Acknowledgments
It is a pleasure to acknowledge the influence of several Purdue
colleagues in conceptualizing this article and that of Professor Shankar
Subramaniam of the Department of Bioengineering at the University of
California, San Diego who has been a source of education on biological
issues.
(1) Ramkrishna, D.; Amundson, N. R. Mathematics in Chemical Engineering.
A Fifty Year Introspection. American Institute of Chemical
Engineers Journal 2004 , 50 , 16-23.
(2) Truesdell, C. Principles of Continuum Mechanics ; 1960.
(3) Wei, J.; Prater, C. D. The Structure and Analysis of Complex
Reaction Systems. Advances in Catalysis 1962 , 13
Chapter 5 .
(4) Wei, J.; Kuo, J. W. C. Lumping Analysis of Monomolecular Systems.Analysis of Exactly Lumpable System . Industrial and
Engineering Chemistry Fundamentals 1969 , 8 (114-123).
(5) Acrivos, A. Award Lecture. The Method of Matched Asymptotic
Expansions. Chemical Engineering Education 1968 ,2 (2), 62-65.
(6) Aris, R. Vectors, Tensors and the Equations of Fluid
Mechanics ; Prentice-Hall International, 1962.
(7) Sternling, C. V.; Scriven, L. E. Interfacial Turbulence:
Hydrodynamic Instability and the Marangoni Effect. American
Institute of Chemical Engineers Journal 1959 , 19 (3),
321-340. Scriven, L. E. Chem. Eng. Sci. 1960 , 12 ,
98-108.
(8) Bird, R. B.; Stewart, W. E.; Lightfoot, E. N. Transport
Phenomena (Second Edition) ; John Wiley, 2007. Bird, R. B.; Stewart, W.
E.; Lightfoot, E. N. Transport Phenomena ; John Wiley & Sons,
Inc., 1960.
(9) Leal, L. G. Advanced Transport Phenomena: Fluid Mechanics and
Convective Transport Processes. ; Cambridge University Press, 2012.
(10) Deen, W. M. Analysis of Transport Phenomena ; Oxford
University Press, 1998.
(11) Gavalas, G. R. Nonlinear Differential Equations of Chemically
Reacting Systems ; Springer-Verlag, 1968.
(12) Balakotaiah, V.; Luss, D. Global Analysis of the Multiplicity
Features of Multi-Reaction Lumped Parameter Systems. Chem. Eng.
Sci. 1984 , 39 (5), 865-881.
(13) Feinberg, M. Foundations of Chemical Reaction Network
Theory ; Springer Nature AG, 2019.
(14) Jackson, R. A Simple Geometric Condition for Instability in
Catalyst Pellets at Unit Lewis Number. Chemical Engineering
Science 1973 , 28 (6), 1355-1358.
(15) Hickman, D. Industrial Reaction Engineering course offered through
the NSF Engineering Research Center, CISTAR at Purdue University led by
Fabio Ribeiro. This course, involving DOW reaction engineers organized
by Dr. Daniel Hickman, has been attended by more than 600 people from
across the globe. 2020.
(16) Pistikopoulos, E. N.; Barbosa-Povoa, A.; Lee, J. H.; Misener, R.;
Mitsos, A.; Reklaitis, G. V.; Venkatasubramanian, V.; You, F.; Gani, R.
Process Systems Engineering. The Generation Next? Computers and
Chemical Engineering 2021 , 147 , 107252.
(17) Callender, A.; Hartree, D. R.; Porter, A. Time Lag in a Control
System. Philosophical Transactions of the Royal Society of London1936 , 235 (756), 415-444.
(18) Mason, C. E.; Philbrick, G. A. Mathematics of Surge Vessels and
Automatic Averaging Control. Transactions of the ASME1941 , 63 , 589-601.
(19) Ziegler, J. G.; Nichols, N. B. Optimum Settings for Automatic
Controllers. Transactions of the ASME 1942 , 64(759-768).
(20) Ziegler, J. G.; Nichols, N. B. Process Lags in Automatic Control
Circuits. Transactions of the ASME 1943 , 65 ,
433-444.
(21) Allen, J., L. H. Industrial Control Instrument Settings.Industrial and Engineering Chemistry 1943 , 35 ,
1223-1229.
(22) Ziegler, J. G. Averaging Liquid Level Control. Industrial and
Engineering Chemistry 1946 , 38 , 360-364.
(23) Ziegler, J. G.; Nichols, N. B. Industrial Process Control.Chemical Engineering Progress 1947 , 43 , 309-314.
(24) Aris, R.; Amundson, N. R. An Analysis of Chemical Reactor Stability
and Control. 1. The Possibility of Local Control With Perfect or
Imperfect Control Mechanisms. Chemical Engineering Science1958 , 7 (3), 121-131.
(25) Aris, R.; Amundson, N. R. An Analysis of Chemical Reactor Stability
and Control. 2. The Evolution of Proportional Control. Chemical
Engineering Science 1958 , 7 (3), 132-147.
(26) Aris, R.; Amundson, N. R. An Analysis of Chemical Reactor Stability
and Control. 3. The Principles of Programming Reactor Calculations-Some
Extensions. Chemical Engineering Science 1958 , 7(3), 148-155.
(27) Sargent, R. W. H. Applications of an Electronic Digital Computer in
the Design of Low Temperature Plant. Transactions of the
Institution of Chemical Engineers 1958 , 36 , 201-214.
(28) Lapidus, L.; Shapiro, E.; Stillman, R. E. Optimization of Process
Performance. AIChE Journal 1961 , 7 (2), 288-294.
(29) Koepcke, R.; Lapidus, L. Dynamic Control of Chemical Engineering
Processes Using a Method of Lyapunov. Chemical Engineering
Science 1961 , 16 (3-4), 252-266.
(30) Rudd, D. F. On Design Policies for the Optimal Use of Limited
Resources. Chemical Engineering Science 1962 , 17(8), 609-617.
(31) Rudd, D. F. Reliability Theory in Chemical System Design.Industrial and Engineering Chemistry Fundamentals 1962 ,1 (2), 138-143
(32) Rudd, D. F. Optimal Resource Allocation in Multistage Feedback
Processes. Journal of the Society of Industrial and Applied
Mathematics 1962 , 10 (3), 448-453.
(33) Rudd, D. F.; Watson, C. C. Strategy of Process Engineering ;
John Wiley & Sons Inc., 1968.
(34) Ray, W. H.; Aris, R. Rationale for Optimal Reactor Design.Industrial and Engineering Chemistry Fundamentals 1966 ,5 (4), 478-483.
(35) Ray, W. H. Modeling Polymerization Reactors with Applications to
Optimal Design. Canadian Journal of Chemical Engineering1967 , 45 (6), 356-360.
(36) Sargent, R. W. H. Integrated Design and Optimization of Processes.Chemical Engineering Progress 1967 , 63 (9),
71-78.
(37) Shinnar, R. Sizing of Storage Tanks for Off-Grade Material.Industrial and Engineering Chemistry Process Design and
Development 1967 , 6 (2), 263-264.
(38) Evans, L. B.; Steward, D. G.; Sprague, C. R. Computer-Aided
Chemical Process Design. Chemical Engineering Progress1968 , 46 (10), CE424-CE427.
(39) Sargent, R. W. H. Developments in Computer-Aided Process Design.The Chemical Engineer 1968 , 46 (10),
CE424-CE427.
(40) Clough, J. E.; Westerberg, A. W. Fortran for On-Line Control.Control Engineering 1968 , 15 (3), 77-81.
(41) Westerberg, A. W. A Real-Time Sampling Algorithm in an On-Line
Computer System for Gas Chromatographs. Analytical Chemistry1969 , 41 (12), 1595-1598.
(42) Hicks, J.; Mohan, A.; Ray, W. H. Optimal Control of Polymerization
Reactors. Canadian Journal of Chemical Engineering 1969 ,47 (6), 590-597.
(43) Overturf, B. W.; Reklaitis, G. V.; Woods, J. M. GASP-IV and
simulation of batch-semicontinuous operations. Single train process.Industrial & Engineering Chemistry Process Design and
Development 1978 , 17 (2), 161-165.
(44) Stephanopoulos, G.; Schuelke, L. M. Process design in a dynamic
environment .1. Decomposition technique to study Stability of
Chemical-engineering systems. AIChE Journal 1976 ,22 (5), 855-867.
(45) Takamatsu, T.; Hashimoto, I.; Shioya, S.; Mizuhara, K.; Koike, T.;
Ohno, H. Theory and practice of optimal control in continuous
fermentation process. Automatica 1975 , 11 (2),
141-148.
(46) Murray, J. E.; Edgar, T. F. Optimal scheduling of production and
compression in gas fields. Journal of Petroleum 1978 ,30 (1), 109-116.
(47) Grossmann, I. E.; Santibanez, J. Applications of mixed-integer
linear-programing in process sythesis. Computers & Chemical
Engineering 1980 , 4 (4), 205-214.
(48) Doherty, M. F.; Perkins, J. D. Dynamics of distillation processes
.3. Topological structure of ternary residue curve maps. Chemical
Engineering Science 1979 , 34 (12), 1401-1414.
(49) Faith, D. C.; Morari, M. Synthesis of distillation schemes with
energy integration. Computers & Chemical Engineering1979 , 3 (1-4), 269-272.
(50) Cutler, C. R.; Ramaker, B. L. Dynamic matrix control - A computer
control algorithm. In Joint Automatic Control Conference , 1980;
pp 17, 72.
(51) Mason, C. E.; Philbrick, G. A.; Engel, F. V. A. Testings of
Temperature Control Devices with Temporal Delay in the Control Circuit.Zeitschrift des Vereines Deutscher Ingenieure 1941 ,85 , 287-289.
(52) Tsuchiya, H. M.; Fredrickson, A. G.; Aris, R. Dynamics of Microbial
Populations. Advances in Chemical Engineering 1966 ,6 , 125-206.
(53) Ramkrishna, D.; Fredrickson, A. G.; Tsuchiya, H. M. Dynamics of
Microbial Propagation: Models Considering Endogenous Metabolism.Journal of General and Applied Microbiology 1966 ,12 , 311-327
(54) Ramkrishna, D.; Fredrickson, A. G.; Tsuchiya, H. M. Dynamics of
Microbial Propagation. Models Considerable Inhibitors and Variable Cell
Composition. Biotechnology & Bioengineering 1967 ,9 , 129-170.
(55) Fredrickson, A.; Ramkrishna, D.; Tsuchiya, H. Statistics and
dynamics of procaryotic cell populations. Mathematical
Biosciences 1967 , 1 (3), 327-374.
(56) Bailey, J. E. Toward a science of metabolic engineering.Science 1991 , 252 (5013), 1668-1675.
(57) Stephanopoulos, G. N.; Aristidou, A. A.; Nielsen, J.Metabolic Engineering. Principles and Methodologies. ; Academic
Press, 1998.
(58) Orth, J. D.; Thiele, I.; Palsson, B. O. What is Flux Balance
Analysis? Nature Biotechnology 2010 , 28 , 245-248.
(59) Lauffenburger, D.; Lindeman, J. Receptors: Models for
Binding, Trafficking, and Signaling ; Oxford University Press, 1996.
(60) Ramkrishna, D. Towards a Self-Similar Theory of Microbial
Populations. Biotechnology and Bioengineering 1994 ,43 , 138-148.
(61) Lavin, D.; Hatzis, C.; Srienc, F.; Fredrickson, A. G. Size Effects
on the Uptake of particles by Populations of Tetrahymena
pyriformis cells. J. Protozool. 1990 , 37 ,
157-163.
(62) Varma, A.; Palsson, B. O. Metabolic Flux Balancing: Basic Concepts,
Scientific and Practical Use. Bio/technology 1994 ,12 .
(63) Mahadeven, R.; Edwards, J.; Doyle III, F. J. Dynamic Flux Balance
Analysis of Diauxic Growth of Escherichia coli . Biophysical
Journal 2002 , 83 , 1331-1340.
(64) Kompala, D. S.; Ramkrishna, D.; Jansen, N. B.; Tsao, G. T.
Investigation of bacterial growth on mixed substrates: experimental
evaluation of cybernetic models. Biotechnology and Bioengineering1986 , 28 (7), 1044-1055.
(65) Straight, J. V.; Ramkrishna, D. Cybernetic Modeling and Regulation
of Metabolic Pathways. Application to Growth on Complementary
Substrates. Biotechnology Progress 1994 , 10 ,
574-587.
(66) Ramakrishna, R.; Ramkrishna, D.; Konopka, A. E. Cybernetic Modeling
of Growth in Mixed, Substitutable Substrate Environments. Preferential
and Simultaneous Utilization. Biotechnology and Bioengineering1996 , 52 , 141-151.
(67) Song, H. S.; Ramkrishna, D. Cybernetic models based on lumped
elementary modes accurately predict strain‐specific metabolic function.Biotechnology and bioengineering 2011 , 108 (1),
127-140.
(68) Song, H. S.; Ramkrishna, D. Prediction of metabolic function from
limited data: Lumped hybrid cybernetic modeling (L‐HCM).Biotechnology and bioengineering 2010 , 106 (2),
271-284.
(69) Aboulmouna, L.; Gupta, S.; Maurya, M. R.; DeVilbiss, F. T.;
Subramaniam, S.; Ramkrishna, D. A Cybernetic Approach to Modeling Lipid
Metabolism in Mammalian Cells. Processes 2018 , 6 ,
126-.
(70) Desvergne, B.; Michalik, L.; Wahli, W. Transcriptional Regulation
of Metabolism. Physiol. Rev. 2006 , 86 , 465-514.
(71) Hulburt, H.; Katz, S. Some problems in particle technology: A
statistical mechanical formulation. Chemical Engineering Science1964 , 19 (8), 555-574.
(72) Randolph, A. D. A population balance for countable entities.The Canadian Journal of Chemical engineering 1964 ,42 (6), 280-281.
(73) Ramkrishna, D. The status of population balances. Reviews in
Chemical Engineering 1985 , 3 (1), 49-95.
(74) Ramkrishna, D.; Mahoney, A. W. Population balance modeling. Promise
for the future. Chemical Engineering Science 2002 ,57 (4), 595-606.
(75) Ramkrishna, D. Population balances: Theory and applications
to particulate systems in engineering ; Access Online via Elsevier,
2000.
(76) Ramkrishna, D.; Singh, M. R. Population Balance Modeling: Current
Status and Future Prospects. In Annual Review of Chemical and
Biomolecular Engineering, Vol 5 , Prausnitz, J. M., Doherty, M. F.,
Segalman, R. A. Eds.; Annual Review of Chemical and Biomolecular
Engineering, Vol. 5; Annual Reviews, 2014; pp 123-146.
(77) Shu, C.-C.; Chatterjee, A.; Hu, W.-S.; Ramkrishna, D. Modeling of
gene regulatory processes by population-mediated signaling: New
applications of population balances. Chemical engineering science2012 , 70 , 188-199.
(78) Shu, C.-C.; Chatterjee, A.; Hu, W.-S.; Ramkrishna, D. Role of
Intracellular Stochasticity in Biofilm Growth. Insights from Population
Balance Modeling. PloS one 2013 , 8 (11), e79196.
(79) Chatterjee, A.; Johnson, C. M.; Shu, C.-C.; Kaznessis, Y. N.;
Ramkrishna, D.; Dunny, G. M.; Hu, W.-S. Convergent transcription confers
a bistable switch in Enterococcus faecalis conjugation.Proceedings of the National Academy of Sciences 2011 ,108 (23), 9721-9726.
(80) Chatterjee, A.; Cook, L. C.; Shu, C.-C.; Chen, Y.; Manias, D. A.;
Ramkrishna, D.; Dunny, G. M.; Hu, W.-S. Antagonistic self-sensing and
mate-sensing signaling controls antibiotic-resistance transfer.Proceedings of the National Academy of Sciences 2013 ,110 (17), 7086-7090.
(81) Venkatasubramanian, V. The Promise of Artificial Intelligence in
Chemical Engineering. Is it Here, Finally? American Institute of
Chemical Engineers Journal 2018 .
(82) Verma, P.; Devaraj, J.; Skiles, J. L.; Sajdyk, T.; Smith, E. M. L.;
Ho, R. H.; Hutchinson, R.; Wells, E.; Li, L.; Renbarger, J.; et al. A
Metabolomics Approach for Early Prediction of Vincristine-Induced
Peripheral Neuropathy. Scientific Reports 2020 ,10 , 1-12.
(83) Langer, R. New Methods of Drug Delivery. Science1990 , 249 , 1527-1533.
(84) Peppas, N.; Narasimhan, B. Mathematical models in drug delivery:
How modeling has shaped the way we design new drug delivery systems.2014 , 190 , 75-81.