REFERENCES
1. Sun Z, Fridrich B, De Santi A, Elangovan S, Barta K. Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chem. Rev. 2018;118(2):614-678.
2. Rafiee M, Alherech M, Karlen S. D, Stahl S. S. Electrochemical aminoxyl-mediated oxidation of primary alcohols in lignin to carboxylic acids: Polymer modification and depolymerization. J. Am. Chem. Soc . 2019;141(38):15266-15276.
3. Schutyser W, Renders A. T, Van den Bosch S, Koelewijn S. F, Beckham G. T, Sels B. F. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev . 2018;47(3):852-908.
4. Meng Q, Yan J, Wu R. et al. Sustainable production of benzene from lignin. Nat Commun . 2021;12(1):4534.
5. Wong S, Shu R, Zhang J, Liu H, Yan N. Downstream processing of lignin derived feedstock into end products. Chem Soc Rev.2020;49(15):5510-5560.
6. Abu-Omar M. M, Barta K, Beckham G. T. et al. Guidelines for performing lignin-first biorefining. Energy Environ Sci . 2021;14(1):262-292.
7. Li C, Zhao X, Wang A, Huber G, Zhang T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev . 2015;115(21):11559-11624.
8. Wang S, Li W, Yang Y. et al. Unlocking Structure–Reactivity Relationships for Catalytic Hydrogenolysis of Lignin into Phenolic Monomers. ChemSusChem . 2020;13(17):4548-4556.
9. Peng C, Chen Q, Guo H. et al. Effects of extraction methods on structure and valorization of corn stover lignin by a Pd/C catalyst.ChemCatChem . 2017;9(6): 1135-1143.
10. Zhang B, Guo T, Liu Y. et al. Sustainable production of benzylamines from lignin. Angew. Chem. Int.2021;60(38):20666-20671.
11. Arora S, Gupta N, Singh V. Improved Pd/Ru metal supported graphene oxide nano-catalysts for hydrodeoxygenation (HDO) of vanillyl alcohol, vanillin and lignin. Green Chem . 2020;22(6):2018-2027.
12. Yan J, Meng Q, Shen X. et al. Selective valorization of lignin to phenol by direct transformation of Csp2–Csp3 and C–O bonds. Sci adv . 2020;6(45):1951-1960.
13. Li L, Dong L, Liu X, Guo Y, Wang Y. Selective production of ethylbenzene from lignin oil over FeOx modified Ru/Nb2O5 catalyst. Appl. Catal. B . 2020;260:118143.
14. Gong J, Imbault A, Farnood R. The promoting role of bismuth for the enhanced photocatalytic oxidation of lignin on Pt-TiO2under solar light illumination. Appl. Catal. B . 2017;204:296-303.
15. Salakhum S. Yutthalekha T, Shetsiri S, Witoon T, Wattanakit C. Bifunctional and Bimetallic Pt–Ru/HZSM-5 Nanoparticles for the Mild Hydrodeoxygenation of Lignin-Derived 4-Propylphenol. ACS Appl.Nano Mater . 2019;2(2):1053-1062.
16. Guan W, Chen X, Zhang J, Hu H, Liang C. Catalytic transfer hydrogenolysis of lignin α-O-4 model compound 4-(benzyloxy) phenol and lignin over Pt/HNbWO6/CNTs catalyst. Renew Energ.2020;156(C):249-259.
17. Jiang L, Guo H, Li C, Zhou P, Zhang Z. Selective cleavage of lignin and lignin model compounds without external hydrogen, catalyzed by heterogeneous nickel catalysts. Chem Sci. 2019;10(16):4458-4468.
18. Song Q, Wang F, Cai J. et al. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process. Energ Environ Sci . 2013;6(3):994-1007.
19. Zhang B, Qi J, Li X. et al. Cleavage of lignin C–O bonds over a heterogeneous rhenium catalyst through hydrogen transfer reactions.Green Chem. 2019;21(20): 5556-5564.
20. Sirous-Rezaei P, Jae J, Cho K. et al. Insight into the effect of metal and support for mild hydrodeoxygenation of lignin-derived phenolics to BTX aromatics. Chem Eng J . 2019;377 :120121.
21. Totong S, Laosiripojana W, Laosiripojana N, Daorattanachai P. Nickel and Rhenium Mixed Oxides-Doped Graphene Oxide (MOs/GO) Catalyst for the Oxidative Depolymerization of Fractionated Bagasse Lignin. Ind. Eng. Chem. Res . 2022;61(1):215-223.
22. Sergeev A. G, Hartwig, J. F. Selective, nickel-catalyzed hydrogenolysis of aryl ethers. Science. 2011;332(6028):439-443.
23. Wang M, Zhang X, Li H. et al. Carbon Modification of Nickel Catalyst for Depolymerization of Oxidized Lignin to Aromatics. ACS Catal . 2018;8(2):1614-1620.
24. Zhang J, Teo J, Chen X. et al. A Series of NiM (M=Ru, Rh, and Pd) Bimetallic Catalysts for Effective Lignin Hydrogenolysis in Water.ACS Catal . 2014;4(5):1574-1583.
25. Zhai Y, Li Z, Xu G. et al. Depolymerization of lignin via a non-precious Ni–Fe alloy catalyst supported on activated carbon.Green Chem . 2017;19(8):1895-1903.
26. Hannagan R. T, Giannakakis G, Flytzani-Stephanopoulos M, Sykes E. Single-atom alloy catalysis. Chem Rev . 2020;120(21):12044-12088.
27. Samantaray M. K, Pump E, Elia V. et al. The comparison between single atom catalysis and surface organometallic catalysis. Chem Rev . 2019;120(2):734-813.
28. Li Z, Ji S, Cao X. et al. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites. Chem Rev . 2019;120(2):623-682.
29. Mitchell S, Pérez-Ramírez J. Single atom catalysis: a decade of stunning progress and the promise for a bright future. Nat Commun . 2020;11(1):4312.
30. Liu W, Chen Y, Qi H. A Durable Nickel Single‐Atom Catalyst for Hydrogenation Reactions and Cellulose Valorization under Harsh Conditions. Angew. Chem.Int. Ed. 2018;57(24):7071-7075.
31. Liu G, Robertson A. W, Meng-Jung Li M. MoS2monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat chem . 2017;9:810-816.
32. Wang S, Zhang K, Li H, Xiao L, Song G. Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst. Nat Commun . 2021;12(1):416.
33. Shi J, Single-atom Co-doped MoS2 monolayers for highly active biomass hydrodeoxygenation. Chem . 2017;2(4):468-469.
34. Mondelli C, Gözaydın G, Yan N, Pérez-Ramírez J. Biomass valorisation over metal-based solid catalysts from nanoparticles to single atoms.Chem Soc Rev . 2020;49: 3764-3782.
35. Tian S, Wang B, Gong W. et al. Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nat commun . 2021;12:1-9.
36. Cao Y, Mao S, Li M, Chen Y, Wang Y. Metal/porous carbon composites for heterogeneous catalysis: old catalysts with improved performance promoted by N-doping. ACS Catal , 2017;7(12):8090-8112.
37. John P, Perdew K, Matthias E. Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996;77(18):3865-3868.
38. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758-1775.
39. Chadi D, Localized-orbital description of wave functions and energy bands in semiconductors. Phys Rev B. 1977;16:3572-3578.
40. Gong L, Zhang D, Lin C. et al. Catalytic Mechanisms and Design Principles for Single-Atom Catalysts in Highly Efficient CO2 Conversion. Adv. Energy Mater. 2019; 9(44):1902625.
41. Wang J, Wei Z, Mao S, Li H, Wang Y. Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ. Sci . 2018;11:800-806.
42. Yuan S, Li T, Wang Y, et al. Double-adsorption functional carbon based solid acids derived from copyrolysis of PVC and PE for cellulose hydrolysis. Fuel. 2019; 237: 895-902.
43. Fan L, Liu P, Yan X. et al. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat commun . 2016;7 :1-7.
44. Zhao C, Dai X, Yao T. et al. Ionic exchange of metal–organic frameworks to access single nickel sites for efficient electroreduction of CO2. J.Am. Chm. Soc . 2017;139(24):8078-8081.
45. Yang H, Huang S, Liu S. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy. 2018;3:140-147.
46. Zhao L, Zhang Y, Huang L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat commun . 2019;10:1278.
47. Fu F, Yang D, Zhang W, Wang H, Qiu X. Green self-assembly synthesis of porous lignin-derived carbon quasi-nanosheets for high-performance supercapacitors. Chem Eng J . 2020;392:123721.
48. Li S, Dong M, Yang J. et al. Selective hydrogenation of 5-(hydroxymethyl) furfural to 5-methylfurfural over single atomic metals anchored on Nb2O5.Nat commun . 2021;12:1-9.