Acknowledgments
It is a pleasure to acknowledge the influence of several Purdue colleagues in conceptualizing this article and that of Professor Shankar Subramaniam of the Department of Bioengineering at the University of California, San Diego who has been a source of education on biological issues.
(1) Ramkrishna, D.; Amundson, N. R. Mathematics in Chemical Engineering. A Fifty Year Introspection. American Institute of Chemical Engineers Journal 2004 , 50 , 16-23.
(2) Truesdell, C. Principles of Continuum Mechanics ; 1960.
(3) Wei, J.; Prater, C. D. The Structure and Analysis of Complex Reaction Systems. Advances in Catalysis 1962 , 13 Chapter 5 .
(4) Wei, J.; Kuo, J. W. C. Lumping Analysis of Monomolecular Systems.Analysis of Exactly Lumpable System . Industrial and Engineering Chemistry Fundamentals 1969 , 8 (114-123).
(5) Acrivos, A. Award Lecture. The Method of Matched Asymptotic Expansions. Chemical Engineering Education 1968 ,2 (2), 62-65.
(6) Aris, R. Vectors, Tensors and the Equations of Fluid Mechanics ; Prentice-Hall International, 1962.
(7) Sternling, C. V.; Scriven, L. E. Interfacial Turbulence: Hydrodynamic Instability and the Marangoni Effect. American Institute of Chemical Engineers Journal 1959 , 19 (3), 321-340. Scriven, L. E. Chem. Eng. Sci. 1960 , 12 , 98-108.
(8) Bird, R. B.; Stewart, W. E.; Lightfoot, E. N. Transport Phenomena (Second Edition) ; John Wiley, 2007. Bird, R. B.; Stewart, W. E.; Lightfoot, E. N. Transport Phenomena ; John Wiley & Sons, Inc., 1960.
(9) Leal, L. G. Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. ; Cambridge University Press, 2012.
(10) Deen, W. M. Analysis of Transport Phenomena ; Oxford University Press, 1998.
(11) Gavalas, G. R. Nonlinear Differential Equations of Chemically Reacting Systems ; Springer-Verlag, 1968.
(12) Balakotaiah, V.; Luss, D. Global Analysis of the Multiplicity Features of Multi-Reaction Lumped Parameter Systems. Chem. Eng. Sci. 1984 , 39 (5), 865-881.
(13) Feinberg, M. Foundations of Chemical Reaction Network Theory ; Springer Nature AG, 2019.
(14) Jackson, R. A Simple Geometric Condition for Instability in Catalyst Pellets at Unit Lewis Number. Chemical Engineering Science 1973 , 28 (6), 1355-1358.
(15) Hickman, D. Industrial Reaction Engineering course offered through the NSF Engineering Research Center, CISTAR at Purdue University led by Fabio Ribeiro. This course, involving DOW reaction engineers organized by Dr. Daniel Hickman, has been attended by more than 600 people from across the globe. 2020.
(16) Pistikopoulos, E. N.; Barbosa-Povoa, A.; Lee, J. H.; Misener, R.; Mitsos, A.; Reklaitis, G. V.; Venkatasubramanian, V.; You, F.; Gani, R. Process Systems Engineering. The Generation Next? Computers and Chemical Engineering 2021 , 147 , 107252.
(17) Callender, A.; Hartree, D. R.; Porter, A. Time Lag in a Control System. Philosophical Transactions of the Royal Society of London1936 , 235 (756), 415-444.
(18) Mason, C. E.; Philbrick, G. A. Mathematics of Surge Vessels and Automatic Averaging Control. Transactions of the ASME1941 , 63 , 589-601.
(19) Ziegler, J. G.; Nichols, N. B. Optimum Settings for Automatic Controllers. Transactions of the ASME 1942 , 64(759-768).
(20) Ziegler, J. G.; Nichols, N. B. Process Lags in Automatic Control Circuits. Transactions of the ASME 1943 , 65 , 433-444.
(21) Allen, J., L. H. Industrial Control Instrument Settings.Industrial and Engineering Chemistry 1943 , 35 , 1223-1229.
(22) Ziegler, J. G. Averaging Liquid Level Control. Industrial and Engineering Chemistry 1946 , 38 , 360-364.
(23) Ziegler, J. G.; Nichols, N. B. Industrial Process Control.Chemical Engineering Progress 1947 , 43 , 309-314.
(24) Aris, R.; Amundson, N. R. An Analysis of Chemical Reactor Stability and Control. 1. The Possibility of Local Control With Perfect or Imperfect Control Mechanisms. Chemical Engineering Science1958 , 7 (3), 121-131.
(25) Aris, R.; Amundson, N. R. An Analysis of Chemical Reactor Stability and Control. 2. The Evolution of Proportional Control. Chemical Engineering Science 1958 , 7 (3), 132-147.
(26) Aris, R.; Amundson, N. R. An Analysis of Chemical Reactor Stability and Control. 3. The Principles of Programming Reactor Calculations-Some Extensions. Chemical Engineering Science 1958 , 7(3), 148-155.
(27) Sargent, R. W. H. Applications of an Electronic Digital Computer in the Design of Low Temperature Plant. Transactions of the Institution of Chemical Engineers 1958 , 36 , 201-214.
(28) Lapidus, L.; Shapiro, E.; Stillman, R. E. Optimization of Process Performance. AIChE Journal 1961 , 7 (2), 288-294.
(29) Koepcke, R.; Lapidus, L. Dynamic Control of Chemical Engineering Processes Using a Method of Lyapunov. Chemical Engineering Science 1961 , 16 (3-4), 252-266.
(30) Rudd, D. F. On Design Policies for the Optimal Use of Limited Resources. Chemical Engineering Science 1962 , 17(8), 609-617.
(31) Rudd, D. F. Reliability Theory in Chemical System Design.Industrial and Engineering Chemistry Fundamentals 1962 ,1 (2), 138-143
(32) Rudd, D. F. Optimal Resource Allocation in Multistage Feedback Processes. Journal of the Society of Industrial and Applied Mathematics 1962 , 10 (3), 448-453.
(33) Rudd, D. F.; Watson, C. C. Strategy of Process Engineering ; John Wiley & Sons Inc., 1968.
(34) Ray, W. H.; Aris, R. Rationale for Optimal Reactor Design.Industrial and Engineering Chemistry Fundamentals 1966 ,5 (4), 478-483.
(35) Ray, W. H. Modeling Polymerization Reactors with Applications to Optimal Design. Canadian Journal of Chemical Engineering1967 , 45 (6), 356-360.
(36) Sargent, R. W. H. Integrated Design and Optimization of Processes.Chemical Engineering Progress 1967 , 63 (9), 71-78.
(37) Shinnar, R. Sizing of Storage Tanks for Off-Grade Material.Industrial and Engineering Chemistry Process Design and Development 1967 , 6 (2), 263-264.
(38) Evans, L. B.; Steward, D. G.; Sprague, C. R. Computer-Aided Chemical Process Design. Chemical Engineering Progress1968 , 46 (10), CE424-CE427.
(39) Sargent, R. W. H. Developments in Computer-Aided Process Design.The Chemical Engineer 1968 , 46   (10), CE424-CE427.
(40) Clough, J. E.; Westerberg, A. W. Fortran for On-Line Control.Control Engineering 1968 , 15 (3), 77-81.
(41) Westerberg, A. W. A Real-Time Sampling Algorithm in an On-Line Computer System for Gas Chromatographs. Analytical Chemistry1969 , 41 (12), 1595-1598.
(42) Hicks, J.; Mohan, A.; Ray, W. H. Optimal Control of Polymerization Reactors. Canadian Journal of Chemical Engineering 1969 ,47 (6), 590-597.
(43) Overturf, B. W.; Reklaitis, G. V.; Woods, J. M. GASP-IV and simulation of batch-semicontinuous operations. Single train process.Industrial & Engineering Chemistry Process Design and Development 1978 , 17 (2), 161-165.
(44) Stephanopoulos, G.; Schuelke, L. M. Process design in a dynamic environment .1. Decomposition technique to study Stability of Chemical-engineering systems. AIChE Journal 1976 ,22 (5), 855-867.
(45) Takamatsu, T.; Hashimoto, I.; Shioya, S.; Mizuhara, K.; Koike, T.; Ohno, H. Theory and practice of optimal control in continuous fermentation process. Automatica 1975 , 11 (2), 141-148.
(46) Murray, J. E.; Edgar, T. F. Optimal scheduling of production and compression in gas fields. Journal of Petroleum 1978 ,30 (1), 109-116.
(47) Grossmann, I. E.; Santibanez, J. Applications of mixed-integer linear-programing in process sythesis. Computers & Chemical Engineering 1980 , 4 (4), 205-214.
(48) Doherty, M. F.; Perkins, J. D. Dynamics of distillation processes .3. Topological structure of ternary residue curve maps. Chemical Engineering Science 1979 , 34 (12), 1401-1414.
(49) Faith, D. C.; Morari, M. Synthesis of distillation schemes with energy integration. Computers & Chemical Engineering1979 , 3 (1-4), 269-272.
(50) Cutler, C. R.; Ramaker, B. L. Dynamic matrix control - A computer control algorithm. In Joint Automatic Control Conference , 1980; pp 17, 72.
(51) Mason, C. E.; Philbrick, G. A.; Engel, F. V. A. Testings of Temperature Control Devices with Temporal Delay in the Control Circuit.Zeitschrift des Vereines Deutscher Ingenieure 1941 ,85 , 287-289.
(52) Tsuchiya, H. M.; Fredrickson, A. G.; Aris, R. Dynamics of Microbial Populations. Advances in Chemical Engineering 1966 ,6 , 125-206.
(53) Ramkrishna, D.; Fredrickson, A. G.; Tsuchiya, H. M. Dynamics of Microbial Propagation: Models Considering Endogenous Metabolism.Journal of General and Applied Microbiology 1966 ,12 , 311-327
(54) Ramkrishna, D.; Fredrickson, A. G.; Tsuchiya, H. M. Dynamics of Microbial Propagation. Models Considerable Inhibitors and Variable Cell Composition. Biotechnology & Bioengineering 1967 ,9 , 129-170.
(55) Fredrickson, A.; Ramkrishna, D.; Tsuchiya, H. Statistics and dynamics of procaryotic cell populations. Mathematical Biosciences 1967 , 1 (3), 327-374.
(56) Bailey, J. E. Toward a science of metabolic engineering.Science 1991 , 252 (5013), 1668-1675.
(57) Stephanopoulos, G. N.; Aristidou, A. A.; Nielsen, J.Metabolic Engineering. Principles and Methodologies. ; Academic Press, 1998.
(58) Orth, J. D.; Thiele, I.; Palsson, B. O. What is Flux Balance Analysis? Nature Biotechnology 2010 , 28 , 245-248.
(59) Lauffenburger, D.; Lindeman, J. Receptors: Models for Binding, Trafficking, and Signaling ; Oxford University Press, 1996.
(60) Ramkrishna, D. Towards a Self-Similar Theory of Microbial Populations. Biotechnology and Bioengineering 1994 ,43 , 138-148.
(61) Lavin, D.; Hatzis, C.; Srienc, F.; Fredrickson, A. G. Size Effects on the Uptake of particles by Populations of Tetrahymena pyriformis  cells. J. Protozool. 1990 , 37 , 157-163.
(62) Varma, A.; Palsson, B. O. Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use. Bio/technology 1994 ,12 .
(63) Mahadeven, R.; Edwards, J.; Doyle III, F. J. Dynamic Flux Balance Analysis of Diauxic Growth of Escherichia coli . Biophysical Journal 2002 , 83 , 1331-1340.
(64) Kompala, D. S.; Ramkrishna, D.; Jansen, N. B.; Tsao, G. T. Investigation of bacterial growth on mixed substrates: experimental evaluation of cybernetic models. Biotechnology and Bioengineering1986 , 28 (7), 1044-1055.
(65) Straight, J. V.; Ramkrishna, D. Cybernetic Modeling and Regulation of Metabolic Pathways. Application to Growth on Complementary Substrates. Biotechnology Progress 1994 , 10 , 574-587.
(66) Ramakrishna, R.; Ramkrishna, D.; Konopka, A. E. Cybernetic Modeling of Growth in Mixed, Substitutable Substrate Environments. Preferential and Simultaneous Utilization. Biotechnology and Bioengineering1996 , 52 , 141-151.
(67) Song, H. S.; Ramkrishna, D. Cybernetic models based on lumped elementary modes accurately predict strain‐specific metabolic function.Biotechnology and bioengineering 2011 , 108 (1), 127-140.
(68) Song, H. S.; Ramkrishna, D. Prediction of metabolic function from limited data: Lumped hybrid cybernetic modeling (L‐HCM).Biotechnology and bioengineering 2010 , 106 (2), 271-284.
(69) Aboulmouna, L.; Gupta, S.; Maurya, M. R.; DeVilbiss, F. T.; Subramaniam, S.; Ramkrishna, D. A Cybernetic Approach to Modeling Lipid Metabolism in Mammalian Cells. Processes 2018 , 6 , 126-.
(70) Desvergne, B.; Michalik, L.; Wahli, W. Transcriptional Regulation of Metabolism. Physiol. Rev. 2006 , 86 , 465-514.
(71) Hulburt, H.; Katz, S. Some problems in particle technology: A statistical mechanical formulation. Chemical Engineering Science1964 , 19 (8), 555-574.
(72) Randolph, A. D. A population balance for countable entities.The Canadian Journal of Chemical engineering 1964 ,42 (6), 280-281.
(73) Ramkrishna, D. The status of population balances. Reviews in Chemical Engineering 1985 , 3 (1), 49-95.
(74) Ramkrishna, D.; Mahoney, A. W. Population balance modeling. Promise for the future. Chemical Engineering Science 2002 ,57 (4), 595-606.
(75) Ramkrishna, D. Population balances: Theory and applications to particulate systems in engineering ; Access Online via Elsevier, 2000.
(76) Ramkrishna, D.; Singh, M. R. Population Balance Modeling: Current Status and Future Prospects. In Annual Review of Chemical and Biomolecular Engineering, Vol 5 , Prausnitz, J. M., Doherty, M. F., Segalman, R. A. Eds.; Annual Review of Chemical and Biomolecular Engineering, Vol. 5; Annual Reviews, 2014; pp 123-146.
(77) Shu, C.-C.; Chatterjee, A.; Hu, W.-S.; Ramkrishna, D. Modeling of gene regulatory processes by population-mediated signaling: New applications of population balances. Chemical engineering science2012 , 70 , 188-199.
(78) Shu, C.-C.; Chatterjee, A.; Hu, W.-S.; Ramkrishna, D. Role of Intracellular Stochasticity in Biofilm Growth. Insights from Population Balance Modeling. PloS one 2013 , 8 (11), e79196.
(79) Chatterjee, A.; Johnson, C. M.; Shu, C.-C.; Kaznessis, Y. N.; Ramkrishna, D.; Dunny, G. M.; Hu, W.-S. Convergent transcription confers a bistable switch in Enterococcus faecalis conjugation.Proceedings of the National Academy of Sciences 2011 ,108 (23), 9721-9726.
(80) Chatterjee, A.; Cook, L. C.; Shu, C.-C.; Chen, Y.; Manias, D. A.; Ramkrishna, D.; Dunny, G. M.; Hu, W.-S. Antagonistic self-sensing and mate-sensing signaling controls antibiotic-resistance transfer.Proceedings of the National Academy of Sciences 2013 ,110 (17), 7086-7090.
(81) Venkatasubramanian, V. The Promise of Artificial Intelligence in Chemical Engineering. Is it Here, Finally? American Institute of Chemical Engineers Journal 2018 .
(82) Verma, P.; Devaraj, J.; Skiles, J. L.; Sajdyk, T.; Smith, E. M. L.; Ho, R. H.; Hutchinson, R.; Wells, E.; Li, L.; Renbarger, J.; et al. A Metabolomics Approach for Early Prediction of Vincristine-Induced Peripheral Neuropathy. Scientific Reports 2020 ,10 , 1-12.
(83) Langer, R. New Methods of Drug Delivery. Science1990 , 249 , 1527-1533.
(84) Peppas, N.; Narasimhan, B. Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems.2014 , 190 , 75-81.