0}

lim
n→∞

inf
F (x+ kn, un(x+ kn))

∥un∥2
dx

→ −∞,

which yields a contradiction. The proof is completed. �

We introduce the following result which is very useful to deal with the Hardy-type term and
plays a very important role in the proof of the global compactness result.

Lemma 3.2. For any u ∈ E, if |xn| → ∞, then we have the conclusion∫
RN

|u(x− xn)|2

|x|2s
dx → 0 as n → ∞.
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Following the idea of [1] and combining Lemma 2.2 and a approximation argument, we can
easily prove Lemma 3.2. More details can be found in [1, Lemma 2.5], we omit it here.

Next we will make use of Lemma 3.1 and Lemma 3.2 to establish a global compactness result,
which plays an important role in dealing with the difficulty caused by the lack of compactness of
the Sobolev embedding.

Lemma 3.3. Assume that (V ), (f1), (f2), (f3) and (f5) are satisfied and 0 ≤ κ < κ∗ν20 , and
let {un} be a bounded (C)cκ-sequences of Φκ. Then there exists uκ ∈ E such that Φ′

κ(uκ) = 0,
moreover, we have either
(i) un → uκ in E, or
(ii) there exist number k ≥ 1, nontrivial critical points u1, · · · , uk of Φ0 and k sequences of points
{xi

n} ⊂ ZN , 1 ≤ i ≤ k, such that

|xi
n| → +∞, |xi

n − xj
n| → +∞, if i ̸= j, i, j = 1, 2, · · · , k,∥∥∥∥∥un − uκ −

k∑
i=1

ui(· − xi
n)

∥∥∥∥∥ → 0 and cκ = Φκ(uκ) +
k∑

i=1

Φ0(ui).

Proof. Let {un} be a bounded (C)cκ -sequences of Φκ. From Lemma 2.2 and (2.6) we know that
{un} is bounded in L2(RN , 1

|x|2s ). Then, after passing to a subsequence, we may assume that

un ⇀ uκ in E, un ⇀ uκ in L2

(
RN ,

1

|x|2s

)
un → uκ in L2

loc(RN ), un(x) → uκ(x) a.e. on RN .

It follows from Lemma 2.3 that Φ′
κ(uκ) = 0. Setting vn = un − uκ, then

v+n ⇀ 0 in E+, v−n ⇀ 0 in E− and vn ⇀ 0 in L2(RN ,
1

|x|2s
).

Computing directly, we have

(3.4)

∥v+n ∥2 = ∥u+
n ∥2 − ∥u+

κ ∥2 + o(1),

∥v−n ∥2 = ∥u−
n ∥2 − ∥u−

κ ∥2 + o(1),

∥vn∥2 = ∥un∥2 − ∥uκ∥2 + o(1).

(3.5)

∫
RN

|vn|2

|x|2s
dx =

∫
RN

|un|2

|x|2s
dx−

∫
RN

|uκ|2

|x|2s
dx+ o(1).

Using some standard arguments from [10] we can easily check that

(3.6)

∫
RN

[F (x, un)− F (x, uκ)− F (x, vn)] dx = o(1),

(3.7)

∫
RN

[f(x, un)− f(x, uκ)− f(x, vn)]ϕdx = o(1), ∀ϕ ∈ E,

and

(3.8)

∫
RN

unϕ

|x|2s
dx−

∫
RN

uκϕ

|x|2s
dx−

∫
RN

vnϕ

|x|2s
dx = o(1), ∀ϕ ∈ E.

Therefore, we deduce from (3.4), (3.5) and (3.6) that

(3.9) Φκ(un)− Φκ(uκ)− Φκ(vn) = o(1).

Similarly, according to (3.7) and (3.8) we also have

(3.10) ⟨Φ′
κ(un), ϕ⟩ − ⟨Φ′

κ(uκ), ϕ⟩ − ⟨Φ′
κ(vn), ϕ⟩ = o(1), ∀ϕ ∈ E.
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Next we discuss the following two cases: (a) {vn} is vanishing, and (b) {vn} is non-vanishing.
For the case (a), if {vn} is vanishing, then

lim
n→∞

sup
y∈RN

∫
B(y,1)

|vn|2dx = 0.

Making use of the Lions concentration compactness lemma (see [21]), we can know that vn → 0
in Lq(RN ) for any q ∈ (2, 2∗s). On the other hand, according to the facts that the orthogonal
projection of E on E+ and E− is continuous in Lq(RN ), we have v+n → 0 and v−n → 0 in Lq(RN )
for any q ∈ (2, 2∗s). Thus it follows from (2.7) that

(3.11)

∫
RN

[f(x, un)− f(x, uκ)] v
+
n dx = o(1),∫

RN

[f(x, uκ)− f(x, un)] v
−
n dx = o(1).

Since {un} is bounded (C)cκ -sequences, we can get that Φ′
κ(un) = o(1) and ⟨Φ′

κ(un), v
±
n ⟩ = o(1).

Combining the above facts and Φ′
κ(uκ) = 0, we deduce that

o(1) = ⟨Φ′
κ(un), v

+
n ⟩

= (un, v
+
n )− κ

∫
RN

unv
+
n

|x|2s
dx−

∫
RN

f(x, un)v
+
n dx

= ∥v+n ∥2 − κ

∫
RN

vnv
+
n

|x|2s
dx−

∫
RN

f(x, un)v
+
n dx+ ⟨Φ′

κ(uκ), v
+
n ⟩+

∫
RN

f(x, uκ)v
+
n dx

= ∥v+n ∥2 − κ

∫
RN

|v+n |2

|x|2s
dx− κ

∫
RN

v−n v
+
n

|x|2s
dx+

∫
RN

[f(x, uκ)− f(x, un)] v
+
n dx.

This, together with (2.6), implies that

(3.12)

[
1− κ

κ∗ν20

]
∥v+n ∥2 ≤ κ

∫
RN

v−n v
+
n

|x|2s
dx+

∫
RN

[f(x, un)− f(x, uκ)] v
+
n dx+ o(1).

Using the same arguments we also have

o(1) = ⟨Φ′
κ(un), v

−
n ⟩

= −∥v−n ∥2 − κ

∫
RN

|v−n |2

|x|2s
dx− κ

∫
RN

v−n v
+
n

|x|2s
dx+

∫
RN

[f(x, uκ)− f(x, un)] v
−
n dx,

it follows that

(3.13) ∥v−n ∥2 ≤ −κ

∫
RN

v−n v
+
n

|x|2s
dx+

∫
RN

[f(x, uκ)− f(x, un)] v
−
n dx+ o(1).

Therefore, from (3.11), (3.12) and (3.13) we conclude that ∥vn∥ → 0 in E, and un → uκ in E.
Consequently, we prove that the conclusion (i) holds.

For the case (b), if {vn} is non-vanishing, then there exist δ > 0, ϱ > 1 and {yn} ⊂ ZN such
that

(3.14) lim inf
n→∞

∫
B(yn,ϱ)

|vn|2dx ≥ δ.

Evidently, {yn} is unbounded. After passing to a subsequence, we may assume that |yn| → ∞.
Let us define ṽn = vn(x+yn). According to (3.14), up to a subsequence, we can find u1 ̸= 0 such
that ṽn ⇀ u1 in E, ṽn → u1 in Lq

loc(RN ) for q ∈ (2, 2∗s) and ṽn(x) → u1(x) a.e. x ∈ RN .
Applying the Hölder inequality and Lemma 3.2, it is easy to see that∣∣∣∣∫

RN

1

|x|2s
vnφ(x− yn)dx

∣∣∣∣ ≤ [∫
RN

|vn|2

|x|2s
dx

] 1
2
[∫

RN

|φ(x− yn)|2

|x|2s
dx

] 1
2

→ 0, ∀φ ∈ E.
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Taking advantage of the above conclusion, we have

(3.15)

o(1) = ⟨Φ′
κ(vn), φ(x− yn)⟩

= (v+n , φ
+(x− yn))− (v−n , φ

−(x− yn))− κ

∫
RN

vnφ(x− yn)

|x|2s
dx

−
∫
RN

f(x, vn)φ(x− yn)dx

= (ṽ+n , φ
+)− (ṽ−n , φ

−)−
∫
RN

f(x, ṽn)φdx+ o(1)

= ⟨Φ′
0(ṽn), φ⟩+ o(1),

which implies that ⟨Φ′
0(u1), φ⟩ = 0. Hence, u1 is a nontrivial critical point of Φ0.

Now denote v1n = un − uκ − u1(· − yn). Similarly to (3.4) and (3.5), we have

(3.16)

∥u+
n ∥2 − ∥u+

κ ∥2 − ∥u+
1 ∥2 − ∥v1+n ∥2 = o(1),

∥u−
n ∥2 − ∥u−

κ ∥2 − ∥u−
1 ∥2 − ∥v1−n ∥2 = o(1),

∥un∥2 − ∥uκ∥2 − ∥u1∥2 − ∥v1n∥2 = o(1),

and

(3.17)

∫
RN

|un − uκ|2

|x|2s
dx−

∫
RN

|u1(x− yn)|2

|x|2s
dx−

∫
RN

|v1n|2

|x|2s
dx = o(1).

Applying Lemma 3.2 and the Brezis-Lieb Lemma, from (3.17) we can get

(3.18)

∫
RN

|v1n|2

|x|2s
dx =

∫
RN

|un|2

|x|2s
dx−

∫
RN

|uκ|2

|x|2s
dx+ o(1).

Similarly to (3.6), there holds

(3.19)

∫
RN

[
F (x, un)− F (x, uκ)− F (x, u1)− F (x, v1n)

]
dx = o(1).

Therefore, using (3.16)-(3.19), we conclude that

(3.20) Φκ(un)− Φκ(uκ)− Φκ(v
1
n)− Φ0(u1) = o(1)

and we take x1
n := yn. We replace vn by v1n and repeat the above arguments in vanishing case

and non-vanishing case. If

lim
n→∞

sup
y∈RN

∫
B(y,1)

|v1n|2dx = 0.

Following the proof of conclusion (i), we have v1n → 0 in E. Then we deduce from (3.16) and
(3.20) that k = 1.

Otherwise, arguing as the proof of non-vanishing case, we can may find {yn} ⊂ ZN such that
(3.14) holds for {v1n}. Then passing to a subsequence |yn| → ∞ and |yn − x1

n| → ∞ as n → ∞.
Adapting the above argument, let ṽ1n(x) = vn(x + yn), then we can find u2 ̸= 0 such that, up
to a subsequence, ṽ1n ⇀ u2 in E, ṽ1n → u2 in Lq

loc(RN ) for q ∈ (2, 2∗s) and ṽ1n(x) → u2(x) a.e.
x ∈ RN . Following the proof in (3.15), we see that u2 is a nontrivial critical point of Φ0. Denote
v2n = un − uκ − u1(· − x1

n)− u2(· − yn), and similarly to (3.16) and (3.20), we have

∥u+
n ∥2 − ∥u+

κ ∥2 − ∥u+
1 ∥2 − ∥u+

2 ∥2 − ∥v2+n ∥2 = o(1),

∥u−
n ∥2 − ∥u−

κ ∥2 − ∥u−
1 ∥2 − ∥u−

2 ∥2 − ∥v2−n ∥2 = o(1),

∥un∥2 − ∥uκ∥2 − ∥u1∥2 − ∥u2∥2 − ∥v2n∥2 = o(1),

Φκ(un)− Φκ(uκ)− Φκ(v
2
n)− Φ0(u1)− Φ0(u2) = o(1),
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and x2
n := yn. Again repeating the above arguments, we claim that the iterations must stop after

finite steps. Indeed, using ⟨Φ′
0(u), u

±⟩ = 0 and (2.7) we have

∥u+∥2 ≤
∫
RN

|f(x, u)u+|dx ≤ ϵ∥u+∥∥u∥+ Cϵ∥u+∥∥u∥p−1

and

∥u−∥2 ≤
∫
RN

|f(x, u)u−|dx ≤ ϵ∥u−∥∥u∥+ Cϵ∥u−∥∥u∥p−1.

Consequently,
∥u∥2 ≤ 2ϵ∥u∥2 + 2Cϵ∥u∥p.

Obviously, there is a constant ρ0 > 0 such that

(3.21) ∥u∥ ≥ ρ0 for any u ̸= 0 with Φ′
0(u) = 0,

which implies the claim above is true. So we finish the proof of the lemma. �

Now we are in a position to finish the proofs of Theorem 1.1.
Proof of Theorem 1.1. From Lemma 2.9, we see that there exists a (C)cκ -sequence {un} ⊂ E
of Φκ such that

Φκ(un) → cκ ≤ mκ and (1 + ∥un∥)∥Φ′
κ(un)∥ → 0.

Lemma 3.1 shows that {un} is bounded in E, then up to a subsequence, un ⇀ uκ in E, un(x) →
uκ(x) a.e. x ∈ RN . Using Lemma 2.3 we have Φ′

κ(uκ) = 0. If uκ ̸= 0, we can see that uκ ∈ Nκ.
On the other hand, from (2.8) and Fatou’s lemma, we get

mκ ≥ cκ = lim
n→∞

[
Φκ(un)−

1

2
⟨Φ′

κ(un), un⟩
]

= lim
n→∞

∫
RN

[
1

2
f(x, un)un − F (x, un)

]
dx

≥
∫
RN

lim
n→∞

[
1

2
f(x, un)un − F (x, un)

]
dx

= Φκ(uκ)−
1

2
⟨Φ′

κ(uκ), uκ⟩ = Φκ(uκ),

which implies that Φκ(uκ) ≤ mκ. Consequently, from the definition ofmκ, we have Φκ(uκ) = mκ.
So uκ is a ground state solution of problem (1.1).

Next we show that uκ ̸= 0. Indeed, for the case κ = 0, the functional Φ0 has the property
of translation invariance under the condition (f4). Then, using a standard variational argument
and concentration compactness principle, we can get a nontrivial ground state solution u0 ∈ N0

satisfying Φ0(u0) = m0. According to Lemma 2.10, we know that there exist t0 > 0 and v0 ∈ E−

such that t0u0 + v0 ∈ Nκ. This combines with Lemma 2.4 we can get

m0 = Φ0(u0) ≥ Φ0(t0u0 + v0) > Φκ(t0u0 + v0) ≥ mκ ≥ cκ.

Consequently, by Lemma 3.3 we get k = 0, that is, un → uκ in E. So, uκ ̸= 0. This finishes the
proof of Theorem 1.1. �

In the following we study the asymptotically periodic case. Firstly, we need to introduce two
useful results due to [30, 37].

Lemma 3.4. Assume that (f6) is satisfied, and let {un} ⊂ E be a bounded sequence and φn(x) =
φ(x− xn), where φ ∈ E and {xn} ⊂ RN . If |xn| → ∞, then we have∫

RN

|f̂(x, un)− f(x, un)φn|dx → 0.

Lemma 3.5. Assume that a ∈ W and τ ∈ [2, 2∗s), and let {un} ⊂ E be a sequence such that
un ⇀ u in E. Then

lim
n→∞

∫
RN

a(x)|un|τdx =

∫
RN

a(x)|u|τdx.
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Moreover, from (f6), (2.7) and Lemma 3.5, we can obtain that∫
RN

[
F̂ (x, un)− F (x, un)

]
dx → 0.

To restore the lack of compactness, we need to use the techniques of the limit problem. And we
consider the following limit problem of problem (1.1)

(3.22) −(∆)su+ V (x)u = f̂(x, u), x ∈ RN ,

where f̂ is ZN -periodic in the x-variables and satisfies the conditions given in (f6). We define
the corresponding energy functional of problem (3.22)

Φ̂0(u) =
1

2
(∥u+∥2 − ∥u−∥2)−

∫
RN

F̂ (x, u)dx, for u ∈ E.

From [13, Theorem 1.2], we can conclude that problem (3.22) has a ground state solution u with

m̂0 = Φ̂0(u) = inf
N̂0

Φ̂0 > 0,

where

N̂0 := {u ∈ E\E− : ⟨Φ̂′
0(u), u⟩ = 0 and ⟨Φ̂′

0(u), v⟩ = 0 for any v ∈ E−}.
Applying Lemma 3.4 and Lemma 3.5 and following the analogous arguments as in the proofs

of Lemma 3.3, we also can establish a global compactness result for bounded (C)cκ -sequences of
Φκ under the asymptotically periodic condition. We now present the result as follow.

Lemma 3.6. Assume that (V ), (f1), (f2), (f3), (f5) and (f6) are satisfied and 0 ≤ κ < κ∗ν20 ,
and let {un} be a bounded (C)cκ-sequences of Φκ at level cκ ≥ 0. Then there exist uκ such that
Φ′

κ(uκ) = 0, moreover, we have either
(i) un → uκ in E, or

(ii) there exist a number l ≥ 1, nontrivial critical points u1, · · · , ul of Φ̂0 and l sequences of points
{xi

n} ⊂ ZN , 1 ≤ i ≤ l, such that

|xi
n| → +∞, |xi

n − xj
n| → +∞, if i ̸= j, i, j = 1, 2, · · · , l,∥∥∥∥∥un − uκ −

l∑
i=1

ui(· − xi
n)

∥∥∥∥∥ → 0 and cκ = Φκ(uκ) +
l∑

i=1

Φ̂0(ui).

Proof of Theorem 1.2. We adapt the idea of the proof of Theorem 1.1, and we replace m0, Φ0

and N0 by m̂0, Φ̂0 and N̂0 in the proof. The remaining proof is similar to the proof of Theorem
1.1 with suitable modification, here we omit the details. �

4. Asymptotic behaviors

In this section we study the continuous dependence of ground state energy about parameter κ.
and the asymptotic convergence of ground state solutions when κ → 0. Moreover, we complete
the proofs of Theorem 1.3 and Theorem 1.4.

Proof of Theorem 1.3. Evidently, we observe that if κ1 ≥ κ2, then Φκ1(u) ≤ Φκ2(u). Hence
mκ1 ≤ mκ2 , this shows that mκ is decreasing.

Next we prove that mκ → m0 as κ → 0. We first need to describe the relationship between
mκ and m0. Let uκ ∈ Nκ be a ground state of Φκ. Applying Lemma 2.10, we can see that there
exist tκ > 0 and vκ ∈ E− such that tκuκ + vκ ∈ N0. Then, in view of Lemma 2.4 we have

(4.1)

mκ = Φκ(uκ) ≥ Φκ(tκuκ + vκ)

= Φ0(tκuκ + vκ)−
κ

2

∫
RN

|tκuκ + vκ|2

|x|2s
dx

≥ m0 −
κ

2

∫
RN

|tκuκ + vκ|2

|x|2s
dx.
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Similarly, let u0 ∈ N0 be a ground state solution of Φ0 with Φ0(u0) = m0. Again using Lemma
2.10, there exist t0 > 0 and v0 ∈ E− such that t0u0 + v0 ∈ Nκ. According to Lemma 2.4, we
have

(4.2)

m0 = Φ0(u0) ≥ Φ0(t0u0 + v0)

= Φκ(t0u0 + v0) +
κ

2

∫
RN

|t0u0 + v0|2

|x|2s
dx

≥ mκ +
κ

2

∫
RN

|t0u0 + v0|2

|x|2s
dx.

We take a sequence κn → 0+. Let uκn ∈ Nκn , then we can see that

(4.3) Φκn(uκn) = mκn ≤ m0 and ⟨Φ′
κn

(uκn), uκn⟩ = 0.

To simplify the notation, we denote uκn by un. From Lemma 3.1, we know that {un} is bounded
in E. If

lim
n→∞

sup
y∈RN

∫
B(y,1)

|u+
n |2dx = 0,

then the Lions concentration compactness lemma yields that u+
n → 0 in Lq(RN ) for q ∈ (2, 2∗s).

Therefore, from the fact that un ∈ Nκn
, we get

∥u+
n ∥2 = κn

∫
RN

unu
+
n

|x|2s
dx+

∫
RN

f(x, un)u
+
n dx → 0.

Then, we can conclude that

lim sup
n→∞

Φκn(un) ≤ 0,

which contradicts Lemma 2.6-(i). Hence, there exist δ > 0, ϱ > 1 and {yn} ⊂ ZN such that

lim inf
n→∞

∫
B(yn,ϱ)

|u+
n |2dx ≥ δ.

After passing to a subsequence, we may find u ∈ E such that u+
n (·+ yn) → u+ in L2

loc(RN ) and
u+ ̸= 0. Moreover, we may assume that un(·+ yn) ⇀ u in E, un(x+ yn) → u(x), u+

n (x+ yn) →
u+(x) a.e. x ∈ RN . From Lemma 2.10, we infer that there exist tn > 0 and vn ∈ E− such that
tnun + vn ∈ N0. Then by (2.8) we have

(4.4)

∥u+
n ∥2 =

∥∥∥∥u−
n +

vn
tn

∥∥∥∥2 + 1

t2n

∫
RN

f(x, tnun + vn)(tnun + vn)dx

≥
∥∥∥∥u−

n +
vn
tn

∥∥∥∥2 + 2

∫
RN

F (x, tn(un + vn
tn
))

t2n
dx.

According to (f3) and (4.4), we can see that {un + vn

tn
} is bounded in E. Hence, passing to a

subsequence, there exists v ∈ E− such that (u−
n + vn

tn
)(x) → v(x) a.e. x ∈ RN .

Now we verify that {tn} is also bounded. We use a contradiction argument to show this fact.
If not, |tnun(x)+ vn(x)| = tn|un +

vn

tn
| → ∞ provided that (u+ + v)(x) ̸= 0. Moreover, from (f3)

and Fatou’s lemma, we can easily check that∫
RN

F (x, tn|un + vn
tn
|)

t2n
dx → ∞.

This contradicts (4.4), and so {tn} is bounded. Then {tnu+
n } and {tnu−

n +vn} are both bounded.
Consequently, using (2.6) we get

(4.5)
κn

2

∫
RN

|tnun + vn|2

|x|2s
dx ≤ κn

2κ∗ν20
∥tnun + vn∥2 → 0 as κn → 0+.

Finally, from (4.1), (4.3) and (4.5) we see that mκ → m0 as κ → 0. The proof is now complete.
�
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Proof of Theorem 1.4. Let {κn} be a sequence with κn → 0+ as n → ∞ and {uκn} be a
sequence of ground state solutions of problem (1.1) with κ = κn. For convenience of notation, we
denote un := uκn . According to Lemma 3.1, we know that {un} is bounded in E. Then passing
to a subsequence, we may assume that un ⇀ u0 in E, un → u0 in Lq

loc(RN ) for q ∈ (2, 2∗s) and
un(x) → u0(x) a.e. x ∈ RN . Note that for any φ ∈ E, using the Hölder inequality and (2.6) we
get

⟨Φ′
0(un), φ⟩ = ⟨Φ′

κn
(un), φ⟩+ κn

∫
RN

unφ

|x|2s
dx → 0.

This implies that Φ′
0(u0) = 0. Then u0 is a nontrivial critical point of Φ0.

Next we show that u0 is a ground state solution of Φ0. Setting

F̃ (x, u) :=
1

2
f(x, u)u− F (x, u).

Applying Fatou’s lemma and the conclusion of Theorem 1.3, we have

m0 = lim
n→∞

Φκn(un) = lim
n→∞

[
Φκn(un)−

1

2
⟨Φ′

κn
(un), un⟩

]
= lim

n→∞

∫
RN

F̃ (x, un)dx ≥
∫
RN

F̃ (x, u0)dx

= Φ0(u0)−
1

2
⟨Φ′

0(u0), u0⟩ = Φ0(u0) ≥ m0,

So, we conclude that u0 is a ground state solution of Φ0. Moreover, we also have

(4.6) lim
n→∞

∫
RN

F̃ (x, un)dx =

∫
RN

F̃ (x, u0)dx.

Finally, we claim that un → u0 in E. Using a standard argument we can prove that

lim
n→∞

∫
RN

[
F̃ (x, un)− F̃ (x, un − u0)− F̃ (x, u0)

]
dx = 0.

This, together with (4.6), implies that

(4.7) lim
n→∞

∫
RN

F̃ (x, un − u0)dx = 0.

Moreover, combing with (f7) we have

(4.8)

∫
RN

|un − u0|2dx ≤
∫
Ω1

|un − u0|2dx+

∫
Ω2

|un − u0|qdx

≤
∫
RN

F̃ (x, un − u0)dx,

where

Ω1 = {x ∈ RN : |un − u0| < 1} and Ω2 = {x ∈ RN : |un − u0| ≥ 1}.
Clearly, from (4.8) we can deduce that un → u0 in L2(RN ). Since {un} is bounded in E, then
{un} is also bounded in L2(RN ) and L2∗s (RN ). Employing the Hölder inequality we get∫

RN

|un − u0|νdx ≤
[∫

RN

|un − u0|2dx
]µ

2
[∫

RN

|un − u0|2
∗
sdx

] ν−µ
2∗s

→ 0,

where µ = 2(2∗s − ν)/(2∗s − 2) and 2 < ν < 2∗s. Consequently, using (2.6), the Hölder inequality
and the continuity of orthogonal projection of E on E±, we conclude that

∥u+
n − u+

0 ∥2 =⟨Φ′
κn

(un), u
+
n − u+

0 ⟩ − (u+
0 , u

+
n − u+

0 )

+ κn

∫
RN

un(u
+
n − u+

0 )

|x|2s
dx+

∫
RN

f(x, un)(u
+
n − u+

0 )dx

→ 0,
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which implies that u+
n → u+

0 in E. Using the same argument, we can easily show that u−
n → u−

0

in E. So un → u0 in E. We complete the proof of Theorem 1.4. �
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