References:
1. Ohta, A., A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment. Front Immunol, 2016. 7 : p. 109.
2. Boison, D. and G.G. Yegutkin, Adenosine Metabolism: Emerging Concepts for Cancer Therapy. Cancer Cell, 2019. 36 (6): p. 582-596.
3. Allard, B., et al., The adenosine pathway in immuno-oncology.Nat Rev Clin Oncol, 2020. 17 (10): p. 611-629.
4. Antonioli, L., et al., Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer, 2013. 13 (12): p. 842-57.
5. Stagg, J. and M.J. Smyth, Extracellular adenosine triphosphate and adenosine in cancer. Oncogene, 2010. 29 (39): p. 5346-58.
6. Beavis, P.A., et al., CD73: a potent suppressor of antitumor immune responses. Trends Immunol, 2012. 33 (5): p. 231-7.
7. Scheffel, T.B., et al., Immunosuppression in Gliomas via PD-1/PD-L1 Axis and Adenosine Pathway. Front Oncol, 2020. 10 : p. 617385.
8. Ohta, A., et al., A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A, 2006. 103 (35): p. 13132-7.
9. Willingham, S.B., et al., A2AR Antagonism with CPI-444 Induces Antitumor Responses and Augments Efficacy to Anti-PD-(L)1 and Anti-CTLA-4 in Preclinical Models. Cancer Immunol Res, 2018.6 (10): p. 1136-1149.
10. Perrot, I., et al., Blocking Antibodies Targeting the CD39/CD73 Immunosuppressive Pathway Unleash Immune Responses in Combination Cancer Therapies. Cell Rep, 2019. 27 (8): p. 2411-2425 e9.
11. Chew, V., H.C. Toh, and J.P. Abastado, Immune microenvironment in tumor progression: characteristics and challenges for therapy. J Oncol, 2012. 2012 : p. 608406.
12. Leone, R.D. and L.A. Emens, Targeting adenosine for cancer immunotherapy. J Immunother Cancer, 2018. 6 (1): p. 57.
13. Antonioli, L., et al., CD39 and CD73 in immunity and inflammation. Trends Mol Med, 2013. 19 (6): p. 355-67.
14. Bonnefoy, N., et al., CD39: A complementary target to immune checkpoints to counteract tumor-mediated immunosuppression.Oncoimmunology, 2015. 4 (5): p. e1003015.
15. Chen, S., et al., CD73: an emerging checkpoint for cancer immunotherapy. Immunotherapy, 2019. 11 (11): p. 983-997.
16. Giannone, G., et al., Immuno-Metabolism and Microenvironment in Cancer: Key Players for Immunotherapy. Int J Mol Sci, 2020.21 (12).
17. Baghbani, E., et al., Regulation of immune responses through CD39 and CD73 in cancer: Novel checkpoints. Life Sci, 2021.282 : p. 119826.
18. Boddu, P., et al., The emerging role of immune checkpoint based approaches in AML and MDS. Leuk Lymphoma, 2018. 59 (4): p. 790-802.
19. Antonia, S.J., J.F. Vansteenkiste, and E. Moon, Immunotherapy: Beyond Anti-PD-1 and Anti-PD-L1 Therapies. Am Soc Clin Oncol Educ Book, 2016. 35 : p. e450-8.
20. Allard, B., et al., Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res, 2013.19 (20): p. 5626-35.
21. Khair, D.O., et al., Combining Immune Checkpoint Inhibitors: Established and Emerging Targets and Strategies to Improve Outcomes in Melanoma. Front Immunol, 2019. 10 : p. 453.
22. Li, B., H.L. Chan, and P. Chen, Immune Checkpoint Inhibitors: Basics and Challenges. Curr Med Chem, 2019. 26 (17): p. 3009-3025.
23. DePeaux, K. and G.M. Delgoffe, Metabolic barriers to cancer immunotherapy. Nat Rev Immunol, 2021. 21 (12): p. 785-797.
24. Rowshanravan, B., N. Halliday, and D.M. Sansom, CTLA-4: a moving target in immunotherapy. Blood, 2018. 131 (1): p. 58-67.
25. Joller, N. and V.K. Kuchroo, Tim-3, Lag-3, and TIGIT. Curr Top Microbiol Immunol, 2017. 410 : p. 127-156.
26. Huang, X., et al., VISTA: an immune regulatory protein checking tumor and immune cells in cancer immunotherapy. J Hematol Oncol, 2020. 13 (1): p. 83.
27. Allard, D., B. Allard, and J. Stagg, On the mechanism of anti-CD39 immune checkpoint therapy. J Immunother Cancer, 2020.8 (1).
28. Salik, B., M.J. Smyth, and K. Nakamura, Targeting immune checkpoints in hematological malignancies. J Hematol Oncol, 2020.13 (1): p. 111.
29. Wang, H., et al., Immune checkpoint blockade and CAR-T cell therapy in hematologic malignancies. J Hematol Oncol, 2019.12 (1): p. 59.
30. Helms, R.S. and J.D. Powell, Rethinking the adenosine-A2AR checkpoint: implications for enhancing anti-tumor immunotherapy. Curr Opin Pharmacol, 2020. 53 : p. 77-83.
31. Allard, D., M. Turcotte, and J. Stagg, Targeting A2 adenosine receptors in cancer. Immunol Cell Biol, 2017. 95 (4): p. 333-339.
32. Vijayan, D., et al., Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer, 2017. 17 (12): p. 709-724.
33. Lu, J.C., et al., Amplification of spatially isolated adenosine pathway by tumor-macrophage interaction induces anti-PD1 resistance in hepatocellular carcinoma. J Hematol Oncol, 2021.14 (1): p. 200.
34. Tondell, A., et al., Ectonucleotidase CD39 and Checkpoint Signalling Receptor Programmed Death 1 are Highly Elevated in Intratumoral Immune Cells in Non-small-cell Lung Cancer. Transl Oncol, 2020. 13 (1): p. 17-24.
35. Zhang, H., et al., The role of NK cells and CD39 in the immunological control of tumor metastases. Oncoimmunology, 2019.8 (6): p. e1593809.
36. Jie, H.B., et al., Intratumoral regulatory T cells upregulate immunosuppressive molecules in head and neck cancer patients. Br J Cancer, 2013. 109 (10): p. 2629-35.
37. Brauneck, F., et al., Increased frequency of TIGIT(+)CD73-CD8(+) T cells with a TOX(+) TCF-1low profile in patients with newly diagnosed and relapsed AML. Oncoimmunology, 2021.10 (1): p. 1930391.
38. Brauneck, F., et al., Combined Blockade of TIGIT and CD39 or A2AR Enhances NK-92 Cell-Mediated Cytotoxicity in AML. Int J Mol Sci, 2021. 22 (23).
39. Liu, S., et al., A Novel CD73 Inhibitor SHR170008 Suppresses Adenosine in Tumor and Enhances Anti-Tumor Activity with PD-1 Blockade in a Mouse Model of Breast Cancer. Onco Targets Ther, 2021.14 : p. 4561-4574.
40. Neo, S.Y., et al., CD73 immune checkpoint defines regulatory NK cells within the tumor microenvironment. J Clin Invest, 2020.130 (3): p. 1185-1198.
41. Hay, C.M., et al., Targeting CD73 in the tumor microenvironment with MEDI9447. Oncoimmunology, 2016. 5 (8): p. e1208875.
42. Wurm, M., et al., A Novel Antagonistic CD73 Antibody for Inhibition of the Immunosuppressive Adenosine Pathway. Mol Cancer Ther, 2021. 20 (11): p. 2250-2261.
43. Iannone, R., et al., Adenosine limits the therapeutic effectiveness of anti-CTLA4 mAb in a mouse melanoma model. Am J Cancer Res, 2014. 4 (2): p. 172-81.
44. Leone, R.D., et al., Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models. Cancer Immunol Immunother, 2018. 67 (8): p. 1271-1284.
45. Mittal, D., et al., Antimetastatic effects of blocking PD-1 and the adenosine A2A receptor. Cancer Res, 2014. 74 (14): p. 3652-8.
46. Fong, L., et al., Adenosine 2A Receptor Blockade as an Immunotherapy for Treatment-Refractory Renal Cell Cancer. Cancer Discov, 2020. 10 (1): p. 40-53.
47. Kamai, T., et al., Increased expression of adenosine 2A receptors in metastatic renal cell carcinoma is associated with poorer response to anti-vascular endothelial growth factor agents and anti-PD-1/Anti-CTLA4 antibodies and shorter survival. Cancer Immunol Immunother, 2021. 70 (7): p. 2009-2021.
48. Beavis, P.A., et al., Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. J Clin Invest, 2017. 127 (3): p. 929-941.
49. Beavis, P.A., et al., Adenosine Receptor 2A Blockade Increases the Efficacy of Anti-PD-1 through Enhanced Antitumor T-cell Responses.Cancer Immunol Res, 2015. 3 (5): p. 506-17.
50. Ghasemi-Chaleshtari, M., et al., Concomitant blockade of A2AR and CTLA-4 by siRNA-loaded polyethylene glycol-chitosan-alginate nanoparticles synergistically enhances antitumor T-cell responses. J Cell Physiol, 2020. 235 (12): p. 10068-10080.
51. Davern, M., et al., Chemotherapy regimens induce inhibitory immune checkpoint protein expression on stem-like and senescent-like oesophageal adenocarcinoma cells. Transl Oncol, 2021. 14 (6): p. 101062.
52. Sun, X., et al., CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice.Gastroenterology, 2010. 139 (3): p. 1030-40.
53. Gupta, P.K., et al., CD39 Expression Identifies Terminally Exhausted CD8+ T Cells. PLoS Pathog, 2015. 11 (10): p. e1005177.
54. Nikolova, M., et al., CD39/adenosine pathway is involved in AIDS progression. PLoS Pathog, 2011. 7 (7): p. e1002110.
55. Jalali, S., et al., Soluble PD-1 ligands regulate T-cell function in Waldenstrom macroglobulinemia. Blood Adv, 2018.2 (15): p. 1985-1997.
56. Anderson, A.C., N. Joller, and V.K. Kuchroo, Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity, 2016. 44 (5): p. 989-1004.
57. Johnston, R.J., et al., The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell, 2014. 26 (6): p. 923-937.
58. Dougall, W.C., et al., TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy. Immunol Rev, 2017. 276 (1): p. 112-120.
59. Harjunpaa, H. and C. Guillerey, TIGIT as an emerging immune checkpoint. Clin Exp Immunol, 2020. 200 (2): p. 108-119.
60. Hu, X., et al., Synthetic RORgamma agonists regulate multiple pathways to enhance antitumor immunity. Oncoimmunology, 2016.5 (12): p. e1254854.
61. Kong, Y., et al., Downregulation of CD73 associates with T cell exhaustion in AML patients. J Hematol Oncol, 2019. 12 (1): p. 40.
62. Loi, S., et al., CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci U S A, 2013. 110 (27): p. 11091-6.
63. Antonioli, L., et al., Anti-CD73 in cancer immunotherapy: awakening new opportunities. Trends Cancer, 2016. 2 (2): p. 95-109.
64. Roh, M., et al., Targeting CD73 to augment cancer immunotherapy. Curr Opin Pharmacol, 2020. 53 : p. 66-76.
65. Siu, L.L., et al., Preliminary phase 1 profile of BMS-986179, an anti-CD73 antibody, in combination with nivolumab in patients with advanced solid tumors. Cancer Research, 2018. 78 (13).
66. Barnhart, B.C., et al., A therapeutic antibody that inhibits CD73 activity by dual mechanisms. Cancer Research, 2016. 76 .
67. Vigano, S., et al., Targeting Adenosine in Cancer Immunotherapy to Enhance T-Cell Function. Front Immunol, 2019.10 : p. 925.
68. Ohta, A., et al., A2A adenosine receptor may allow expansion of T cells lacking effector functions in extracellular adenosine-rich microenvironments. J Immunol, 2009. 183 (9): p. 5487-93.
69. Sevigny, C.P., et al., Activation of adenosine 2A receptors attenuates allograft rejection and alloantigen recognition. J Immunol, 2007. 178 (7): p. 4240-9.
70. Hegde, P.S. and D.S. Chen, Top 10 Challenges in Cancer Immunotherapy. Immunity, 2020. 52 (1): p. 17-35.
71. Galon, J. and D. Bruni, Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov, 2019. 18 (3): p. 197-218.
72. Johnson, D.E., R.A. O’Keefe, and J.R. Grandis, Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol, 2018.15 (4): p. 234-248.
73. Llovet, J.M., et al., Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol, 2018.15 (10): p. 599-616.
74. Hinshaw, D.C. and L.A. Shevde, The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res, 2019.79 (18): p. 4557-4566.
75. Zhang, Y. and J. Zheng, Functions of Immune Checkpoint Molecules Beyond Immune Evasion. Adv Exp Med Biol, 2020. 1248 : p. 201-226.
76. Yap, T.A., et al., Development of Immunotherapy Combination Strategies in Cancer. Cancer Discov, 2021. 11 (6): p. 1368-1397.
77. Eschweiler, S., et al., Intratumoral follicular regulatory T cells curtail anti-PD-1 treatment efficacy. Nat Immunol, 2021.22 (8): p. 1052-1063.
78. Pardoll, D.M., The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer, 2012. 12 (4): p. 252-64.
79. Bassez, A., et al., A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat Med, 2021. 27 (5): p. 820-832.
80. Simon, B., et al., Enhancing lentiviral transduction to generate melanoma-specific human T cells for cancer immunotherapy. J Immunol Methods, 2019. 472 : p. 55-64.
81. Banta, K.L., et al., Mechanistic convergence of the TIGIT and PD-1 inhibitory pathways necessitates co-blockade to optimize anti-tumor CD8(+) T cell responses. Immunity, 2022. 55 (3): p. 512-526 e9.