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Abstract

Modern chemical processes need to operate around time-varying operating conditions to optimize

plant economy, in response to dynamic supply chains (e.g., time-varying specifications of product and

energy costs). As such, the process control system needs to handle a wide range of operating conditions

whilst optimizing system performance and ensuring stability during transitions. This article presents

a reference-flexible nonlinear model predictive control approach using contraction based constraints.

Firstly, a contraction condition that ensures convergence to any feasible state trajectories or setpoints

is constructed. This condition is then imposed as a constraint on the optimization problem for model

predictive control with a general (typically economic) cost function, utilizing Riemannian weighted

graphs and shortest path techniques. The result is a reference flexible and fast optimal controller that

can trade-off between the rate of target trajectory convergence and economic benefit (away from the

desired process objective). The proposed approach is illustrated by a simulation study on a CSTR

control problem.

Keywords:Nonlinear model predictive control, stability design, contraction theory, discrete-time non-

linear systems, graph theory.

1 Introduction

Chemical processes are traditionally designed for and operated at certain steady-state operating con-

ditions. Nowadays, supply chains are increasingly dynamic and the process industry needs to shift

towards more agile, cost-effective and flexible process operations, in response to the fluctuations in

market demand for products with different specifications, and the costs and supply of raw materi-

als and energy. Real-time optimization (RTO) has become a common practice to improve industrial

∗This work was partially supported by Australian Research Council Discovery Project DP210101978.
†Corresponding author: j.bao@unsw.edu.au.
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process operations for optimal process economy in response to the dynamics of supply chains [1]. Typ-

ically, process control is conducted in hierarchical layers, each with varying response times and control

objectives. Plant scheduling[2] (medium to long term planning) is combined with an RTO layer (based

on slow process changes, e.g., variability in raw material compositions and product specifications) to

determine economical operating targets. The lower-level control system then seeks to drive the process

to these operation targets, providing short-term process performance. As such, the control system

needs to be able to dynamically track time-varying setpoints determined by the RTO/scheduling layer,

whilst optimizing system performance and ensuring stability during transitions [3].

When an RTO/scheduling layer is employed to generate feasible time-varying setpoints, it is nat-

urally befitting to adopt an optimal controller, such as the widely popular Model Predictive Control

(MPC) paradigm [4, 5, 6], to also optimize the transitions between feasible setpoints [7]. This becomes

increasingly important when the transition period is long (e.g., power modulation of aluminum smelt-

ing cells to deal with the intermittency of renewable energy typically requires the operation setpoint

to be changed once every 12 hours but it would take about 15 to 25 hours to reach a new steady state).

One major obstacle to incorporating nonlinear MPC (NMPC) for process control is to ensure stability

(both in terms of process safety and operating target tracking) subject to cost functions which reflect

process economy [8]. Since the economic cost functions are generally not positive definite, many exist-

ing stability conditions in traditional MPC [9] cannot be applied. This has led to the Lyapunov-based

NMPC designs [10], whereby the economic optimization problem is solved subject to an additional

stability constraint, and closed-loop stability is explicitly ensured by offline Lyapunov based control

design. However, as the stability condition is only valid for a specific equilibrium, the control algo-

rithm for dynamic operating targets requires offline redesign (e.g., with a new Lyapunov function)

whenever the setpoint is updated [8]. Due to this inflexibility with respect to reference changes, the

Lyapunov-based NMPC approach is impractical when driven by an RTO/scheduling layer.

Since the RTO/scheduling layer will generate time-varying a priori unknown setpoints, stability

guarantees for optimal control require a condition that is reference-independent, e.g., those based on

incremental stability [11, 12]. As a consequence, an effective NMPC requires an incremental stability

constraint or equivalent (analogously to the Lyapunov-based NMPC approach [8]). Introduced by

Lohmiller and Slotine [13], contraction theory facilitates stability analysis and control of nonlinear

systems with respect to arbitrary, time-varying (feasible) references without redesigning the control

algorithm [14, 15, 16]. One useful feature of contraction theory is that it can be used to analyze the

incremental stability of nonlinear systems and simultaneously synthesize a controller that ensures offset

free tracking of feasible target trajectories using control contraction metrics (or CCMs [14]). This has

motivated increased interest for contraction-based NMPCs [17, 18], offering significant flexibility over

Lyapunov-based alternatives, allowing tracking time-varying setpoints without redesigning the control

algorithm.

Despite their advantages, the existing continuous-time contraction-based NMPC approaches [17,

18] suffer from computational issues, e.g., due to nested optimization during the prediction step, and
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also introduce conservatisms due to sampling. As a result, it is often impractical (if not impossible)

to impose a contraction constraint on model predictions beyond the first step, reducing suitability for

real-time control of industrial processes. The authors’ preliminary work on discrete-time contraction

analysis and controller synthesis [19, 20, 21] removes the need for Lipschitz continuity conditions to

handle sampling issues and thus allows for more practical implementation of contraction-based (digital)

control. Moreover, in general, real-time contraction-based control requires the fast online computation

of geodesics (i.e., the shortest path from the current state to the operating targets), which involves

solving a nonlinear optimization problem at each time-step (analogously to NMPC) in the absence

of structural exploits [22]. This further motivates the employment of discrete-time contraction-based

methods (permitting a computation window) in parallel to the development of efficient algorithms.

Contraction theory-based control design requires computation of the geodesics and geodesic dis-

tances on curved surfaces, which is unavoidable when considering the highly nonlinear industrial

processes (directly impacting the state manifold curvature). This can be a challenging task, compared

to Euclidean distance computation. Driven by the broad range of applications across digital geometry

processing, computer graphics and imaging, a wide variety of sophisticated geodesic computational

methods have been developed in recent literature [23]. Of particular interest, graph-based geodesic

computational methods provide an approximated path solution (through path discretization and nu-

merical search) and permit a trade-off in accuracy for speed. Graph-based approaches are a befitting

choice for real-time nonlinear control due to their implicit numerical stability and efficient online so-

lution, which is achieved by transforming the online optimization problem into an online numerical

search problem using pre-computed path information stored offline. This speed-up is naturally also

advantageous when considering the already computationally heavy burden of contraction-constrained

NMPC.

We propose a novel discrete-time contraction constrained NMPC in this work. By exploiting the

discrete-time structure of a contraction-based stability constraint, significant computational burdens

are relaxed by lifting restrictions on geodesic computations within the MPC optimization problem,

enabling the practical and scalable implementation of a stability constraint for the full prediction

horizon. Inspired by the benefits posed in the 2-dimensional surface examples[24], a novel Rieman-

nian graph-based method is developed for geodesic calculation by solving a shortest path problem,

tailored for contraction-based control, greatly improving practical feasibility with respect to exist-

ing contraction-based control methods (including non-MPC approaches). Analysis of the proposed

method is also provided, including quantification of approximation error and mesh configuration,

with additional extensions to further trade-off between accuracy and speed. The result is a practical

discrete-time contraction constrained MPC, capable of optimally stabilizing processes in real-time to

time-varying operational targets generated by an RTO layer.

The remainder of the paper is structured as follows. Section 2 formulates the overall problem

and approach. Section 3 reviews discrete-time contraction theory. Section 4 develops the contraction

constrained NMPC and Section 5 constructs the graph-based geodesic approach. Section 6 analyses
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and discusses the proposed method. Section 7 presents a simulation study with conclusions drawn in

Section 8.

Notations. Denote by fk = f(xk) for any function f , Z represents the set of all integers, Z+

represents the set of positive integers, R represents set of real numbers.

2 Problem Formulation and Approach

2.1 Control Problem Formulation

We consider a discrete-time nonlinear system in control affine form as,

xk+1 = f(xk) + g(xk)uk, (1)

where xk ∈ X ⊆ Rn and uk ∈ U ⊆ Rm are the state and control vectors, respectively, X and U

represent the restricted (or permissible) state and control spaces, and, f and g are smooth functions.

We define a feasible triplet time-varying target sequence (x∗k, u
∗
k, x
∗
k+1) for system (1), i.e., satisfying

x∗k+1 = f(x∗k) + g(x∗k)u∗k, (2)

and consider the discrete-time control input, uk = uk(xk, x
∗
k, u
∗
k). The process operation targets,

i.e., x∗, are often determined and updated by the RTO in response to variations in raw materials,

product specifications, and market demand to optimize the plant economy at these steady-state target

operation conditions.

The NMPC tracks the time-varying setpoints, i.e., xk → x∗k and is also often required to optimize

process economy during transitions from one setpoint to another, via the minimization of an economic

stage cost function, `(k + i), i.e., a NMPC solves the following optimization problem,

min
û

N∑̀
i=0

`(x̂i, ûi),

s.t. x̂0 = xk, x̂i+1 = f(x̂i) + g(x̂i)ûi,

ûi ∈ U , x̂i ∈ X ,

(3)

where N` is the prediction horizon, x̂i and ûi are the respective i-th step state and control predictions

and xk is the current state measurement. Assuming feasibility of the optimization problem (3), i.e.,

the optimal input trajectory, ûopt = (ûopt0 , ûopt1 , · · · , ûoptN`−1) ∈ UN` , can be computed satisfying (3).

The NMPC is then implemented in a receding horizon fashion, by applying the first control action

ûopt0 to system (1) until the next time instant, k + 1, i.e.,

u(k) = ûopt0 : [k, k + 1). (4)

Clearly, a NMPC requires a contraction based constraint to ensure reference-independent stability.
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The generalized control objectives can be summarized as follows:

P1 To maintain reference-independent stability, i.e., xk → x∗k, as k →∞, where x∗ is a time-varying

(externally updated) operation target;

P2 To minimize the stage cost `(x, u) over a certain prediction horizon, N`, subject to constraints

on the state, x ∈ X , and control input, u ∈ U .

2.2 Approach

To realize the control objectives in Section 2.1, we propose a novel NMPC with stability constraint,

constructed via contraction theory, to ensure both reference convergency and optimal process economy.

Under the contraction theory framework, stability is determined using the shortest path or geodesic

between the current state and operation target. To improve the real-time amenability of the approach,

the geodesic computation problem is addressed via a new fast graph-based method. The generalized

control approach can then be summarized as:

i Formulate a contraction condition as a reference-independent stability constraint;

ii Transform the geodesic calculation from an optimization problem to a graph-based search prob-

lem;

iii Implement a discrete-time contraction constrained NMPC using graph-based geodesics.

The resulting discrete-time contraction constrained NMPC is capable of optimally stabilizing processes

to time-varying operational targets generated by an RTO layer. In addition, the proposed approach

offers a practical digital implementation through scalable and efficient computational methods.

3 Contraction Theory Overview

Since the process operation target is time varying, the control design requires rigorous stability con-

ditions, e.g. incremental stability [11]. Contraction theory [13, 14] provides a differential framework

that can be used to assess incremental stability properties, based on differential dynamics. As such,

this section presents an overview of contraction theory.

Considering a discrete-time nonlinear system of the form (1), the corresponding differential dy-

namics are defined as

δxk+1
= Aδxk

+Bδuk
, (5)

where A := ∂(f(xk)+g(xk)uk)
∂xk

and B := ∂(f(xk)+g(xk)uk)
∂uk

are Jacobian matrices of functions f and g in

(1) respectively, δuk
:= ∂uk

∂s and δxk
:= ∂xk

∂s are vectors in the tangent space TxU at uk and tangent

space TxX at xk respectively (see Figure 1), which can be understood as the infinitesimal variations

(parameterized by s) along any solution pair (x, u) of (1). Defining the state trajectories of (1) as

x̌ := (x0, · · · , xk, · · · ) for k = 0, · · · ,∞, a group of state trajectories can then be parameterized by s

and thus described as

x̌(s) = (x1(s), x2(s), · · · , xk(s), · · · ) , (6)

5
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xk = γk(0)

xk+1

xk+2

x∗k = γk(1)

x∗k+1

x∗k+2

γk(s)

ck+1(s) γk+1

TxX

δx
k

X

Figure 1: Illustration of s-parameterized trajectories in Riemannian space.

where 0 ≤ s ≤ 1. For example, the trajectory x̌ is associated with s = 0, and x̌∗ is associated with

s = 1, as shown in Figure 1.

Contraction theory studies the incremental stability properties of system (1), based on the analysis

of differential dynamics (5). Practically, if (5) is exponentially stable, then the solution xk is locally

exponentially stable. Furthermore, if (5) is exponentially stable for all solutions x, then any pair of

solutions will converge to each other. For rigorous analysis, we can utilize mathematical tools from

Riemannian geometry[25]. Firstly, a Riemannian metric M(x) is a matrix function M : Rn → Rn×Rn

satisfying M(x) = M>(x) > 0 for all x ∈ Rn. A metric M(x) is said to be uniformly bounded if there

exist α2 ≥ α1 > 0 such that α1I ≤M(x) ≤ α2I, ∀x ∈ R.

Definition 3.1. A symmetric positive-definite function V (x, δx) is considered as the infinitesimal

squared length distance, given by

V (x, δx) = δ>xM(x)δx. (7)

Subsequently, System (1) is contracting with rate 0 < β < 1, with respect to a uniformly bounded

discrete-time control contraction metric (DCCM) M(x), such that V (x, δx) in (7) satisfies

Vk+1 − Vk ≤ −βVk < 0, ∀x ∈ X ,∀δx ∈ TxX . (8)

The function V (x, δx) can be understood as a differential Lyapunov function for the differential

dynamics (5). Then, following some additional definitions from Riemannian geometry, incremental

stability can be established.

Definition 3.2. For a smoothly varying, uniformly bounded metric M(x), and a smooth curve c(s) :

[0, 1]→ X (see, Fig. 1), connecting any pair of points, x, x∗ ∈ X (such that c(0) = x and c(1) = x∗),

we define the Riemannian distance, d(x, x∗), and energy, E(x, x∗), as[25]

dc(x, x
∗) = d(c) :=

∫ 1

0

√
δ>c(s)M(c(s))δc(s)ds,

E(x, x∗) = E(c) :=

∫ 1

0

δ>c(s)M(c(s))δc(s)ds,

(9)

where δc(s) := ∂c(s)
∂s . Furthermore, there exists a bounded (not necessarily unique) minimum length

6
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curve or geodesic, γ, connecting any two points, e.g. x and x∗, defined as

γ(s) := arg min
c(s)

d(x, x∗), (10)

where the geodesic distance is defined as dγ(x, x∗) := d(γ).

While γ is generally a curve, it can be a straight line joining x to x∗ if the metric M is “flat”

(i.e., not a function of x). The existence of such a curve can be guaranteed as M is uniformly

bounded [14, Lemma 2]. Furthermore, the geodesic computation (10) can be converted into convex

nonlinear optimization problem [22].

For brevity, contraction analysis via DCCMs involves searching jointly for a controller and the

metric that describes the contraction properties of the resulting closed-loop system. It was shown

that the existence of a contraction metric for a nonlinear system is sufficient for globally stabilizing

every forward-complete solution of that system[14] . To see this, consider the generic differential state

feedback law,

δuk
= K(xk)δxk

. (11)

The relationship between differential stability of (5) and the incremental stability of (1) given differ-

ential controller (11) is then given as follows.

Theorem 3.3. [20] For a discrete-time nonlinear system (1) which satisfies

(Ak +BkKk)>Mk+1(Ak +BkKk)− (1− β)Mk < 0, (12)

the system is contracting with respect to a uniformly bounded, positive definite DCCM, M(xk), and it

is exponentially incrementally stable, i.e., for any pair of solutions xk, x∗k,

|xk − x∗k| ≤ Re−λk∆t |x0 − x∗0|, (13)

for some constants R and λ, where ∆t denotes a discrete-time interval.

By integrating (11) along the geodesic, γ (10), one particular feasible tracking controller, can be

defined as

uk = u∗k +

∫ 1

0

K (γ(s))
∂γ(s)

∂s
ds. (14)

Note that this particular formulation is reference-independent since the target trajectory variations

do not require a structural redesign of the feedback controller and is naturally befitting to the flexible

process operation paradigm. Moreover, the discrete-time control input, uk (14), is a function with

arguments (xk, x∗k, u∗k) and hence the control action is computed from the current state and target

trajectory.

If matrix functions A and B in the differential dynamics (5) can be approximated as polynomial

functions of x and u, the DCCM can be determined offline is by using Sum of Squares (SoS) pro-

gramming [20]. The contraction condition in (12) can be transformed into an equivalent and tractable

7
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state-dependent LMI [19]

Φ =

 Wk+1 AkWk +BkLk

(AkWk +BkLk)> (1− β)Wk

 > 0, (15)

where Wk := M−1
k , Wk+1 := M−1

k+1 = M−1(f(xk) + B(xk)uk), and Lk := KkWk are the unknown

polynomial matrix functions. The DCCM M(x) can be synthesized by solving the following SOS

programming problem for all xk ∈ X and uk ∈ U :

min
lc,wc,r

r

s.t. φ>Φφ− rI ∈ Σ(xk, uk, φ),

r ≥ 0,

(16)

where wc, lc are polynomial coefficients of the matrix elements in Wk(x), Wk+1(x) and Lk(x), re-

spectively. Furthermore, φ is a vector of monomials, r is a small positive relaxation parameter and

Σ(xk, uk, φ) is a non-negative polynomial sum of squares function of xk, uk and φ. Solution to (16)

yields polynomial matrices W (x), L(x), and hence the DCCM M(x) with controller gain K(x). Other

DCCM synthesis methods were developed for more general differential dynamics (not limited to poly-

nomial systems), e.g., a machine learning-based approach can be found in Wei et al.[21].

In summary, the resulting implication from contraction analysis is that the length of the minimum

path (i.e., geodesic) between any two trajectories (e.g., the plant state, x, and desired state, x∗,

trajectories), with respect to the metric M(x), decreases with time. It is worth noting that for

contraction-based control, the optimal or even complete trajectories (e.g., between the current state

and target setpoint) are not needed, only the desired feasible setpoints are required. Suppose that

a feasible complete set of reference trajectories was, in fact, available (typically a non-trivial task),

then the same contraction based controller could be additionally used to drive the system to such

references, and without structural redesign (simply update the geodesic information in (14)). The

contraction-based control methods do not require redesigning the control algorithm as the reference

changes (setpoint or otherwise), unlike the Lyapunov-based control designs.

4 Discrete-time Contraction Constrained NMPC

In this section, contraction conditions are translated into stability constraints which are then imposed

on a control optimization problem. Since one of the main objectives is to achieve “optimal” operation

(w.r.t. minimization of a stage cost, see the control objectives, P1,P2, of Section 2.1), we then wish

to choose the “most optimal” controllers which also satisfy the criteria P1. Our approach is to define

a set of controllers which satisfy P1 and search amongst those for the most optimal. This process

involves reformulating contraction conditions as a constraint in u and imposing it on a NMPC (23).

We note here that the NMPC (23) does not require pre-computation of the controller given in

8
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(14) (and by extension the control reference u∗), i.e., control solutions to the optimization problem

in (23) are not dependent on (14), but rather the existence of this control law which satisfies the

contraction condition in (12) provides a certificate for problem feasibility subject to a contraction

constraint (physical constraints are addressed in later sections). The use of NMPC in this form is

additionally attractive when considering RTO-driven setpoints, for which, the control reference, u∗,

is practically unavailable without additional computational burdens (via solution to an additional

nonlinear optimization problem).

4.1 Discrete-time Contraction Constraints via DCCMs

As in the continuous-time contraction-based NMPC approaches[26, 27], the contraction constraints

can be imposed on a NMPC to ensure reference flexible stability. By exploiting the structure of

DCCMs, we propose here a discrete-time contraction constraint as a reference flexible and scalable

condition, overcoming existing computational drawbacks and ensuring stability for the full prediction

horizon.

Proposition 4.1. For the system (1), with differential dynamics (5), provided a DCCM, M(x), can

be found satisfying (12), the exponential convergence property of the system state, x, to the reference,

x∗, with rate β, can be expressed as a condition on the Riemannian energy of the geodesics at each

time step, i.e.,

E(γi+1) ≤ (1− β)E(γi), (17)

implies exponential incremental stability of xi to x∗i . This condition can be imposed as the contraction

constraint

r(x̂i, x
∗
i , ûi, β) := d (ci+1)− (1− β)

(i+1)/2
d (γ0) ≤ 0, (18)

for any non-geodesic path, ci = c (xi, x
∗
i ) satisfying γi+1 ≤ ci+1 ≤ γi ≤ ci.

Proof. For (1) with (5), the existence of a DCCM, M(x), satisfying (12), ensures it is exponentially

incrementally stable (contracting w.r.t. M(x)) under Theorem 3.3. Then, consider (xi, xi+1) and

(x∗i , x
∗
i+1) as two solution pairs of system (1). The shortest path connecting each of these solutions at

prediction step i, denoted by the geodesic γi(s) in (10), is defined with γi(0) = xi and γi(1) = x∗i , and

ci+1(s) denotes a path (not necessarily a geodesic) at the next time step, connecting ci+1(0) = xi+1

and ci+1(1) = x∗i+1. Hence, from (1), we have ci+1(0) = xi+1 = f(xi) = f(γi(0)) and ci+1(1) = x∗i+1 =

f(x∗i ) = f(γi(1)) as shown in Figure 1, or, without loss of generality,

ci+1(s) = f(γi(s)). (19)

From (9), (10) and the Hopf-Rinow Theorem, (e.g., in Manchester and Slotine[14]), we have

E(γ) = d(γ)2 ≤ d(c)2 ≤ E(c), (20)

9
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which, given (12) and (19), yields the decreasing Riemannian energy condition in (17), i.e.,

E(γi+1) ≤
∫ 1

0

∂ci+1(s)

∂s

>
M(ci+1(s))

∂ci+1(s)

∂s
ds ≤

∫ 1

0

(1− β)
∂γi(s)

∂s

>
M(γi(s))

∂γi(s)

∂s
≤ (1− β)E(γi).

(21)

Then, consider a non-geodesic path, ci = c (x̂i, x
∗
i ), defined as

d(γi+1) ≤ d(ci+1) ≤ d(γi) ≤ d(ci), (22)

which, from (17) and (9), gives (18).

Remark 1. The information required for the computation of d(γ) is available from the current state

measurement and knowledge of the system model and reference dynamics. In addition, these conditions

define a set (or the conditional property) of controllers which guarantee the system is contracting

(under Theorem 3.3), whereby one particular feasible control solution is given by the state-feedback

control structure proposed (14).

Whilst the contraction condition in (17) can alone be imposed as an incremental stability constraint

on a NMPC (3), it requires solution of a nested optimization problem, e.g., at each i-th step in the

prediction horizon solving (10) to obtain γi for i = 0, · · · , N`. To avoid the computational complexities

involved with predicting geodesics, γi, for i = 1, · · · , N`, which are also dependent on the ûi−1 solution,

a common approach is to only consider the contraction constraint for a single step forward (requiring

only the current step and previous step geodesic information), and removing the dependency of future

control actions on compounding nested optimization problems[17, 18]. To ensure that the system is

contracting for the full prediction horizon, the proposed alternative is to consider bounded future non-

geodesic paths, ci and exploit the discrete-time iterative structure. Relative to (17), the condition in

(18), is significantly less computationally exhaustive since it does not require the geodesic computation

at future steps in the prediction horizon yet still imposes the desired convergence property.

The contraction constraint of Proposition (18), has a reference-independent structure and is a

nonlinear function affine in the control action, û. To see this, consider that at each i-th prediction

step, the Riemannian distance, d(ci), depends on the path c(x̂i, x
∗
i ), which is generated iteratively

using the model x̂i+1 = f(x̂i) + g(x̂i)ûi and the reference trajectory x∗i (obtained via RTO), which

depend on the current state measurement, x0, and predicted control sequence û = (û0, û1, · · · , ûN`−1).

In the following section, details for imposing this constraint on a NMPC will be provided.

4.2 Discrete-time Contraction Constrained NMPC

To optimize system economy, via minimization of a cost function, a NMPC which also ensures expo-

nential incremental stability (between the state x and target x∗ trajectories) solves the optimization
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problem

min
û

N∑̀
i=0

`(x̂i, ûi),

s.t. x̂0 = xk, x̂i+1 = f(x̂i) + g(x̂i)ûi,

ûi ∈ U , x̂i ∈ X ,

r(x̂i, x
∗
i , ûi, β) ≤ 0,

(23)

where ` denotes an economic cost function, x∗k the desired target state at time step k and r is the

contraction constraint in (18). The contraction-based stability constraint, r (18), can be imposed as

part of the optimization problem (23) by:

1. Initialize the optimization by updating the current step metric M(x̂k), and computing the

geodesic γ0 = γ(x̂0, x
∗
0) and corresponding Riemannian distance d(γ(x̂0, x

∗
k)) using the current

step state measurement x̂0 = xk and setting i = 0.

2. Choose a control input ûi.

3. Compute the next step metric M(x̂i+1), path c(x̂i+1, x
∗
i+1) and corresponding Riemannian dis-

tance d(c(x̂k+1, xk+1)) using the state update x̂i+1 = f(x̂i) + g(x̂i)ûi.

4. Evaluate the condition in (18) to see if the chosen ûi is a contracting control input. If (18) is

satisfied update i = i+ 1 ≤ N`, and repeat from step 2.

Note that the target trajectory information is captured by (18) and there is no introduced conser-

vatism in the solutions ûi. Moreover, one such controller that satisfies (18) is the one given by (14),

which guarantees exclusive feasibility of the contraction constraint. An additional consideration for

the state and control (i.e., input) constraints (which would impose restrictions on each step above)

will be addressed in the following section.

In step 3, the next step path ci+1 = c(x̂i+1, x
∗
i+1) can be determined by: (1) using the geodesic,

i.e., ci+1 = γi+1; or (2) implementing the next-step path, ci+1, as an optimization decision variable,

i.e., by using minû,c(û) in (23), the MPC will additionally search for a path ci+1 (given ûi from step 2)

which satisfies (18). In case (1), this is equivalent to using the complete contraction constraint, i.e.,

r = d (γi+1)− (1− β)
1/2

d (γi) ≤ 0 from (9),(17),(18); and for case (2), using the relaxed contraction

constraint in (18). This a trade-off to achieve optimality (in the sense of convergency) at the cost of

computational complexity, by using a geodesic at each prediction step. Both computational methods

can be implemented in conjunction with the graph-based path approach proposed in following sections.

It is also important to note here that step 1 includes the calculation of the geodesic at each time

step k (i.e., at each state measurement xk), which means that the optimization problem (23) includes

a second optimization problem (regardless of the choice for the next-step path ci+1 at step 3). One

possible approach to reduce the complexity introduced by geodesic calculations, is to use a weighted

objective function that embeds the geodesic calculation in the cost function. However, a weighted

objective function approach results in an objective trade-off between the geodesic length and the
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economical cost, which may lead to infeasible geodesic computations since there is no guarantee for

path completeness. To solve this problem, we develop an alternative graph-based tool in the following

section to efficiently calculate the geodesic and with user-defined precision. It will also be shown

that this development permits the implementation of the non-relaxed contraction constraint in (17)

(cf. (18)) for the full horizon, enhancing the geodesic prediction capabilities and hence practicality of

general contraction-constrained NMPC approaches.

5 Graph-based State Constrained Geodesic Length Compu-

tation

For effective real-time contraction-based control, the section presents a graph-based geodesic compu-

tation method, whereby the geodesic optimization problem in continuous space (10) is transformed

into a constrained search problem (see e.g., in do Carmo[25]) in discrete space for numerical solution.

First, the standard optimization based geodesic calculation method will be introduced, followed by

the development of a novel graph-based tool.

5.1 Geodesic Length Calculation via Optimization

A typical geodesic calculation method for use with contraction-based control [19, 21] involves solving

a numerical optimization problem. From (9) and (10), we have the following expression for computing

the geodesic length,

dγ(x, x∗) = min
c

∫ 1

0

∂c(s)

∂s

T

M(c(s))
∂c(s)

∂s
ds. (24)

where (see Section 3) c(s) is an s-parameterized smooth curve connecting x (s = 0) to x∗ (s = 1). Since

(24) is an infinite dimensional problem over all smooth curves, without explicit analytical solution,

the problem must be discretised to be numerically solved. Note that the integral can be approximated

by discrete summation provided the discrete steps are sufficiently small. As a result, the geodesic (24)

can be numerically calculated by solving the following optimization problem,

dγ̄(x, x∗) = min
∆x̃s∈X

N∆s∑
i=1

∆x̃TsiM(x̃i)∆x̃si∆si

s.t. x̃1 = x, x̃N∆s
= x∗,

(25)

where γ̄(x, x∗) ≈ γ(x, x∗) represents the numerically approximated geodesic, x and x∗ are the end-

points of the geodesic, x̃i represents i-th point on a discrete path in the state space, ∆x̃si := ∆x̃i/∆si ≈

∂c(s)/∂s can be interpreted as the displacement vector discretised with respect to the s parameter,

∆x̃s := (∆x̃s1 , . . . ,∆x̃sN∆s
) is the discretised path joining x to x∗ (i.e., discretization of c(s) in (24)),

all ∆si are small positive scalar values chosen such that
∑N∆s

i=1 ∆si = 1, N∆s is the chosen number

of discretization steps (of s), x̃i =
∑i
j=1 ∆x̃sj∆sj + x represents the numerical state evaluation along

the geodesic.
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This geodesic calculation method is an optimization problem. In other words, the NMPC (opti-

mization) problem, (23) will contain another (embedded) optimization problem if we use the geodesic

calculation method (25). This will increase the computation burden significantly, which is not fea-

sible for existing tools. To overcome this issue, a graph-based geodesic calculation method will be

introduced.

5.2 Geodesic Length Calculation via Weighted Graphs

In subsequent sections, an alternative graph-based method is developed such that (24) is approximated

as a search problem over the discretised state space to reduce the online computation burden, i.e., by

solving a single-pair weighted shortest-path problem for a distance-weighted state-space graph. We

begin with some brief definitions from graph theory.

Definition 5.1 (Weighted Graph). A weighted graph G is an ordered pair (V,H) corresponding to

the set of vertices, V , and the set of edges, H, along with a weight function h : H → R specifying the

weight of each edge.

Definition 5.2 (Shortest Path). Let G = (V,H) be a weighted graph with h as its weight function.

Then a path between v1, vp ∈ V is the sequence of vertices (v1, v2, · · · , vp) where {vi, vi+1} ∈ H for

all i = 1, · · · , p− 1. The sequence is a shortest path when it minimizes the sum

p−1∑
i=1

h(vi, vi+1). (26)

The proposed graph-based geodesic approach involves the following main steps, with additional

discussion and detail provided in following subsections.

Offline:

1. Describe a discrete state space mesh M⊆ X , where the i-th state entry of M is denoted by xi.

2. Determine the nvi =: deg(xi) neighbouring state entries, xj for j = 1, · · · , nvi , for each state

entry xi ∈M.

3. Compute the geodesic length, dγ(xi, xj), from a state entry, xi, to the j = 1, · · · , nvi neighbouring

entries, for each xi ∈M.

4. Construct an undirected edge-weighted graph, G(V,H), where each n-dimensional vertex, vi,

denotes a state entry xi = (x1, · · · , xn) on the mesh M such that V = v1, · · · , vφ; each neigh-

bouring vertex vj = xj forms a connecting edge with vi for i = 1, · · · , nvj ; and the edge weights,

hi,j , are defined as the geodesic distance between connected vertices (neighbouring state entries),

hi,j = dγ(xi, xj), such that

H =



h1,1 h1,2 · · · h1,φ

h2,1 h2,2 · · · h2,φ

...
...

. . .
...

hφ,1 hφ,2 · · · hφ,φ


, (27)
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(a) Uniformly distributed
mesh.

(b) Non-uniformly dis-
tributed mesh.

Figure 2: Mesh distribution.

where the weights for unconnected vertices (non-neighboring entries) are zero.

Online:

1. Solve a weighted shortest-path problem for the distance-weighted state-space graph G(V,H),

where the path P = (v1, · · · , vp) is the shortest path (i.e., graph geodesic) from v1 = xk to

vp = x∗k and minimizes the sum
∑p−1
i=1 hi,i+1 (i.e., geodesic distance).

5.2.1 Determining the State Space Mesh and Vertices

One method to construct the state space mesh, M, is to discretize the constrained state space by

hypercubes (n-dimensional ‘cubes’) with known edge widths defined using the Euclidean distance

de(x
i, xj) = ||xi − xj ||2, (28)

where the i-th state entry of M is denoted by xi, i.e., the state space mesh forms a set of vertices,

each with a unique state value, defined as

V := {v1, v2, · · · , vφ} :=M = {x1, x2, · · · , xφ}. (29)

For a uniformly distributed or linearly discretised state space mesh (see Figure 2a for a two dimensional

example), the edge widths of each hypercube are fixed, i.e., de(vi, vj) = de(x
i, xj) = d̄e,∀i 6= j =

1, · · · , φ. Alternatively, the mesh can be constructed using a nonlinear discretization or non-uniform

distribution (see the two dimensional example in Figure 2b), using hypercubes of varying edge widths.

A non-uniform distribution permits finer detail in state regions of interest , e.g., areas with more

nonlinearity, in the neighborhood of the target reference, or known areas of regular operation.

A finer mesh, formed with small Euclidean widths de and a relatively large number of state entries

(i.e., large φ), offers increased accuracy, whilst also increasing computational burdens. Furthermore,

a higher dimension of the dynamical system creates higher dimensional hypercubes. By imposing

a nonlinear mesh, the trade-off between computation complexity and accuracy can be effectively

managed. Additional considerations could also be made for alternative shapes to the hypercube,
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(a) First (red) and second
(blue) tier neighboring ver-
tices.

(b) Nodal neighbors (first
tier) and (connecting) edges.

(c) Connection between ver-
tices (second tier).

Figure 3: Nodal neighbors and connections of vertices.

such as simplexes. Importantly, regardless of the chosen mesh distribution, path feasibility can be

implicitly ensured by constructing the mesh using only permissible state values, i.e.,M⊆ X . Geodesic

calculations strictly adhere to the state constraints by only considering vertices in the graph.

5.2.2 Choosing Nodal Neighbors and Vertex Connections

A nodal neighbor, vj , of a vertex, vi, is any vertex connected to vi resulting in an undirected set of

adjoining edges, E, defined as

E = {{vi, vj}|vi, vj ∈ V, i 6= j, j = 1, · · · , nvi , i = 1, · · · , φ}, (30)

whereby the degree of the corresponding vertex is defined as the number of its nodal neighbors, i.e.,

nvi =: deg(xi), where Ei represents the set of nodal neighbors of vertices vi. Under this construction,

there is a great deal of freedom in selecting nodal neighbors for any vertex (state entry) on the state

space mesh. Consider one specific vertex, v1 ∈ V . By construction (see Section 5.2.1), there exists

several layers of hypercubes about v1, as shown in the two dimensional example of Figure 3a, where

the first layer consists of the red vertices and the second layer of blue vertices. Suppose that vertices

in the first (red) layer are selected as nodal neighbors of v1, then, it will form the connected structure

shown in Figure 3b. Then, by also including the vertices in the second (blue) layer as nodal neighbors

provides additional directions from x1 = v1 to traverse the state space of M. Thus, accuracy in the

sense of direction can be improved by using nodal neighbors in an increasing number of layers (simul-

taneously with mesh refinement), see the structure in Figure 3c. However, as more nodal neighbors

of v1 are considered, to increase possible search directions, the computational complexity naturally

increases. Consider for example, the memory storage and computational requirements associated

when every other vertex, vi 6= v1, is considered, i.e., nvi = φ − 1 for i = 1, · · · , φ. Thus, selection of

nodal neighbors (together with the mesh construction) requires consideration for the available storage,

required accuracy and resulting computational complexity.
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5.2.3 Assigning Edge Weights

Given the vertex, vi ∈ V , any non-neighboring vertex v` ∈ V is not connected to vi (see Section 5.2.2)

and hence the corresponding edge weight is zero. Then, for any neighboring vertices, vj ∈ V the edge

weights are defined using geodesic length (10), i.e., the weights, H, are assigned as

H(i, j) =


h(vi, vj) = h(vj , vi) = dγ̄(vi, vj) ∀{vi, vj} ∈ E

h(vi, vj) = 0 ∀{vi, vj} /∈ E
, (31)

where dγ̄ = dγ̄(vi, vj) is computed as follows. If the Euclidean distance between nodal neighbors

vi to vj is small, i.e., de(vi, vj) ≤ ε, it is reasonable to assume the neighborhood from vj to vi is

approximately linear (metrically flat), and hence the geodesic length can be calculated as the average

dγ̄(vj , vi) ≈
1

2
(M(vi) +M(vj)) de(vi, vj). (32)

If the Euclidean distance between nodal neighbor vj to vi is not small, i.e., de(vi, vj) ≥ ε, the geodesic

length can be calculated via the summation of the solved optimal argument (state constrained geodesic

path) in (25), i.e.,

dγ̄(vj , vi) = min
∆x̃s

N∑
i=1

∆x̃TsiM(x̃i)∆x̃si∆si

s.t. x̃1 = vi, x̃N = vj , ∆x̃si ∈ X .
(33)

One particular advantage to computing the weights as in (32), (33), is that as the mesh gets in-

creasingly fine, solutions to the optimization problem (25) invite increasing numerical errors associated

with the finite precision of the computations, which can be alleviated via the introduction of ε.

5.2.4 Online Shortest Path Length Computation

For the undirected edge-weighted graph, G(V,H), with vertices V (29) and edge weights H (31),

the shortest-path (i.e., geodesic distance) can be found via a number of fast and efficient methods

(see, e.g., the foundational approach by Dijkstra [28]). First we consider the scenario when the

current state, x and target state x∗ fall exactly on a a vertex. In this case, the shortest path,

P = (v1, · · · , vp) ≈ γ(x, x∗) (see Definition 5.2), for v1 = xk to vp = x∗k, minimizes the cumulative

sum of connecting edge weights, which forms the graph-approximated geodesic distance given by

dγ̄(x, x∗) ≈ dγ̄(v1, vp) =

p−1∑
i=1

h(vi, vi+1). (34)

For the alternative scenario, consider when either or both the current and target state do not fall

exactly on a vertex. In this case, the start and end points each belong to a hypercube of nx (for the

current state x) and nx∗ (for the target state x∗) neighboring vertices denoted by Vnx
= {v1, · · · , vnx

}

and Vnx∗ = {v1, · · · , vnx∗ } (note that the vertices have been reassigned indices for ease of notation

and do not necessarily represent the first nx or nx∗ vertices of V ). See for example, Figure 4, which
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a1,1 a1,2

a2,1 a2,2
x

b2,1

b1,1 b1,2

b2,2
x∗

Figure 4: Geodesic calculation via convex combination using Method (ii) in (35).

shows a two dimensional example, where nx = 4, nx∗ = 4 and Vnx
= {a1,1, a1,2, a2,1, a2,2}, Vnx∗ =

{b1,1, b1,2, b2,1, b2,2}. We then offer two methods for computing the geodesic:

(i) dγ̄(x, x∗) ≈ dγ̄(vx, x) +

p−1∑
i=1

h(vi, vi+1) + dγ̄(vx∗ , x∗)

(ii) dγ̄(x, x∗) ≈
nx∑
i=1

nx∗∑
j=1

αi,j(x, x
∗)dγ̄(vi, vj)

(35)

where αi,j(x, x
∗) ∈ [0, 1],

∑
αi,j(x, x

∗) = 1 and vx and vx∗ are the closest vertices to x and x∗

respectively, whereby the corresponding distances are calculated using

dγ̄(vx, x) = min
vi∈Vnx

1

2
(M(vi) +M(x)) de(vi, x),

dγ̄(vx∗ , x∗) = min
vj∈Vnx∗

1

2
(M(vj) +M(x∗)) de(vj , x

∗).
(36)

In (35), method (i) exploits the idea that the spaces formed by Vnx
and Vnx∗ are metrically flat

and adds a small Riemannian length to the graph-based shortest path P = (v1, · · · , vp), from v1 = vnx

to vp = vnx∗ , resulting in a complete path from x to x∗. In method (ii), a linear convex combination

of all shortest paths (see Figure 4) connecting each of vertices of the hypercubes containing x and x∗

(i.e., for each vi ∈ Vnx and vj ∈ Vnx∗ ) is computed.

Method (i) provides the ability to calculate and store the path length together with the path ex-

plicitly, and the shortest path algorithm only needs to be executed once. In comparison, method (ii)

provides a more accurate path length calculation by using the convex combination. This, however,

comes at the cost of an upper limit of calculating 22n graph-based shortest paths and increases the

complexity of computing the geodesic path. Consequently, when the mesh is sufficiently fine, both

methods can provide accurate results if the mesh is not fine, resulting in a non metrically flat space

formed by Vnx and Vnx∗ , method (ii) provides improved accuracy relative to (i). Finally, we impor-

tantly note that both methods in (35) collapse to (34) when the current and target state fall precisely

on a vertex.
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x̌1

x̌2

x̌3

x̌4

v1

v2
v3

v4

dγ(x̌3, x̌4)

dγ(v3, v4)

Figure 5: Actual geodesic path (red) vs approximated geodesic path (blue).

6 Analysis and Discussion

6.1 Analysis of the Graph-based Geodesic Length Computational Method

In this section, we will discuss the sufficiency of the proposed graph-based geodesic method. We

begin by considering paths when the start and end points fall precisely on vertices in the graph, i.e.,

v1 = x, vp = x∗. The approximation error caused by breaking the geodesic into segments associated

with the proposed graph-based geodesic length, dγ̄ , can be quantified as,

dγ̄(v1, vp)− dγ(v1, vp) =

p−1∑
i=1

(dγ(vi, vi+1)− dγ(x̌i, x̌i+1)) =

p−1∑
i=1

(h(vi, vi+1)− dγ(x̌i, x̌i+1)) , (37)

where x̌i ∈ P̌ ∈ X are the state points (not necessarily on the mesh) along the geodesic which intersect

with the first edge of each hypercube (see Figure 5). This expression (37) highlights several important

features for the proposed method regarding the selection of nodal neighbors and the mesh spacing.

Note, that provided each point x̌i, falls precisely on a vertex, i.e., x̌ ∈ V , then P = P̌ and the

graph-based solution for geodesic length is exact.

One might then consider the effects of increasing the number of nodal neighbors. In Figure 5,

we can see that each of the vertices in the graph-based solution are not equal to the actual geodesic

at each vertex, i.e., P 6= P̌ . Suppose then that instead of choosing the first-tier (see Figure 3a) of

the neighboring vertices, we chose to connect all available nodes on the mesh. Then, the shortest

graph-based path, P = (v1, v2) = (x, x∗) = (x̌1, x̌2) = P̌ , produces the exact geodesic path length

(using the corresponding edge weight). We can then derive an appropriate approximation bound using

this concept, whereby

Increasing the number of nodal neighbors results in reducing the distance between the nodal

neighbors and the geodesic path (intersected at the first edge of the corresponding hypercube). See

for example Figure 7 where the introduced grey node, v1, is closer to the blue geodesic. We then

observe that as the number of nodal neighbors increases, i.e. increasing Yi, the graph-based geodesic

length approximation error is reduced. This, however, is limited by the available number of vertices,

as a consequence of the fineness of the mesh, and hence leads to the following.

Lemma 6.1. An upper bound on the error associated with the graph-based geodesic length is a function
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of mesh spacing and number of nodal neighbors, i.e.,

p−1∑
i=1

(dγ̄(vi, vi+1)− dγ(x̌i, x̌i+1)) ≤
p−1∑
i=1

(
(mi −mi)de(vi, vi+1) +O

(
mi

Di
√
n

Yi

))
, (38)

where Di denotes the width of the hypercube containing the set of vi’s nodal neighbors Ei (30), Yi

represents the tier of the nodal neighbors of vi (see Figure 7), and the metric M is bounded by miI ≤

Mi ≤ miI in that hypercube.

Proof. The geodesic distance between (x̌i, x̌i+1), with metric miI ≤Mi ≤ miI, is bounded by

mde(x̌i, x̌i+1) ≤ dγ(x̌i, x̌i+1) ≤ mide(x̌i, x̌i+1). (39)

From definition of Riemannian space and the triangular inequality, we have

dγ(x̌i, x̌i+1) + dγ(vi, x̌i) + dγ(vi+1, x̌i+1) ≥ dγ(vi, vi+1)

dγ(x̌i, x̌i+1) ≥ dγ(vi, vi+1)− dγ(vi, x̌i)− dγ(vi+1, x̌i+1)

dγ(x̌i, x̌i+1) ≥ mide(vi, vi+1)−mide(vi, x̌i)−mide(vi+1, x̌i+1)

(40)

We have d(vi, vi+1) ≤ mide(vi, vi+1), thus

d(vi, vi+1)− d(x̌i, x̌i+1) ≤ (mi −mi)de(vi, vi+1) +mide(vi, x̌i) +mide(vi+1, x̌i+1). (41)

Furthermore, suppose the nodal hypercube width Euclidean length is de, the largest Euclidean distance

of de(vi, x̌i) or de(vi+1, x̌i+1) is
√
n

d2
e

(2Yi)2 where n is the dimension of the system state x,

d(vi, vi+1)− d(x̌i, x̌i+1) ≤ (mi −mi)de(vi, vi+1) + 2mi

√
n

D2
i

(2Yi)2
, (42)

which implies

dγ̄(vi, vi+1)− dγ(x̌i, x̌i+1) ≤ (mi −mi)de(vi, vi+1) +O

(
mi

Di
√
n

Yi

)
. (43)

By interpolating between the start and end points, (x, x∗), of the path (i.e., linearly connecting geodesic

pieces inside the mesh) using (43), we have the inequality (38).

Remark 2. By increasing the number of layers (and hence number) of nodal neighbors, Yi, the term

O
(
mi

Di
√
n

Yi

)
can be made arbitrarily small. In addition, by refining the mesh spacing, the area of

each hypercube is smaller and hence mi − mi is smaller since the variation of the metric M across

that smaller surface is also smaller (i.e., the surface is more “flat”). Thus, by increasing the number

of nodal neighbors and increasing the mesh precision, the right-hand side of (38) (graph-based path

length approximation error) can be greatly reduced.

Importantly, the inequality in (38) shows that the approximation error of the graph-based geodesic
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length is upper bounded by a function of mesh spacing, which reduces as the mesh becomes increas-

ingly fine, i.e., as p increases, the flatness of each hypercube increases and hence the metric function

approaches a point-wise (non-meshed) variation. Subsequently, when the start and end points of the

geodesic do not fall exactly on the mesh, we have the following.

Corollary 6.2. An upper bound on the error associated with the graph-based geodesic length, where

x and x∗ do not fall on vertices in the mesh, is defined as

∥∥∥∥∥
p−1∑
i=1

(dγ̄(vi, vi+1)− dγ(x̌i, x̌i+1))− dγ(x, x̌1)− dγ(x∗, x̌p)

∥∥∥∥∥
≤
∥∥∥∥∥
p−1∑
i=1

(
(mi −mi)de(vi, vi+1) +O

(
mi

Di
√
n

Yi

))∥∥∥∥∥+
∥∥mx

√
nDx +mx∗

√
nDx∗

∥∥ . (44)

where Dx, Dx∗ , are the widths of the smallest hypercubes containing x and x∗, defined similarly to Di

in Lemma 6.1.

Proof. From (38) and the triangle inequality, it is easy to see,

∥∥∥∥∥
p−1∑
i=1

(dγ̄(vi, vi+1)− dγ(x̌i, x̌i+1))− dγ(x, x̌1)− dγ(x∗, x̌p)

∥∥∥∥∥
≤
∥∥∥∥∥
p−1∑
i=1

(dγ̄(vi, vi+1)− dγ(x̌i, x̌i+1))

∥∥∥∥∥+ ‖dγ(x, x̌1) + dγ(x∗, x̌p)‖

≤
∥∥∥∥∥
p−1∑
i=1

(
(mi −mi)de(vi, vi+1) +O

(
mi

Di
√
n

Yi

))∥∥∥∥∥+
∥∥mx

√
nDx +mx∗

√
nDx∗

∥∥ ,
(45)

where the maximum difference between x and x̌1 is the longest line in the hypercube of dimension n

defined as mx
√
nDx, and similarly for x∗.

Remark 3. As Dx and Dx∗ become arbitrarily small (as the mesh spacing is reduced), the geodesic

length approximation error from x and x∗ to their closest vertices also tends to zero.

In summary, for a chosen state-space mesh spacing and a specific number of nodal neighbors, the

geodesic length can be found using a graph-based method with sufficient precision (at the cost of

memory storage and computational burden). Moreover, as the precision increases, the graph-based

geodesic length (see Section 5.2) approaches the optimization value and hence the true geodesic length

(as the discretization step size of s reduces – see Section 5.1).

6.2 Obtaining Permissible Geodesic Paths

The geodesic distance represents the value of distance between two points, however, the geodesic path

contains information of the exact position of each point along the geodesic. From (9) and (10), a

geodesic path is defined as (i.e., the argument of (24)),

γ(x, x∗) = arg min
c

∫ 1

0

∂c(s)

∂s

T

M(c(s))
∂c(s)

∂s
ds. (46)
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A numerically calculated geodesic (see Section 5.1) can then obtained by storing the argument of the

solution to the numerical optimization problem in (25), i.e.,

γ̄(x, x∗) = arg min
∆x̃s∈X

N∑
i=1

∆x̃TsiM(x̃i)∆x̃si∆si

s.t. x̃1 = x, x̃N = x∗,

(47)

where γ̄(x, x∗) ≈ γ(x, x∗) represents the numerically approximated geodesic, x and x∗ are the end-

points of the geodesic. Note that (47) is the discretization of (46) with ∆x̃si and ∆si as the dis-

cretizations of ∂c(s)
∂s and δs respectively, whereby the constraints in (25) ensure that the discretised

path connecting the start, x, and end, x∗, state values align with the continuous integral from s = 0

to s = 1. Hence, as ∆si approaches 0, i.e., for an infinitesimally small discretization step size, the ap-

proximated discrete summation in (25) converges to the smooth integral in (24). Moreover, imposing

additional state constraints, ∆x̃s ∈ X , also ensure that the connecting path only considers permissi-

ble state values (i.e., hard limits on the states). As already discussed, solving the (47) is an infinite

dimensional problem which cannot guarantee a solution, the geodesic can be not accurate enough if

the step size is not limited to some small value, furthermore, the complexity of this algorithm makes

it extremely hard to implement in a NMPC scheme as the NMPC will need to solve an optimization

problem (geodesic calculation) inside another optimization (NMPC).

To overcome this issue, the geodesic can be calculated using the graph based method in (35). If

we use method (i) in (35), the resulting path is simply the straight line connecting the sequence of

vertices and end points, (x, v1, · · · , vp, x∗). If we use the convex combination method (ii), we will have

Nx ×Nx∗ multiple paths, the resulting geodesic path will be represented by the convex combination

of all the paths as follows,

γ̄(s) ≈
nx∑
i=1

nx∗∑
j=1

αi,j(x, x
∗)γ̄i,j(s), (48)

where γ̄i,j(s) represents the s-parameterized path, (x, vi,j1 , · · · , vi,jp , x∗) where vi,ji represents the (i, j)

solution in method ii, such that γ̄i,j(0) = x and γ̄i,j(1) = x∗.

Analogously to geodesic length, as the precision of the graph increases, the graph-based geodesic

path approaches the optimization solution (47) and hence a true geodesic path (46), as the discretiza-

tion step size of s reduces. Additional routines are also available for improving the geodesic path

precision a posteriori (see, e.g., Newton-Raphson iterative methods [24]), which can assist with offset-

ting the computational complexity (associated with reducing the step size of s) and memory storage

requirements (associated with increasing mesh refinement and nodal neighbor selection).

Using the calculated path, a particular control implementation (although not required here) is

readily available from (14). We also note that by employing a graph-based geodesic computation

method, the nested optimization issues associated with predicted geodesics, by imposing (17) on (3), is

additionally overcome. Recall that the nested optimization problem at each i-th step in the prediction

horizon requires solving (10) via (47) to obtain γi for i = 0, · · · , N`. Computing the geodesics using a
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Figure 6: Unconstrained and graph-approximated geodesic paths.

graph-based approach naturally relaxes implementation restrictions (replacing a nested optimization

NMPC problem with a paired “optimization – shortest-path” NMPC problem), facilitating the use of

geodesics instead of any shorter path ci (cf. (18)), offering tighter constraints (see (22)) and hence

improved performance (in terms of convergency). Consequently, this approach also improves the

prediction capabilities of existing contraction-constrained NMPCs [17, 18].

6.3 State and Control Constraint Handling

If the DCCM can be synthesized offline using (16) ∀x ∈ X ,∀u ∈ U , the existence of a contraction-

based controller which is valid in the desired operating region can be ensured. However, this does

not ensure the feasibility of the NMPC problem in (23) during online control, i.e., simultaneously

satisfying the contraction constraint with both the state and control constraints (an open problem for

contraction-based control).

In the proposed approach, implementation of the graph-based geodesic computation method during

online control (via solution to the contraction constrained NMPC problem) ensures both geodesic

boundedness and path feasibility (in terms of geodesic convexity). As stated in Section 5.2, this is an

inherent property due to offline construction of a mesh which only considers the state values within the

permissible ranges. Consequently, solutions to the shortest path problem (over that mesh) yield graph-

based geodesic paths and hence geodesic distances that also satisfy the state constraints. This can be

illustrated in Figure 6, where the red and blue curves are the unconstrained and graph-approximated

geodesic paths respectively and the dotted line is a state constraint. This assists the MPC to generate

optimal solutions subject to the state constraints by directly avoiding paths that are not compliant

with them. This is reflected in the following statement.

Lemma 6.3. For the system (1), with graph G(V,H), with vertices V (29) and edge weights H (31),

a geodesic obtained via Section 6.2 is bounded and satisfies the state constraints.

Proof. For two points x, x∗ ∈ X , the geodesic γ(x, x∗) is bounded by a Euclidean ball, i.e., the

maximum geodesic length dγ(x, x∗) for any points along the s-parameterized path is upper bounded

as dγ(γ(s), x∗) ≤ mde(x, x
∗). Furthermore, we have md(γ(s), x∗) ≤ dγ(γ(s), x∗) ≤ mde(x, x

∗). Thus,

for any points on the path, the geodesic is in a ball with radius m/mde(x, x
∗). Since V ∈ X , the
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x

x∗

v1

Figure 7: Using additional vertices (v1) for improved approximation.

approximated geodesic path is the sequence of state values belonging to the intersection of state

constraints and all Euclidean bounding balls.

To deal with control constraints in contraction-based control, less aggressive contraction rates can

be searched offline, resulting in smaller control action magnitudes, and hence comply with the system

constraints. One possible way (adapted from our previous results [17]) to ensure feasibility of the

locally constrained NMPC problem is to search for a uniform feasible convergence rate βm for a given

metric M(x) as follows

r(x, x∗, u, β) ≤ 0 (18)

s.t. 0 < βm ≤ β,

x, x∗ ∈ X , u ∈ U .

(49)

The feasibility problem (49) can be solved offline by implementing a line search on βm and a sampling

method for constraint verification. Assuming there exists a feasible contraction rate, βm in (49), set

β = βm from (49) when imposing the contraction constraint (18) on the NMPC in (23). Consequently,

by considering β as a tunable variable in (49), a reduction in magnitude to satisfy constraint feasibility

will result in longer convergence times (in the sense of state to reference trajectories). To further to

reduce conservatisms introduced by a globally relaxed convergence rate, βm, state-dependent solutions

to (49) can be stored, resulting in a state-dependent contraction rate βm = βm(x). By searching across

the entire state space grid in X , a state region and control constraint feasible contraction constraint

could then be imposed, from (18), as

d (ci+1)− (1− β(x))
i+1/2

d (γ0) ≤ 0, (50)

which further allows for non-uniform distributions and reduces the conservatism introduced by forcing

a reduced convergence rate across the entire state space. Consequently, relative to existing approaches,

the proposed graph-based method not only provides reduced online computation burden it also pro-

vides a flexible way to assist with constraint handling.
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Table 1: Process Parameters

F 4.998[m3/h] κ10 3× 106[h−1]
Vr 1[m3] κ20 3× 105[h−1]
R 8.314[KJ/kmolK] κ30 3× 105[h−1]
TA0 300[K] E1 5× 104[KJ/kmol]
CA0 4[kmol/m3] E2 7.53× 104[KJ/kmol]
∆H1 −5.0× 104[KJ/kmol] E3 7.53× 104[KJ/kmol]
∆H2 −5.2× 104[KJ/kmol] σ 1000[kg/m3]
∆H3 −5.4× 104[KJ/kmol] cp 0.231[KJ/kgK]

7 Illustrative Example

Consider a well mixed, nonisothermal CSTR where 3 parallel irreversible elementary exothermic re-

actions take place of the form A → B, A → C, A → D [29], whereby the process can be modeled as

follows,

x1k+1
= x1k

+ ∆t

(
F

Vr
(CA0 − x1k

) +
3∑
i=1

κi0e
−Ei
Rx2k x1k

)

x2k+1
= x2k

+ ∆t

(
F

Vr
(TA0 − x2k

)−
3∑
i=1

ψi(x1k
) + uk

)
,

(51)

where ψi(x1k
) = ∆Hi

σcp
ki0e

−Ei
Rx2k x1k

, the feed to the reactor consists of reactant A with molar concen-

tration CA0 at flow rate F and temperature TA0. This process model consists of two states, where

x1 = CA denotes the concentration of reactant A, and x2 = T denotes the temperature of the reactor.

The states x1 and x2 are controlled by manipulating u = Q
σCpVr

, where Q represents the rate of heat in-

put/removal. For the remaining process variables, Vr denotes the volume of the reactor, ∆Hi, κi0, Ei

denotes the enthalpies, preexponential constants and activation energies of the three reactions, re-

spectively, cp and σ denote the heat capacity and density of the fluid in the reactor, respectively. For

simulation purposes, the system model is normalized in the range of operation with a sampling period

of ∆t = 0.05 h. All parameters are shown in Table 1. The corresponding W = M−1 and L = KW can

be synthesized with contraction rate β = 0.01 using SOS programming as stated in (16) (see our recent

work[20] for more details). A graph G(V,H) is constructed with respect to the metric synthesized,

i.e., M = W−1. This graph is constructed with uniformly distributed mesh with width length 0.01

using structure in Figure 2a, the graph covers the constrained area of state x ∈ X := [0.1, 1], the

control is constrained as u ∈ X := [0, 4], and the topology of the edges are constructed as tier 1 (8

nodal neighbors) shown in Figure 3. The storage size of the uncompressed data is 21MB (.mat file).

The computational time of the graph generation is 20.26s using parallel computing tools in Matlab

on a Windows PC (i7 9700k 32GB RAM).
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Figure 8: Simulation results of proposed discrete-time contraction constrained NMPC.

The NMPC as in (23) is constructed with a predictive horizon of 10 steps as follows,

min
û

10∑
i=0

‖ui‖,

s.t. x̂0 = xk, x̂i+1 = f(x̂i) + gûi,

ûi ∈ U , x̂i ∈ X

r(x̂i, x
∗
i , ûi, β) ≤ 0,

(52)

where f and g correspond to the model in (51). The simulation parameters are as follows, the

initial condition of state is x0 = (CA0, T0) = (0.5, 0.5), with setpoints of (x∗1, x
∗
2) = (C∗A, T

∗) =

(0.8000, 0.6986), (0.8500, 0.7158), (0.9000, 0.7321) on different time intervals as shown in Figure 8.

During online control, the geodesic is calculated using (32), (33), satisfying the contraction con-

straint in (18). As we can see in Figure 8, the states converge to the reference without any error

for both states (upper plot) and the Riemannian distance, d(x, x∗) (lower plot), is decreasing as per

Proposition 4.1.

One possible alternative to imposing a stability (contraction) constraint is to use a weighted

tracking-based objective function[9], which embeds the stability conditions into the cost function.

However, weighted objective functions, even those which incorporate soft constraints, shifts the cost

function representation away from a true economic cost and can result in an objective trade-off be-

tween target tracking and economy, potentially leading to infeasible computations without guarantee

of convergence, especially when these objectives are competing [8]. This was verified via numerical

study (not shown here) for (51), with (52) modified for use with the stage cost `i = ‖xi − x∗i ‖+ ‖ui‖.

Clearly, minimization of the tracking cost ‖xi − x∗i ‖ (requiring u → u∗ 6= 0) is conflicting with min-
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imizing energy input costs ‖ui‖ (requiring u → 0) and results in poor performance or instability.

Consequently, imposing stability constraints are naturally required [8]. Whilst defensible for a sin-

gle operating point, it is unrealistic to design a Lyapunov-based stability constraint for all possible

operation targets, warranting employment of contraction-based stability constraints whose reference

flexibility is more befitting to RTO-driven control.

8 Conclusion

In this article, a discrete-time contraction constrained NMPC approach was developed. To ensure

convergence to any feasible operation targets dictated by an RTO layer, a contraction based sta-

bility constraint was constructed and imposed on the NMPC. This condition utilizes Riemannian

weighted graphs to solve the shortest path problem required for contraction. The resulting contrac-

tion constrained NMPC is reference flexible and can trade-off between the rate of target trajectory

convergence and a general cost (such as an economic cost). The embedded graph-based geodesic com-

putation method can significantly reduce the computational load for contraction theory based control

and improve its applicability for real-time implementations.
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