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1 INTRODUCTION

In this work we are concerned with solvability of a system of non-potential nonlinear equations
⎧

⎪

⎨

⎪

⎩

𝜕𝑢11(𝑢) = 0,
⋮
𝜕𝑢𝑚𝑚(𝑢) = 0

(1)

which is connected to a family of functionals {𝑘}𝑚𝑘=1, where 𝑘 ∶  =
∏𝑚

𝑘=1 𝑘 ←→ ℝ and 𝑘 is a real Hilbert space for 𝑘 =
1,… , 𝑚. Since system (1) arises from calculating partial (Gâteaux) derivatives of functionals {𝑘}𝑚𝑘=1, it has a type of partial
potentiality imbedded in it, meaning that it is potential with respect to each variable separately with the other held fixed. It must
be noted that (1) does not correspond to critical points of any Euler type action functional. Such a formulation from the very
beginning does not permit the usage of the classical variational methods. Nevertheless the type of componentwise minimization
of family {𝑘}𝑚𝑘=1 is still possible and will be investigated in this work. As in1, we say that that an element 𝑤 ∈  is a Nash-type
equilibrium for the system of functionals {𝑘}𝑚𝑘=1 if

𝑘(𝑤) = min
𝑢∈𝑘

𝑘(𝑤1,… , 𝑤𝑘−1, 𝑢, 𝑤𝑘+1,… , 𝑤𝑚)

for 𝑘 = 1,… , 𝑚. There has been some research towards the existence of the Nash-type equilibria since it was started in1 and
further developed in a sequence of papers:2,3,4, which investigate this concept from different point of view and with various
approaches related to the use of the Perov type contractions. The comprehensive overview of results related to notion of the
Nash-type equilibrium is containd in5, Chapter 8. In order to get rid of the assumption of the Lipschitz continuity of the nonlinear
term, in6 the first two authors proposed the approach involving variational and monotonicity methods combined with concepts
introduced in1. In a consequence, the Browder-Minty Theorem, in a form of the Strongly Montone Principle, is used instead
of the Perov type contraction. The abstract results from6 were meant for systems governed by densely defined operators and
suitable nonlinearities. Such an abstract framework determined the application mainly to equations involving the (negative)
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Laplacian without any perturbation. In order to include the perturbed Laplacian we decided to formulate the abstract setting
with the use of the Gelfand triple. With such an approach we are able to get the most of the monotonicity methods and improve
application allowing even in a classical setting for not necessarily self-adjoint operators. In all sources mentioned, only self-
adjoint operators are considered In this work we also improve the methodology of the proof taken from6 by simplifying some
steps and also using somehow different approach towards main existence tool.

Paper is organized as follows: we start with some preliminaries necessary for the understanding of further concepts. Then we
proceed with abstract existence result for a system of nonlinear equations based on the Browder-Minty Theorem. We further
obtain the existence of the Nash-type equilibrium for system (1) under suitable assumptions. Applications are shown to systems
of Dirichlet problem driven by the perturbed Laplacian.

2 PRELIMINARIES AND AUXILIARY RESULTS

2.1 M–matrices
In this section we will consider 𝑚 × 𝑚 real matrices. We say that a matrix 𝐴 = [𝑎𝑖𝑗] is a nonsingular 𝑀-matrix if 𝐴 has the
following representation

𝐴 = 𝜆𝐼 − 𝐵,
where 𝐵 = [𝑏𝑖𝑗] is nonnegative, that is 𝑏𝑖𝑗 ≥ 0 for all 𝑖, 𝑗 = 1,… , 𝑚, and 𝜌(𝐵) < 𝜆. Here 𝜌(𝐵) = max𝜉∈𝜎(𝐵) |𝜉| denotes the
spectral radius of 𝐵 and 𝐼 is identity matrix. For the study of M-matrices we refer to7 and8. We recall some useful criteria for
being M-matrix using notation form8. The Euclidean inner product in ℝ𝑚 will be denoted by ⟨⋅|⋅⟩.
Theorem 1 (8). Assume that 𝐴 = [𝑎𝑖𝑗] has a representation 𝐴 = 𝜆𝐼 − 𝐵 for some non-negative matrix 𝐵 = [𝑏𝑖𝑗]. Then the
following conditions are equivalent:

1. 𝐴 is a non-singular M-matrix;
F15. 𝐴 is invertible and 𝐴−1 is non-negative;
I25. there exists a positive diagonal matrix1 𝐷 = [𝑑𝑖𝑗] such that is for all 𝑥 ∈ ℝ𝑚 ⧵ {0} there is

⟨𝐷𝐴𝑥|𝑥⟩ > 0;

N39. 𝐴 has a positive diagonal and there exists a positive diagonal matrix 𝐷 such that for every 𝑖 = 1,… , 𝑚 we have
𝑎𝑖𝑖𝑑𝑖𝑖 >

∑

𝑗≠𝑖
|𝑎𝑖𝑗|𝑑𝑗𝑗 . (2)

The above given condition I25 differs from the one originally given in8. However, it is easy to show that it is equivalent, see6
for details.
Remark 1. Using condition N39 in Theorem 1 we can show that for every non-singular M-matrix𝐴 and for any non-zero diagonal
matrix 𝐸 = [𝑒𝑖𝑗] (non-necessary positive) there exists 𝜀∗ > 0 such that 𝐴 − 𝜀𝐸 is also a non-singular M-matrix whenever
𝜀 ∈ (0, 𝜀∗). Indeed, if 𝐴 a is non-singular M-matrix, then (2) holds for some positive diagonal matrix 𝐷. Taking

𝜀 <

min
𝑖=1,…,𝑚

{

𝑎𝑖𝑖𝑑𝑖𝑖 −
∑

𝑗≠𝑖
|𝑎𝑖𝑗|𝑑𝑗𝑗

}

2 max
𝑖=1,…,𝑚

|𝑒𝑖𝑖| max
𝑖=1,…,𝑚

𝑑𝑖𝑖
=∶ 𝜀∗

1That is 𝑑𝑖𝑖 > 0 for 𝑖 = 1,…𝑚 and 𝑑𝑖𝑗 = 0 for distinct 𝑖 and 𝑗.



BEŁDZIŃSKI ET AL 3

we obtain that that for every 𝑘 = 1,… , 𝑚 there is
(𝑎𝑘𝑘 − 𝜀𝑒𝑘𝑘)𝑑𝑘𝑘 −

∑

𝑗≠𝑘
|𝑎𝑘𝑗 − 𝜀𝑒𝑘𝑗|𝑑𝑗𝑗 =(𝑎𝑘𝑘 − 𝜀𝑒𝑘𝑘)𝑑𝑘𝑘 −

∑

𝑗≠𝑘
|𝑎𝑘𝑗|𝑑𝑗𝑗

≥𝑎𝑘𝑘𝑑𝑘𝑘 −
∑

𝑗≠𝑘
|𝑎𝑖𝑗|𝑑𝑗𝑗

− 1
2

min
𝑖=1,…,𝑚

{

𝑎𝑖𝑖𝑑𝑖𝑖 −
∑

𝑗≠𝑖
|𝑎𝑖𝑗|𝑑𝑗𝑗

}

> 0.

Hence 𝐴 − 𝜀𝐸 has a positive diagonal. Therefore, by Theorem 1, 𝐴 − 𝜀𝐸 is a non-singular M-matrix.
M-matrices are closely connected to convergent matrices. Some comparison, given in a context of a nonlinear equation is

given in6. A brief summary will be indicated in Example 2.

2.2 On a Gelfand triple
In this section, following9,10, we provide some necessary background on a Gelfand triple coined to the case of the Hilbert space
setting. Let  and  be Hilbert spaces. A triple ( ;;∗) is said to be an evolution triple or a Gelfand triple, if  ⊂  ≅
∗ ⊂ ∗, the embedding of  into  is continuous and  is dense in . Note that it is assumed that we identify ∗ with 
via the Riesz Theorem.
Example 1. Putting  = 𝐻1

0 (0, 1) and  = 𝐿2 (0, 1) we have the most common example of a Gelfand triple.
We will denote by ‖⋅‖ , ‖⋅‖∗ the norm in  , ∗ resp. and by ⟨⋅, ⋅⟩ the relevant duality pairing. Here ‖⋅‖ denotes the norm

in  and ⟨⋅|⋅⟩ – the associated scalar product. We identify elements from  with some elements from ∗. Precisely speaking
for any 𝑦 ∈  there is some 𝑓𝑦 ∈ ∗ such that

⟨

𝑓𝑦, 𝑥
⟩

= ⟨𝑦|𝑥⟩
for all 𝑥 ∈  . Since the embedding 𝜄∶  ←→  is continuous, there is a constant 𝛾 > 0 such that

‖𝑥‖ ≤ 𝛾 ‖𝑥‖
for any 𝑥 ∈  . Then 𝜄∗ ∶ ∗ ←→ ∗ is the embedding from ∗ into ∗, here 𝜄∗ is the adjoint of 𝜄. Since we identify  with ∗,
then 𝜄∗ is continuous and ∗ is dense in ∗. When we assume that 𝑖 is compact, which is very common for the applications, see
Example 1, then so is 𝜄∗.

2.3 On monotonicity methods
We describe monotonicity results which are required in the sequel and which are given in  after10 and9. We recall that by ⟨⋅, ⋅⟩
we denote an action on a linear and continuous functional on elements of . A functional 𝐹 ∶  → ℝ is said to be Gâteaux
differentiable at 𝑥0 ∈  if there exists a continuous linear functional 𝑓 ′(𝑥0)∶  → ℝ such that for every ℎ ∈ 

lim
𝑡→0

𝑓 (𝑥0 + 𝑡ℎ) − 𝑓 (𝑥0)
𝑡

=
⟨

𝑓 ′(𝑥0), ℎ
⟩

.

Operator 𝐴 ∶  → ∗ is called:
• monotone, if for all 𝑢, 𝑣 ∈  it holds

⟨𝐴 (𝑢) − 𝐴 (𝑣) , 𝑢 − 𝑣⟩ ≥ 0;

• strictly monotone, if for all 𝑢, 𝑣 ∈ , 𝑢 ≠ 𝑣 it holds
⟨𝐴 (𝑢) − 𝐴 (𝑣) , 𝑢 − 𝑣⟩ > 0;

• 𝑚–strongly monotone, if there exists a constant 𝑚 > 0 such that for all 𝑢, 𝑣 ∈  it holds
⟨𝐴 (𝑢) − 𝐴 (𝑣) , 𝑢 − 𝑣⟩ ≥ 𝑚 ‖𝑢 − 𝑣‖2 ;

• radially continuous, if for all 𝑢, 𝑣 ∈  function
𝑠 → ⟨𝐴 (𝑢 + 𝑠𝑣) , 𝑣⟩
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is continuous on [0, 1];
• demicontinuous if 𝑢𝑛 → 𝑢0 in  implies that 𝐴 (

𝑢𝑛
)

⇀ 𝐴
(

𝑢0
) in ∗;

• Lipschitz continuous, if there exists a constant 𝐿 > 0 such that
‖𝐴 (𝑢) − 𝐴 (𝑣)‖∗ ≤ 𝐿 ‖𝑢 − 𝑣‖

for all 𝑢, 𝑣 ∈ 

• potential if there exists a functional 𝐹 ∶  ←→ ℝ, differentiable in the sense of Gâteaux on , and such that 𝐹 ′ = 𝐴.
Functional 𝐹 is called the potential of 𝐴;

• coercive if
lim

‖𝑢‖→+∞

⟨𝐴(𝑢), 𝑢⟩
‖𝑢‖

= ∞

or else if there exists a function
𝛾 ∶ [0,+∞) → ℝ, lim

𝑡→+∞
𝛾 (𝑡) = ∞,

such that
⟨𝐴(𝑢), 𝑢⟩ ≥ 𝛾

(

‖𝑢‖
)

‖𝑢‖
for all 𝑢 ∈ .

Note that we do not necessarily identify  with its dual ∗ in the above. We recall after9 that a monotone and potential
operator is necessarily demicontinuous and thus radially continuous. A monotone and radially continuous operator is necessarily
demicontinuous. Thus for monotone operator we may impose radially–, hemi– or demicontinuity notion. A strongly monotone
operator is strictly monotone and hence monotone. It is also coercive. Note also that the sum of two operators of various types
of monotony forms an operator of the stronger type of monotony. The following lemma helps us with checking the monotonicity
and extends a bit some known results:
Lemma 1. Assume that  and  are Banach spaces. Let Λ∶  ←→  be such a linear operator that for 𝑢 ∈  it holds

‖𝑢‖ ≤ ‖Λ𝑢‖ .

Assume that 𝐴∶  ←→  has any monotonicity property (namely, 𝐴 is monotone or strictly monotone or strongly monotone).
Then operator 𝑇 ∶  ←→ ∗ defined as follows

𝑇 = Λ∗𝐴Λ
shares the monotonicity property of 𝐴.
Proof. Note that for every 𝑢, 𝑣 ∈  we have

⟨𝑇 (𝑢) − 𝑇 (𝑣), 𝑢 − 𝑣⟩ = ⟨Λ∗(𝐴(Λ𝑢) − 𝐴(Λ𝑣)), 𝑢 − 𝑣⟩
= ⟨𝐴(Λ𝑢) − 𝐴(Λ𝑣),Λ𝑢 − Λ𝑣⟩.

Assuming the 𝑚-strong monotonicity of 𝐴 we get
⟨𝑇 (𝑢) − 𝑇 (𝑣), 𝑢 − 𝑣⟩ = ⟨𝐴(Λ𝑢) − 𝐴(Λ𝑣),Λ𝑢 − Λ𝑣⟩ ≥ 𝑚‖Λ(𝑢 − 𝑣)‖2 ≥ 𝑚‖𝑢 − 𝑣‖2 .

The remaining assertions are proved likewise.
The existence result which we need in the sequel and which follows by investigating the convergence of a type of a Galerkin

scheme is as follows:
Theorem 2 (Browder-Minty). Assume that 𝐴∶  ←→ ∗ is radially continuous, coercive and strictly monotone. Then for any
𝑓 ∈ ∗ there is a unique solution to 𝐴 (𝑢) = 𝑓 .

3 ABSTRACT EXISTENCE AND EQUILIBRIUM RESULTS

In this section we introduce some abstract existence results for a system on 𝑚 nonlinear equations which we next apply to the
existence of a Nash-type equilibrium.
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3.1 Problem setting
We provide a general assumptions for this section
Assumption 1. Let (𝑘,𝑘,∗

𝑘 ) for 𝑘 = 1,… , 𝑚, 𝑚 ≥ 2, be a family of Gelfand triples such that 𝑘 and 𝑘 are Hilbert spaces.
Moreover let 𝑘 be another Hilbert space.
Assumption 2. Linear operators Λ𝑘 ∶ 𝑘 ←→ 𝑘, 𝑘 = 1,… , 𝑚, are such that

‖𝑢‖𝑘
= ‖

‖

Λ𝑘𝑢‖‖𝑘

for every 𝑢 ∈ 𝑘.
Assumption 3. For every 𝑘 = 1,… , 𝑚 there exist 𝛽𝑘 > 0 such that

𝛽𝑘 ‖𝑢‖𝑘
≤ ‖𝑢‖𝑘

for each 𝑢 ∈ 𝑘.
The above assumptions have rather technical manner, namely Assumption 2 pertains the classical definition of a norm in

𝐻1
0 (Ω) and Assumption 3 to the Poincaré inequality. Now we provide a crucial assumptions for our investigation:

Assumption 4. For every 𝑘 = 1,… , 𝑚 operator 𝐴𝑘 ∶ 𝑘 ←→ ∗
𝑘 coercive and potential. Let 𝛾𝑘 ≥ 0 be such that

⟨𝐴𝑘(𝑢) − 𝐴𝑘(𝑣), 𝑢 − 𝑣⟩ ≥ 𝛾𝑘‖𝑢 − 𝑣‖2𝑘

for all 𝑢, 𝑣 ∈ 𝑘.
Since we do not assume 𝛾𝑘 > 0 in Assumption 4, operators 𝐴𝑘, 𝑘 = 1,… , 𝑚, are monotone, but they may not be strongly

monotone. Moreover, by Lemma 5.4 in11, operators 𝐴𝑘 are demicontiuous.
Assumption 5. For every 𝑘 = 1,… , 𝑚 operator 𝑁𝑘 ∶  ←→ ∗

𝑘 is continuous in the following way: for every 𝑢, 𝑣 ∈  the
function

[0, 1] ∋ 𝑡 ←→ ⟨𝑁𝑘(𝑢 + 𝑡𝑣), 𝑣𝑘⟩ ∈ ℝ
is continuous.

Under Assumptions 1-5 we introduce following notions. Put 𝐴 = (𝐴1,… , 𝐴𝑚). By 𝑘 we denote the potential of 𝐴𝑘 for every
𝑘 = 1,… , 𝑚. We define

𝐺 =

⎡

⎢

⎢

⎢

⎢

⎣

𝛾1 0 ⋯ 0
0 𝛾2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 𝛾𝑚

⎤

⎥

⎥

⎥

⎥

⎦

and 𝐵 =

⎡

⎢

⎢

⎢

⎢

⎣

𝛽1 0 ⋯ 0
0 𝛽2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 𝛽𝑚

⎤

⎥

⎥

⎥

⎥

⎦

. (3)

We set  ∶=
∏𝑚

𝑘=1 𝑘 and equip  with the standard inner product

⟨𝑢|𝑣⟩ =
𝑚
∑

𝑘=1
⟨𝑢𝑘|𝑣𝑘⟩𝑘

.

We also define  ∶=
∏𝑚

𝑘=1 𝑘,  ∶=
∏𝑚

𝑘=1 𝑘. Then ∗ =
∏𝑚

𝑘=1 
∗
𝑘 and ∗ =

∏𝑚
𝑘=1 

∗
𝑘 . We will also denote 𝑣 =

(

𝑣1, 𝑣2,… , 𝑣𝑚
)

∈  and

Λ =

⎡

⎢

⎢

⎢

⎢

⎣

Λ1 0 ⋯ 0
0 Λ2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 Λ𝑚

⎤

⎥

⎥

⎥

⎥

⎦

.

Then

Λ∗ =

⎡

⎢

⎢

⎢

⎢

⎣

Λ∗
1 0 ⋯ 0
0 Λ∗

2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 Λ∗

𝑚

⎤

⎥

⎥

⎥

⎥

⎦

.

As with standard calculations connected to matrices we mean that
Λ𝑣 =

(

Λ1𝑣1,Λ2𝑣2,… ,Λ𝑚𝑣𝑚
)
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for (𝑣1, 𝑣2,… , 𝑣𝑚
)

∈  . We also denote 𝑁 = (𝑁1,… , 𝑁𝑚). Notice that Assumption 5 means that 𝑁 is radially continuous.

3.2 Main abstract existence result
We recall that 𝑢 ∈  is a weak solution to the problem

Λ∗𝐴 (Λ𝑢) = 𝑁(𝑢) (4)
if

⟨𝐴 (Λ𝑢) ,Λ𝑣⟩ = ⟨𝑁(𝑢), 𝑣⟩
for all 𝑣 ∈  . This is equivalent to saying that 𝑢 satisfies

⎧

⎪

⎨

⎪

⎩

⟨𝐴1
(

Λ1𝑢1
)

,Λ1𝑣1⟩ = ⟨𝑁1(𝑢), 𝑣1⟩,
⋮
⟨𝐴𝑚

(

Λ𝑚𝑢𝑚
)

,Λ𝑚𝑣𝑚⟩ = ⟨𝑁𝑚(𝑢), 𝑣𝑚⟩,

for all 𝑣 ∈  . The following theorem extends Theorem 8 obtained in6.
Theorem 3. Let Assumptions 1-5 hold. Assume that there exists a matrix 𝐶 = [𝑐𝑖𝑗] ∈ 𝑀𝑚×𝑚(ℝ) with non-negative off-diagonal
elements such that for all 𝑘 = 1,… , 𝑚 and every 𝑢, 𝑣 ∈  we have

⟨𝑁𝑘(𝑢) −𝑁𝑘(𝑣), 𝑢𝑘 − 𝑣𝑘⟩ ≤
𝑚
∑

𝑖=1
𝑐𝑘𝑖‖𝑢𝑖 − 𝑣𝑖‖𝑖

‖𝑢𝑘 − 𝑣𝑘‖𝑘
. (5)

If 𝐺𝐵 − 𝐶 is a non-singular M-matrix, then the problem (4) has the unique weak solution.
Proof. Firstly observe that, by Remark 1, there exists 𝜏 ∈ (0, 1) such that 𝜏𝐺𝐵 − 𝐶 is a non-singular M-matrix. By Theorem 1
we obtain that there exists a positive diagonal matrix 𝐷 such that for any 𝑥 ∈ ℝ𝑚 ⧵ {0} we have

⟨𝐷(𝜏𝐺𝐵 − 𝐶)𝑥, 𝑥⟩ > 0. (6)
We take 𝑇 ∶  ←→ ∗ given by

⟨𝑇 (𝑢), 𝑣⟩ =
𝑚
∑

𝑘=1
𝑑𝑘𝑘⟨𝐴𝑘(Λ𝑘𝑢𝑘),Λ𝑘𝑣𝑘⟩ −

𝑚
∑

𝑘=1
𝑑𝑘𝑘⟨𝑁𝑘(𝑢), 𝑣𝑘⟩ (7)

for all 𝑢, 𝑣 ∈  . It is clear that zeroes of 𝑇 coincides with weak solutions to (4). Therefore in order to get the assertions it
is enough to show that 𝑇 satisfies assumptions of Theorem 2. The radial continuity of 𝑇 is clear. To show that 𝑇 is strictly
monotone and coercive, we consider a decomposition 𝑇 = 𝑇1 + 𝑇2, where

⟨𝑇1(𝑢), 𝑣⟩ =
𝑚
∑

𝑘=1
𝑑𝑘𝑘⟨𝐴𝑘(Λ𝑘𝑢𝑘),Λ𝑘𝑣𝑘⟩ − 𝜏

𝑚
∑

𝑘=1
𝑑𝑘𝑘𝛾𝑘𝛽𝑘⟨𝑢𝑘|𝑣𝑘⟩𝑘

⟨𝑇2(𝑢), 𝑣⟩ = 𝜏
𝑚
∑

𝑘=1
𝑑𝑘𝑘𝛾𝑘𝛽𝑘⟨𝑢𝑘|𝑣𝑘⟩𝑘

−
𝑚
∑

𝑘=1
𝑑𝑘𝑘⟨𝑁𝑘(𝑢), 𝑣𝑘⟩

for all 𝑢, 𝑣 ∈  . When 𝛾𝑘 = 0 for all 𝑘 = 1,… , 𝑚, 𝑇1 is monotone and coercive by Assumption 4. Otherwise we take 𝑘 ∈
{1,… , 𝑚} such that 𝛾𝑘 > 0. Using Assumptions 3 and 4 we obtain

⟨𝐴𝑘(Λ𝑘𝑢𝑘) − 𝐴𝑘(Λ𝑘𝑣𝑘),Λ𝑘𝑣𝑘 − Λ𝑘𝑣𝑘⟩−𝜏𝛾𝑘𝛽𝑘‖𝑢𝑘 − 𝑣𝑘‖
2
𝑘

≥ 𝛾𝑘‖Λ𝑘𝑢𝑘 − Λ𝑘𝑣𝑘‖
2
𝑘

− 𝜏𝛾𝑘‖𝑢𝑘 − 𝑣𝑘‖
2
𝑘

≥ (1 − 𝜏)𝛾𝑘‖𝑢𝑘 − 𝑣𝑘‖
2
𝑘
.

Hence 𝑘-th component of 𝑇1 is strongly monotone and hence clearly strictly monotone and coercive, all with respect to 𝑘.
Therefore it is immediate that 𝑇1 is monotone and coercive. Moreover, by Cauchy-Schwartz inequality, (5) and (6), we have

⟨𝑇2(𝑢) − 𝑇2(𝑣), 𝑢 − 𝑣⟩ ≥ 𝜏
𝑚
∑

𝑘=1
𝑑𝑘𝑘𝛾𝑘𝛽𝑘‖𝑢𝑘 − 𝑣𝑘‖

2
𝑘

−
𝑚
∑

𝑘=1

𝑚
∑

𝑖=1
𝑐𝑘𝑖‖𝑢𝑖 − 𝑣𝑖‖𝑖

‖𝑢𝑘 − 𝑣𝑘‖𝑘
> 0

for all 𝑢, 𝑣 ∈  . Therefore both, 𝑇1 and 𝑇2, are monotone operators, while 𝑇1 is additionally coercive and 𝑇2 – strictly monotone.
Since adding a monotone operator to the coercive operator yields still a coercive operator, we see using the above monotonicity
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and continuity relations that 𝑇 is strictly monotone, coercive and radially continuous. Applying Theorem 2 we get the assertion.

The following example shows that the Theorem 3 is an extension of Perov Contraction Principle in the Hilbert spaces setting,
see12 for some details.
Example 2. Consider an algebraic equation of the form

⎧

⎪

⎨

⎪

⎩

𝑥 = 1
2
cos(𝑥) + 3

4
𝑦,

𝑦 = 1
4
𝑥 + 1

2
cos(𝑦).

(8)

Solutions to (8) clearly coincide with fixed points of 𝑔∶ ℝ2 ←→ ℝ2 given by
𝑔(𝑥, 𝑦) =

(

1
2
cos(𝑥) + 3

4
𝑦, 1

4
𝑥 + 1

2
cos(𝑦)

)

.

However, 𝑔 is not a contraction, which follows by a standard characterization of optimal Lipschitz constant 𝐿𝑔 , that is
𝐿𝑔 = sup

𝑢∈ℝ2
max
‖𝑣‖2=1

‖

‖

𝑔′(𝑢)𝑣‖
‖2 ,

where ‖𝑢‖2 stands for the Euclidean norm. However we can use the approach considered for instance in12. It is based on
calculating Lipschitz constants for each coordinate separately. We get

|𝑔1(𝑢) − 𝑔1(𝑣)| ≤
1
2
|𝑢1 − 𝑣1| +

3
4
|𝑢2 − 𝑣2|,

|𝑔2(𝑢) − 𝑔2(𝑣)| ≤
1
4
|𝑢1 − 𝑣1| +

1
2
|𝑢2 − 𝑣2|

for every 𝑢, 𝑣 ∈ ℝ2. Since
𝐴 =

⎡

⎢

⎢

⎣

1
2

3
4

1
4

1
2

⎤

⎥

⎥

⎦

is convergent matrix, we can use a Perov Contraction Principle to obtain a unique solvability to (8). However, such an
argumentation is not possible if we consider equation with non-Lipschitz right hand like for instance

⎧

⎪

⎨

⎪

⎩

𝑥 = 1
2
cos(𝑥) + 3

4
𝑦 − 𝑥3,

𝑦 = 1
4
𝑥 + 1

2
cos(𝑦) − 𝑦3.

(9)

Nevertheless Theorem 3. Taking 𝑘 = 𝑘 = 𝑘 = ℝ for 𝑘 = 1, 2, 𝑁 = 𝑔 and 𝐴 as an identity, we have
(

𝑔1(𝑢) − 𝑔1(𝑣)
)

(𝑢1 − 𝑣1) ≤
1
2
|𝑢1 − 𝑣1|

2 + 3
4
|𝑢1 − 𝑣1||𝑢2 − 𝑣2|,

(

𝑔2(𝑢) − 𝑔2(𝑣)
)

(𝑢2 − 𝑣2) ≤
1
4
|𝑢1 − 𝑣1||𝑢2 − 𝑣2| +

1
2
|𝑢2 − 𝑣2|

2

for each 𝑢, 𝑣 ∈ ℝ2. It is clear that 𝛾𝑘 = 𝛽𝑘 = 1 for 𝑘 = 1, 2. Moreover 𝐼 − 𝐴 is M-matrix, since 𝜌(𝐴) < 1. Therefore (9) has a
unique solution.
Remark 2. Relations between above obtained results and Perov Contraction Principle has been already well described in6.
Notice however that Theorem 3 is significant extension of Theorem 8 in6. It will be visualized by Example 3 in the sequel.

Now we answer the following important question: when every solution obtained by Theorem 3 is a Nash–type equilibrium?
Theorem 4. Let Assumptions 1-5 hold. Assume additionally that (5) holds, 𝐺𝐵 − 𝐶 is non-singular M-matrix and that
functionals 𝑘 ∶  ←→ ℝ, 𝑘 = 1,… , 𝑚, given by

𝑘(𝑢) =

1

∫
0

⟨𝑁𝑘(𝑡𝑢), 𝑢𝑘⟩𝑑𝑡

satisfy 𝜕𝑢𝑘𝑘 = 𝑁𝑘 for 𝑘 = 1,… , 𝑚, where 𝜕𝑢𝑘𝑘 denotes a Gâteaux derivative of 𝑘 with respect to 𝑘-th variable. Then the
unique weak solution to problem (4) (guaranteed by Theorem 3) is a Nash-type equilibrium for the system {𝑘}𝑚𝑘=1, where

𝑘(𝑢) = 𝑘
(

Λ𝑘𝑢𝑘
)

−𝑘(𝑢)
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for 𝑘 = 1,… , 𝑚.
Proof. Since for each 𝑘 = 1,… , 𝑚 functional 𝑘 has the 𝑘-th partial Gâteaux derivative and since each 𝑘 is 𝐶1 and Λ𝑘 is
linear and continuous we observe that every 𝑘 has the 𝑘–th partial Gâteaux derivative. Let 𝑤 be the weak solution to problem
(4). Define functionals 𝑘 ∶ 𝑘 ←→ ℝ, 𝑘 = 1,… , 𝑚, by

𝑘(𝑢) = 𝑘(𝑤1,… , 𝑤𝑘−1, 𝑢, 𝑤𝑘+1,… , 𝑤𝑚) for all 𝑢 ∈ 𝑘.

Note that functionals 𝑘, 𝑘 = 1,… , 𝑚, are Gâteaux differentiable and
 ′
𝑘 (𝑢) = 𝜕𝑢𝑘(𝑤1,… , 𝑤𝑘−1, 𝑢, 𝑤𝑘+1,… , 𝑤𝑚) for all 𝑢 ∈ 𝑘.

Taking 𝑇 given by (7) we see, by the above, that
⟨𝑇 (𝑢), 𝑣⟩ =

𝑚
∑

𝑘=1
𝑑𝑘𝑘⟨𝜕𝑢𝑘𝑘(𝑢), 𝑣𝑘⟩.

Therefore, since 𝑇 is monotone we obtain that for all 𝑘 = 1,… , 𝑚 and every 𝑢, 𝑣 ∈ 𝑘

⟨ ′
𝑘 (𝑢) −  ′

𝑘 (𝑣), 𝑢 − 𝑣⟩ ≥ 0.

Hence 𝑘, for 𝑘 = 1,… , 𝑚, are convex. Since a critical point of a convex functional is necessarily an argument of a global
minimum we obtain that

𝑘(𝑤) = min
𝑢∈𝑘

𝑘(𝑢).

Therefore 𝑤 in a Nash–type equilibrium for {𝑘}𝑚𝑘=1.

4 APPLICATIONS TO NONLINEAR PROBLEMS

We formulate the problem which serves as an example showing the advance over6 and other sources mentioned:2,3,5,1,4. For
simplicity we consider a system of two nonlinear elliptic equations of the form

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−div
(

𝜑11

(

𝑥, ||
|

𝜕𝑢
𝜕𝑥1

(𝑥)||
|

)

𝜕𝑢
𝜕𝑥1

(𝑥),… , 𝜑1𝑙

(

𝑥, ||
|

𝜕𝑢
𝜕𝑥𝑙

(𝑥)||
|

)

𝜕𝑢
𝜕𝑥𝑙

(𝑥)
)

= 𝑓1(𝑥, 𝑢(𝑥), 𝑣(𝑥)),

−div
(

𝜑21

(

𝑥, ||
|

𝜕𝑢
𝜕𝑥1

(𝑥)||
|

)

𝜕𝑢
𝜕𝑥1

(𝑥),… , 𝜑2𝑙

(

𝑥, ||
|

𝜕𝑢
𝜕𝑥𝑙

(𝑥)||
|

)

𝜕𝑢
𝜕𝑥𝑙

(𝑥)
)

= 𝑓2(𝑥, 𝑢(𝑥), 𝑣(𝑥)),

𝑢|𝜕Ω = 𝑣|𝜕Ω = 0.

(10)

Now we give assumptions which allows us to use an abstract framework introduced in Section 3. To consider the boundary
conditions in the sense of traces we impose
Assumption 6. Let Ω ⊂ ℝ𝑙, 𝑙 ∈ ℕ, be an open, bounded and connected set with a Lipschitz boundary.

Following13 we denote 𝐻−1(Ω) ∶= 𝐻1
0 (Ω)

∗. We take 𝐿∶ 𝐻1
0 (Ω) ←→ 𝐿2(Ω;ℝ𝑙) given by the formula

𝐿𝑢(𝑥) = ∇𝑢(𝑥) =
(

𝜕𝑢
𝜕𝑥1

(𝑥),… , 𝜕𝑢
𝜕𝑥𝑚

(𝑥)
)

. (11)
Taking

𝑘 = 𝐿2(Ω), 𝑘 = 𝐿2(Ω;ℝ𝑙), 𝑘 = 𝐻1
0 (Ω) (12)

we see that Assumption 1 holds. Moreover Λ1 = Λ2 = 𝐿 satisfy Assumption 2. Note that for every 𝑦∗ ∈ 𝐿2(Ω;ℝ𝑙)∗ there exists
a unique 𝑦 ∈ 𝐿2(Ω;ℝ𝑙) satisfying

⟨𝑦∗, 𝑤⟩ =
𝑙

∑

𝑖=1
∫
Ω

𝑦𝑖(𝑥)𝑤𝑖(𝑥)𝑑𝑥

for all 𝑤 ∈ 𝐿2(Ω;ℝ𝑙). Using the above notation we see that Λ∗ ∶ 𝐿2(Ω;ℝ𝑙)∗ ←→ 𝐻−1(Ω) is defined by

⟨Λ∗𝑦∗, 𝑣⟩ =
𝑙

∑

𝑖=1
∫
Ω

𝑦𝑖(𝑥)
𝜕𝑣
𝜕𝑥𝑖

(𝑥)𝑑𝑥
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for all 𝑣 ∈ 𝐻1
0 (Ω). We denote by 𝜆Ω the Poincaré constant, that is

𝜆Ω ∶= inf
𝑢∈𝐻1

0 (Ω),𝑢≠0

∫
Ω

|∇𝑢(𝑥)|2𝑑𝑥

∫
Ω

|𝑢(𝑥)|2𝑑𝑥
.

We see that Assumption 3 holds with 𝛽1 = 𝛽2 = 𝜆Ω.
Assumption 7. For each 𝑘 = 1, 2, 𝜑𝑘 ∶ Ω × [0,∞) ←→ ℝ is a Carathéodory function. Moreover

1. there exist positive numbers 𝑟 < 𝑅 such that
𝑟 ≤ 𝜑𝑘(𝑥, 𝑢) ≤ 𝑅

for all 𝑢 ≥ 0, a.e. 𝑥 ∈ Ω and 𝑘 = 1, 2;
2. for each 𝑘 = 1, 2 there exist 𝛿1, 𝛿2 ≥ 0 such that

𝜑𝑘(𝑥, 𝑢)𝑢 − 𝜑𝑘(𝑥, 𝑣)𝑣 ≥ 𝛿𝑘(𝑢 − 𝑣)

for 𝑘 = 1, 2, all 0 ≤ 𝑢 ≤ 𝑣 and a.e. 𝑥 ∈ Ω.
As in Assumption 4 we do not require 𝛿𝑘 > 0 in Assumption 7. Under Assumption 7 we define operators 𝑃1, 𝑃2 ∶ 𝐿2(Ω;ℝ𝑙) ←→

𝐿2(Ω;ℝ𝑙)∗ by the formula
⟨𝑃𝑘(𝑦), 𝑤⟩ =

𝑙
∑

𝑖=1
∫
Ω

𝜑𝑘𝑖(𝑥, |𝑦𝑖(𝑥)|)𝑦𝑖(𝑥)𝑤𝑖(𝑥)𝑑𝑥, (13)

for 𝑥, 𝑦 ∈ 𝐿2(Ω;ℝ𝑙) and 𝑘 = 1, 2. Following9 or11 we can verify that 𝑃1 and 𝑃2 are continuous, monotone, coercive and
potential operators. The proof relies on the Krasnosel’skii Theorem on the continuity of the Niemytskij operator and standard
direct calculations. Moreover, if 𝛿𝑘 > 0, operator 𝑃𝑘 is 𝛿𝑘-strongly monotone. Potential 𝑘 of operator 𝑃𝑘 reads

𝑘(𝑢) =
𝑙

∑

𝑖=1
∫
Ω

|

|

|

|

𝜕𝑢
𝜕𝑥𝑖

(𝑥)
|

|

|

|

∫
0

𝜑𝑘𝑖(𝑥, 𝑡)𝑡𝑑𝑡𝑑𝑥 (14)

for 𝑢 ∈ 𝐿2(0, 1) and 𝑘 = 1, 2. Therefore Assumption 4 is satisfied for 𝐴𝑘 = 𝑃𝑘 with 𝛾𝑘 = 𝛿𝑘, 𝑘 = 1, 2. Finally let us consider
Assumption 8. Let 𝑓1, 𝑓2 ∶ Ω ×ℝ2 ←→ ℝ be Carathéodory functions satisfying:

if 𝑙 = 1: there exist ℎ1, ℎ2 ∈ 𝐿2(Ω; [0,∞)) functions 𝑔1, 𝑔2 ∶ ℝ ←→ [0,∞) such that
|𝑓𝑘(𝑡, 𝑢)| ≤ ℎ𝑘(𝑡)𝑔𝑘(𝑢)

for a.e. 𝑥 ∈ Ω, all 𝑢, 𝑣 ∈ ℝ and 𝑘 = 1, 2;
if 𝑙 ≥ 2: there exist constants 𝑎1, 𝑎2 ≥ 0, 𝑏1, 𝑏2 ∈ 𝐿2(Ω; [0,∞)) and a finite positive number 𝑝 ≤ 𝑙

𝑙−2
(for 𝑙 = 2, 𝑝 can be

any positive constant) such that
|𝑓𝑘(𝑥, 𝑢, 𝑣)| ≤ 𝑎𝑘(|𝑢|𝑝 + |𝑣|𝑝) + 𝑏𝑘(𝑥)

for a.e. 𝑥 ∈ Ω, all 𝑢, 𝑣 ∈ ℝ and 𝑘 = 1, 2.
We denote by 𝐹1, 𝐹2 ∶ 𝐻1

0 (Ω)
2 ←→ 𝐿2(Ω)∗ the Nemytski operators associated with 𝑓1 and 𝑓2, respectively. Namely

⟨𝐹𝑘(𝑢1, 𝑢2), 𝑣⟩ = ∫
Ω

𝑓𝑘(𝑥, 𝑢1(𝑥), 𝑢2(𝑥))𝑣(𝑥)𝑑𝑥 (15)
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and all 𝑢1, 𝑢2 ∈ 𝐻1
0 (Ω) and 𝑣 ∈ 𝐿2(Ω). Both operators are well defined by the Gagliardo-Nirenberg-Sobolev inequality. Hence

Assumption 5 is satisfied with 𝑁𝑘 = 𝐹𝑘 for 𝑘 = 1, 2. Moreover taking

1(𝑢1, 𝑢2) = ∫
Ω

𝑢1(𝑥)

∫
0

𝑓𝑘(𝑥, 𝑣, 𝑢2(𝑥))𝑑𝑣𝑑𝑥,

2(𝑢1, 𝑢2) = ∫
Ω

𝑢2(𝑥)

∫
0

𝑓𝑘(𝑥, 𝑢1(𝑥), 𝑣)𝑑𝑣𝑑𝑥

we get
⟨𝜕𝑢𝑘𝑘(𝑢1, 𝑢2), 𝑣⟩ = ∫

Ω

𝑓𝑘(𝑡, 𝑢1(𝑥), 𝑢2(𝑥))𝑣(𝑥)𝑑𝑥,

for 𝑘 = 1, 2. Here 𝜕𝑢𝑘𝑘(𝑢1, 𝑢2) denotes a Gâteaux derivative of 𝑘 at point (𝑢1, 𝑢2) with respect to 𝑘-th variable. To study the
existence of a Nash-type equilibrium for system (10) we consider 𝑘 ∶ 𝐻1

0 (Ω)
2 ←→ ℝ defined by the formula

𝑘(𝑢1, 𝑢2) = 𝑘(𝐿𝑢𝑘) − 𝑘(𝑢1, 𝑢2) (16)
for 𝑢1, 𝑢2 ∈ 𝐻1

0 (Ω) and 𝑘 = 1, 2. Here 𝐿, 𝑘 and 𝑘 are given by (11), (14) and (15), respectively. Applying Theorem 4 to the
above setting we get
Theorem 5. Let Assumptions 6-8 hold. Assume that there exist constants 𝑐11 < 𝛿1, 𝑐22 < 𝛿2 and 𝑐12, 𝑐21 ≥ 0 such that

(

𝑓1(𝑥, 𝑢1, 𝑢2) − 𝑓1(𝑥, 𝑣1, 𝑣2)
)

(𝑢1 − 𝑣1) ≤ 𝑐11|𝑢1 − 𝑣1|
2 + 𝑐12|𝑢1 − 𝑣1||𝑢2 − 𝑣2|

(

𝑓2(𝑥, 𝑢1, 𝑢2) − 𝑓2(𝑥, 𝑣1, 𝑣2)
)

(𝑢2 − 𝑣2) ≤ 𝑐21|𝑢1 − 𝑣1||𝑢2 − 𝑣2| + 𝑐22|𝑢2 − 𝑣2|
2 (17)

hold for all 𝑢, 𝑣 ∈ ℝ, a.e. 𝑥 ∈ Ω. If
(𝜆Ω𝛿1 − 𝑐11)(𝜆Ω𝛿2 − 𝑐22) > 𝑐12𝑐21, (18)

then system (10) has a unique solution, which is a Nash–type equilibrium for {1,2} given by (16).
Proof. In the view of the above considerations it is clear that Assumptions 1-5 are satisfied if we consider a space setting (12)
and take Λ1 = Λ2 = 𝐿, 𝐴𝑘 = 𝑃𝑘 and 𝑁𝑘 = 𝐹𝑘 for 𝑘 = 1, 2. Operators 𝐿, 𝑃𝑘 and 𝐹𝑘 are given by (11), (13) and (15), respectively.
Assumption (17) provides (5) with the same constants, while 𝐺𝐵−𝐶 is non-singular M-matrix by condition (18) (see condition
F15 in Theorem 1). Therefore Theorem 3 provides existence and uniqueness of weak solution to the system (10). Such a solution
is a Nash–type equilibrium due to Theorem 4. Indeed, it suffice to take 𝑘 = 𝑘 given by (16) for 𝑘 = 1, 2.
Example 3. Let us consider function 𝜑∶ ℝ ←→ ℝ given by the formula

𝜑(𝑢) ∶=

⎧

⎪

⎨

⎪

⎩

1 if 𝑢 ∈ [0, 1),
1
𝑢

if 𝑢 ∈ [1, 2),
1 − 1

𝑢
if 𝑢 ∈ [2,∞).

Using Theorem 5, with 𝜑1(𝑥, 𝑢) = 𝜑(𝑢) and 𝜑2 ≡ 1, we can show that system
⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 𝑑
𝑑𝑡

(

𝜑
(

|

|

|

𝑑𝑢
𝑑𝑡
|

|

|

)

𝑑𝑢
𝑑𝑡

)

= 𝑣 + sin(𝑣) − 2𝑢,

− 𝑑2𝑣
𝑑𝑡2

= 𝑢
2
− 𝑣 − 𝑣3,

𝑢(0) = 𝑢(1) = 𝑣(0) = 𝑣(1) = 0,

has a unique weak solution, which is a Nash-type equilibrium for a following system of functionals

1(𝑢, 𝑣) =

1

∫
0

|

|

|

|

𝑑𝑢
𝑑𝑡

(𝑡)
|

|

|

|

∫
0

𝜑 (𝑠) 𝑠𝑑𝑠𝑑𝑡 −

1

∫
0

(𝑣(𝑡) + sin(𝑣(𝑡))) 𝑢(𝑡)𝑑𝑡 +

1

∫
0

|𝑢(𝑡)|2𝑑𝑡,

2(𝑢, 𝑣) =
1
2

1

∫
0

|

|

|

𝑑𝑣
𝑑𝑡
(𝑡)||
|

2
𝑑𝑡 − 1

2

1

∫
0

𝑢(𝑡)𝑣(𝑡)𝑑𝑡 + 1
2

1

∫
0

|𝑣(𝑡)|2𝑑𝑡 + 1
4

1

∫
0

|𝑣(𝑡)|4𝑑𝑡.
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