References
Al-Qahtani, A. A., Lyroni, K., Aznaourova, M., Tseliou, M., Al-Anazi, M. R., Al-Ahdal, M. N., . . . Tsatsanis, C. (2017). Middle east respiratory syndrome corona virus spike glycoprotein suppresses macrophage responses via DPP4-mediated induction of IRAK-M and PPARγ. Oncotarget, 8 (6), 9053-9066. doi:10.18632/oncotarget.14754
Amanat, F., Stadlbauer, D., Strohmeier, S., Nguyen, T. H. O., Chromikova, V., McMahon, M., . . . Krammer, F. (2020). A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med, 26 (7), 1033-1036. doi:10.1038/s41591-020-0913-5
Anwar, M. A., Basith, S., & Choi, S. (2013). Negative regulatory approaches to the attenuation of Toll-like receptor signaling. Exp Mol Med, 45 (2), e11. doi:10.1038/emm.2013.28
Barnard, D. L., Day, C. W., Bailey, K., Heiner, M., Montgomery, R., Lauridsen, L., . . . Sidwell, R. W. (2006). Evaluation of immunomodulators, interferons and known in vitro SARS-coV inhibitors for inhibition of SARS-coV replication in BALB/c mice. Antivir Chem Chemother, 17 (5), 275-284. doi:10.1177/095632020601700505
Barnes, B. J., Adrover, J. M., Baxter-Stoltzfus, A., Borczuk, A., Cools-Lartigue, J., Crawford, J. M., . . . Knight, J. S. (2020). Targeting potential drivers of COVID-19: Neutrophil extracellular traps.Journal of Experimental Medicine, 217 (6).
Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W. C., Uhl, S., Hoagland, D., Møller, R., . . . tenOever, B. R. (2020). Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell, 181 (5), 1036-1045.e1039. doi:10.1016/j.cell.2020.04.026
Bouvet, M., Debarnot, C., Imbert, I., Selisko, B., Snijder, E. J., Canard, B., & Decroly, E. (2010). In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog, 6 (4), e1000863. doi:10.1371/journal.ppat.1000863
Braun, J., Loyal, L., Frentsch, M., Wendisch, D., Georg, P., Kurth, F., . . . Thiel, A. (2020). SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature . doi:10.1038/s41586-020-2598-9
Cameron, M. J., Kelvin, A. A., Leon, A. J., Cameron, C. M., Ran, L., Xu, L., . . . Kelvin, D. J. (2012). Lack of innate interferon responses during SARS coronavirus infection in a vaccination and reinfection ferret model. PLoS One, 7 (9), e45842. doi:10.1371/journal.pone.0045842
Camp, J. V., & Jonsson, C. B. (2017). A role for neutrophils in viral respiratory disease. Frontiers in immunology, 8 , 550.
Canton, J., Fehr, A. R., Fernandez-Delgado, R., Gutierrez-Alvarez, F. J., Sanchez-Aparicio, M. T., García-Sastre, A., . . . Sola, I. (2018). MERS-CoV 4b protein interferes with the NF-κB-dependent innate immune response during infection. PLoS Pathog, 14 (1), e1006838. doi:10.1371/journal.ppat.1006838
Cao, W. C., Liu, W., Zhang, P. H., Zhang, F., & Richardus, J. H. (2007). Disappearance of antibodies to SARS-associated coronavirus after recovery. N Engl J Med, 357 (11), 1162-1163. doi:10.1056/NEJMc070348
Chan, R. W., Chan, M. C., Agnihothram, S., Chan, L. L., Kuok, D. I., Fong, J. H., . . . Peiris, J. S. (2013). Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures. J Virol, 87 (12), 6604-6614. doi:10.1128/jvi.00009-13
Channappanavar, R., Fehr, A. R., Vijay, R., Mack, M., Zhao, J., Meyerholz, D. K., & Perlman, S. (2016). Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe, 19 (2), 181-193. doi:10.1016/j.chom.2016.01.007
Channappanavar, R., & Perlman, S. (2017). Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol, 39 (5), 529-539. doi:10.1007/s00281-017-0629-x
Channappanavar, R., Zhao, J., & Perlman, S. (2014). T cell-mediated immune response to respiratory coronaviruses. Immunol Res, 59 (1-3), 118-128. doi:10.1007/s12026-014-8534-z
Chen, J., Lau, Y. F., Lamirande, E. W., Paddock, C. D., Bartlett, J. H., Zaki, S. R., & Subbarao, K. (2010). Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection. Journal of virology, 84 (3), 1289-1301.
Chen, L., Liu, H. G., Liu, W., Liu, J., Liu, K., Shang, J., . . . Wei, S. (2020). [Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia]. Zhonghua Jie He He Hu Xi Za Zhi, 43 (3), 203-208. doi:10.3760/cma.j.issn.1001-0939.2020.03.013
Cheung, C. Y., Poon, L. L., Ng, I. H., Luk, W., Sia, S.-F., Wu, M. H., . . . Guan, Y. (2005). Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. Journal of virology, 79 (12), 7819-7826.
Cheung, C. Y., Poon, L. L., Ng, I. H., Luk, W., Sia, S. F., Wu, M. H., . . . Peiris, J. S. (2005). Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J Virol, 79 (12), 7819-7826. doi:10.1128/jvi.79.12.7819-7826.2005
Chien, J. Y., Hsueh, P. R., Cheng, W. C., Yu, C. J., & Yang, P. C. (2006). Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology, 11 (6), 715-722. doi:10.1111/j.1440-1843.2006.00942.x
Chu, H., Chan, J. F.-W., Wang, Y., Yuen, T. T.-T., Chai, Y., Hou, Y., . . . Yuen, K.-Y. (2020). Comparative Replication and Immune Activation Profiles of SARS-CoV-2 and SARS-CoV in Human Lungs: An Ex Vivo Study With Implications for the Pathogenesis of COVID-19. Clinical Infectious Diseases, 71 (6), 1400-1409. doi:10.1093/cid/ciaa410
Chu, H., Zhou, J., Wong, B. H., Li, C., Cheng, Z. S., Lin, X., . . . Yuen, K. Y. (2014). Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response. Virology, 454-455 , 197-205. doi:10.1016/j.virol.2014.02.018
Coronavirus disease 2019 (COVID-19) Situation Report – 57. (2020).
Cui, J., Li, F., & Shi, Z. L. (2019). Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol, 17 (3), 181-192. doi:10.1038/s41579-018-0118-9
Dahl, H., Linde, A., & Strannegård, O. (2004). In vitro inhibition of SARS virus replication by human interferons. Scand J Infect Dis, 36 (11-12), 829-831. doi:10.1080/00365540410021144
Davidson, S., Maini, M. K., & Wack, A. (2015). Disease-promoting effects of type I interferons in viral, bacterial, and coinfections.J Interferon Cytokine Res, 35 (4), 252-264. doi:10.1089/jir.2014.0227
de Wilde, A. H., Raj, V. S., Oudshoorn, D., Bestebroer, T. M., van Nieuwkoop, S., Limpens, R., . . . van den Hoogen, B. G. (2013). MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment.J Gen Virol, 94 (Pt 8), 1749-1760. doi:10.1099/vir.0.052910-0
de Wit, E., van Doremalen, N., Falzarano, D., & Munster, V. J. (2016). SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol, 14 (8), 523-534. doi:10.1038/nrmicro.2016.81
Deng, X., Hackbart, M., Mettelman, R. C., O’Brien, A., Mielech, A. M., Yi, G., . . . Baker, S. C. (2017). Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages.Proc Natl Acad Sci U S A, 114 (21), E4251-e4260. doi:10.1073/pnas.1618310114
Dong, P., Ju, X., Yan, Y., Zhang, S., Cai, M., Wang, H., . . . He, W. (2018). γδ T Cells Provide Protective Function in Highly Pathogenic Avian H5N1 Influenza A Virus Infection. Front Immunol, 9 , 2812. doi:10.3389/fimmu.2018.02812
Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.-J., & Jiang, S. (2009). The spike protein of SARS-CoV — a target for vaccine and therapeutic development. Nature Reviews Microbiology, 7 (3), 226-236. doi:10.1038/nrmicro2090
Du, L., Ma, C., & Jiang, S. (2013). Antibodies induced by receptor-binding domain in spike protein of SARS-CoV do not cross-neutralize the novel human coronavirus hCoV-EMC. J Infect, 67 (4), 348-350. doi:10.1016/j.jinf.2013.05.002
Eosinophils and Respiratory Viruses. (2019). Viral Immunology, 32 (5), 198-207. doi:10.1089/vim.2018.0150
Fan, Y., Zhao, K., Shi, Z. L., & Zhou, P. (2019). Bat Coronaviruses in China. Viruses, 11 (3). doi:10.3390/v11030210
Faure, E., Poissy, J., Goffard, A., Fournier, C., Kipnis, E., Titecat, M., . . . Guery, B. (2014). Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside? PLoS One, 9 (2), e88716. doi:10.1371/journal.pone.0088716
Fehr, A. R., Channappanavar, R., & Perlman, S. (2017). Middle East Respiratory Syndrome: Emergence of a Pathogenic Human Coronavirus.Annu Rev Med, 68 , 387-399. doi:10.1146/annurev-med-051215-031152
Frieman, M., Ratia, K., Johnston, R. E., Mesecar, A. D., & Baric, R. S. (2009). Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol, 83 (13), 6689-6705. doi:10.1128/jvi.02220-08
Frieman, M., Yount, B., Heise, M., Kopecky-Bromberg, S. A., Palese, P., & Baric, R. S. (2007). Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol, 81 (18), 9812-9824. doi:10.1128/jvi.01012-07
Frieman, M. B., Chen, J., Morrison, T. E., Whitmore, A., Funkhouser, W., Ward, J. M., . . . Baric, R. S. (2010). SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism. PLoS Pathog, 6 (4), e1000849. doi:10.1371/journal.ppat.1000849
Galani, V., Tatsaki, E., Bai, M., Kitsoulis, P., Lekka, M., Nakos, G., & Kanavaros, P. (2010). The role of apoptosis in the pathophysiology of Acute Respiratory Distress Syndrome (ARDS): an up-to-date cell-specific review. Pathol Res Pract, 206 (3), 145-150. doi:10.1016/j.prp.2009.12.002
Giamarellos-Bourboulis, E. J., Netea, M. G., Rovina, N., Akinosoglou, K., Antoniadou, A., Antonakos, N., . . . Koutsoukou, A. (2020). Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe, 27 (6), 992-1000.e1003. doi:10.1016/j.chom.2020.04.009
Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., . . . Krogan, N. J. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583 (7816), 459-468. doi:10.1038/s41586-020-2286-9
Griffith, J. W., Sokol, C. L., & Luster, A. D. (2014). Chemokines and chemokine receptors: positioning cells for host defense and immunity.Annu Rev Immunol, 32 , 659-702. doi:10.1146/annurev-immunol-032713-120145
Guilliams, M., Lambrecht, B. N., & Hammad, H. (2013). Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunology, 6 (3), 464-473. doi:10.1038/mi.2013.14
Guo, C., Li, B., Ma, H., Wang, X., Cai, P., Yu, Q., . . . Qu, K. (2020). Single-cell analysis of severe COVID-19 patients reveals a monocyte-driven inflammatory storm attenuated by Tocilizumab.bioRxiv , 2020.2004.2008.029769. doi:10.1101/2020.04.08.029769
Haagmans, B. L., Kuiken, T., Martina, B. E., Fouchier, R. A., Rimmelzwaan, G. F., van Amerongen, G., . . . Osterhaus, A. D. (2004). Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med, 10 (3), 290-293. doi:10.1038/nm1001
Hackbart, M., Deng, X., & Baker, S. C. (2020). Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors. Proc Natl Acad Sci U S A, 117 (14), 8094-8103. doi:10.1073/pnas.1921485117
Hadjadj, J., Yatim, N., Barnabei, L., Corneau, A., Boussier, J., Smith, N., . . . Terrier, B. (2020). Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science, 369 (6504), 718-724. doi:10.1126/science.abc6027
Haveri, A., Smura, T., Kuivanen, S., Österlund, P., Hepojoki, J., Ikonen, N., . . . Kantele, A. (2020). Serological and molecular findings during SARS-CoV-2 infection: the first case study in Finland, January to February 2020. Eurosurveillance, 25 (11), 2000266.
Hsueh, P. R., Huang, L. M., Chen, P. J., Kao, C. L., & Yang, P. C. (2004). Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus.Clinical Microbiology and Infection, 10 (12), 1062-1066. doi:https://doi.org/10.1111/j.1469-0691.2004.01009.x
Huang, A. T., Garcia-Carreras, B., Hitchings, M. D. T., Yang, B., Katzelnick, L. C., Rattigan, S. M., . . . Cummings, D. A. T. (2020). A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity.Nature Communications, 11 (1), 4704. doi:10.1038/s41467-020-18450-4
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., . . . Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395 (10223), 497-506. doi:10.1016/s0140-6736(20)30183-5
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., . . . Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395 (10223), 497-506. doi:https://doi.org/10.1016/S0140-6736(20)30183-5
Huang, I. C., Bailey, C. C., Weyer, J. L., Radoshitzky, S. R., Becker, M. M., Chiang, J. J., . . . Farzan, M. (2011). Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS Pathog, 7 (1), e1001258. doi:10.1371/journal.ppat.1001258
Hui, D. S., E, I. A., Madani, T. A., Ntoumi, F., Kock, R., Dar, O., . . . Petersen, E. (2020). The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis, 91 , 264-266. doi:10.1016/j.ijid.2020.01.009
Hui, E. K. (2006). Reasons for the increase in emerging and re-emerging viral infectious diseases. Microbes Infect, 8 (3), 905-916. doi:10.1016/j.micinf.2005.06.032
Ivanov, K. A., Thiel, V., Dobbe, J. C., van der Meer, Y., Snijder, E. J., & Ziebuhr, J. (2004). Multiple Enzymatic Activities Associated with Severe Acute Respiratory Syndrome Coronavirus Helicase. J Virol, 78 (11), 5619-5632. doi:10.1128/jvi.78.11.5619-5632.2004
Ivanov, K. A., Thiel, V., Dobbe, J. C., van der Meer, Y., Snijder, E. J., & Ziebuhr, J. (2004). Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol, 78 (11), 5619-5632. doi:10.1128/jvi.78.11.5619-5632.2004
Jiang, S., Du, L., & Shi, Z. (2020). An emerging coronavirus causing pneumonia outbreak in Wuhan, China: calling for developing therapeutic and prophylactic strategies. Emerg Microbes Infect, 9 (1), 275-277. doi:10.1080/22221751.2020.1723441
Jin, W., & Dong, C. (2013). IL-17 cytokines in immunity and inflammation. Emerg Microbes Infect, 2 (9), e60. doi:10.1038/emi.2013.58
Josset, L., Menachery, V. D., Gralinski, L. E., Agnihothram, S., Sova, P., Carter, V. S., . . . Katze, M. G. (2013). Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus. mBio, 4 (3), e00165-00113. doi:10.1128/mBio.00165-13
Ju, B., Zhang, Q., Ge, J., Wang, R., Sun, J., Ge, X., . . . Zhang, L. (2020). Human neutralizing antibodies elicited by SARS-CoV-2 infection.Nature, 584 (7819), 115-119. doi:10.1038/s41586-020-2380-z
Kamphuis, E., Junt, T., Waibler, Z., Forster, R., & Kalinke, U. (2006). Type I interferons directly regulate lymphocyte recirculation and cause transient blood lymphopenia. Blood, 108 (10), 3253-3261. doi:10.1182/blood-2006-06-027599
Kato, H., Takahasi, K., & Fujita, T. (2011). RIG-I-like receptors: cytoplasmic sensors for non-self RNA. Immunol Rev, 243 (1), 91-98. doi:10.1111/j.1600-065X.2011.01052.x
Kindler, E., Thiel, V., & Weber, F. (2016). Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response. Adv Virus Res, 96 , 219-243. doi:10.1016/bs.aivir.2016.08.006
Klasse, P. J. (2014). Neutralization of Virus Infectivity by Antibodies: Old Problems in New Perspectives. Adv Biol, 2014 . doi:10.1155/2014/157895
Knoops, K., Kikkert, M., Worm, S. H., Zevenhoven-Dobbe, J. C., van der Meer, Y., Koster, A. J., . . . Snijder, E. J. (2008). SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol, 6 (9), e226. doi:10.1371/journal.pbio.0060226
Kopecky-Bromberg, S. A., Martínez-Sobrido, L., Frieman, M., Baric, R. A., & Palese, P. (2007). Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol, 81 (2), 548-557. doi:10.1128/jvi.01782-06
Krishnan, J., Selvarajoo, K., Tsuchiya, M., Lee, G., & Choi, S. (2007). Toll-like receptor signal transduction. Exp Mol Med, 39 (4), 421-438. doi:10.1038/emm.2007.47
Kumaki, Y., Ennis, J., Rahbar, R., Turner, J. D., Wandersee, M. K., Smith, A. J., . . . Barnard, D. L. (2011). Single-dose intranasal administration with mDEF201 (adenovirus vectored mouse interferon-alpha) confers protection from mortality in a lethal SARS-CoV BALB/c mouse model. Antiviral Res, 89 (1), 75-82. doi:10.1016/j.antiviral.2010.11.007
Lau, S. K. P., Lau, C. C. Y., Chan, K. H., Li, C. P. Y., Chen, H., Jin, D. Y., . . . Yuen, K. Y. (2013). Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment. J Gen Virol, 94 (Pt 12), 2679-2690. doi:10.1099/vir.0.055533-0
Law, H. K., Cheung, C. Y., Ng, H. Y., Sia, S. F., Chan, Y. O., Luk, W., . . . Lau, Y. L. (2005). Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells.Blood, 106 (7), 2366-2374. doi:10.1182/blood-2004-10-4166
Law, H. K., Cheung, C. Y., Sia, S. F., Chan, Y. O., Peiris, J. S., & Lau, Y. L. (2009). Toll-like receptors, chemokine receptors and death receptor ligands responses in SARS coronavirus infected human monocyte derived dendritic cells. BMC Immunol, 10 , 35. doi:10.1186/1471-2172-10-35
Lee, J., Lee, S. H., Shin, N., Jeong, M., Kim, M. S., Kim, M. J., . . . Choi, I. (2009). Tumor necrosis factor-α enhances IL-15-induced natural killer cell differentiation. Biochem Biophys Res Commun, 386 (4), 718-723. doi:https://doi.org/10.1016/j.bbrc.2009.06.120
Li, C. K., Wu, H., Yan, H., Ma, S., Wang, L., Zhang, M., . . . Xu, X. N. (2008). T cell responses to whole SARS coronavirus in humans. J Immunol, 181 (8), 5490-5500. doi:10.4049/jimmunol.181.8.5490
Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., . . . Feng, Z. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med, 382 (13), 1199-1207. doi:10.1056/NEJMoa2001316
Li, T., Qiu, Z., Han, Y., Wang, Z., Fan, H., Lu, W., . . . Wang, A. (2003). Rapid loss of both CD4+ and CD8+ T lymphocyte subsets during the acute phase of severe acute respiratory syndrome. Chin Med J (Engl), 116 (7), 985-987.
Li, T., Qiu, Z., Zhang, L., Han, Y., He, W., Liu, Z., . . . Wang, A. (2004). Significant changes of peripheral T lymphocyte subsets in patients with severe acute respiratory syndrome. J Infect Dis, 189 (4), 648-651. doi:10.1086/381535
Liao, M., Liu, Y., Yuan, J., Wen, Y., Xu, G., Zhao, J., . . . Zhang, Z. (2020). Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med, 26 (6), 842-844. doi:10.1038/s41591-020-0901-9
Lin, L., Lu, L., Cao, W., & Li, T. (2020). Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect, 9 (1), 727-732. doi:10.1080/22221751.2020.1746199
Liu, J., Zheng, X., Tong, Q., Li, W., Wang, B., Sutter, K., . . . Yang, D. (2020). Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J Med Virol, 92 (5), 491-494. doi:10.1002/jmv.25709
Liu, W. J., Zhao, M., Liu, K., Xu, K., Wong, G., Tan, W., & Gao, G. F. (2017). T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV. Antiviral Res, 137 , 82-92. doi:10.1016/j.antiviral.2016.11.006
Liu, Y., Yang, Y., Zhang, C., Huang, F., Wang, F., Yuan, J., . . . Liu, L. (2020). Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci, 63 (3), 364-374. doi:10.1007/s11427-020-1643-8
Liu, Z. Y., Li, T. S., Wang, Z., Xu, Z. J., Wang, H. L., Yu, Y., . . . Ni, A. P. (2003). [Clinical features and therapy of 106 cases of severe acute respiratory syndrome]. Zhonghua Nei Ke Za Zhi, 42 (6), 373-377.
Lokugamage, K. G., Hage, A., de Vries, M., Valero-Jimenez, A. M., Schindewolf, C., Dittmann, M., . . . Menachery, V. D. (2020). Type I interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV.bioRxiv , 2020.2003.2007.982264. doi:10.1101/2020.03.07.982264
Long, Q. X., Tang, X. J., Shi, Q. L., Li, Q., Deng, H. J., Yuan, J., . . . Huang, A. L. (2020). Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med, 26 (8), 1200-1204. doi:10.1038/s41591-020-0965-6
Lu, X., Pan, J., Tao, J., & Guo, D. (2011). SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes, 42 (1), 37-45. doi:10.1007/s11262-010-0544-x
Lui, P. Y., Wong, L. Y., Fung, C. L., Siu, K. L., Yeung, M. L., Yuen, K. S., . . . Jin, D. Y. (2016). Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3. Emerg Microbes Infect, 5 (4), e39. doi:10.1038/emi.2016.33
Mahallawi, W. H., Khabour, O. F., Zhang, Q., Makhdoum, H. M., & Suliman, B. A. (2018). MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine, 104 , 8-13. doi:10.1016/j.cyto.2018.01.025
Manni, M. L., Robinson, K. M., & Alcorn, J. F. (2014). A tale of two cytokines: IL-17 and IL-22 in asthma and infection. Expert Rev Respir Med, 8 (1), 25-42. doi:10.1586/17476348.2014.854167
Mantlo, E., Bukreyeva, N., Maruyama, J., Paessler, S., & Huang, C. (2020). Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res, 179 , 104811. doi:https://doi.org/10.1016/j.antiviral.2020.104811
Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., & Manson, J. J. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet, 395 (10229), 1033-1034. doi:https://doi.org/10.1016/S0140-6736(20)30628-0
Minakshi, R., Padhan, K., Rani, M., Khan, N., Ahmad, F., & Jameel, S. (2009). The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One, 4 (12), e8342. doi:10.1371/journal.pone.0008342
Mubarak, A., Alturaiki, W., & Hemida, M. G. (2019). Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Infection, Immunological Response, and Vaccine Development. J Immunol Res, 2019 , 6491738. doi:10.1155/2019/6491738
Newton, A. H., Cardani, A., & Braciale, T. J. (2016). The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin Immunopathol, 38 (4), 471-482. doi:10.1007/s00281-016-0558-0
Ng, O.-W., Chia, A., Tan, A. T., Jadi, R. S., Leong, H. N., Bertoletti, A., & Tan, Y.-J. (2016). Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine, 34 (17), 2008-2014. doi:https://doi.org/10.1016/j.vaccine.2016.02.063
Okba, N. M. A., Müller, M. A., Li, W., Wang, C., GeurtsvanKessel, C. H., Corman, V. M., . . . Haagmans, B. L. (2020). Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease Patients. Emerg Infect Dis, 26 (7), 1478-1488. doi:10.3201/eid2607.200841
Page, C., Goicochea, L., Matthews, K., Zhang, Y., Klover, P., Holtzman, M. J., . . . Frieman, M. (2012). Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection. J Virol, 86 (24), 13334-13349. doi:10.1128/jvi.01689-12
Panesar, N. S. Glucocorticoid treatment of patients with SARS: implications for mechanisms of immunopathology : Nat Rev Immunol. 2006;6(4):334. doi: 10.1038/nri1835-c1.
Panesar, N. S. (2003). Lymphopenia in SARS. Lancet, 361 (9373), 1985. doi:10.1016/s0140-6736(03)13557-x
Panesar, N. S. (2008). What caused lymphopenia in SARS and how reliable is the lymphokine status in glucocorticoid-treated patients? Med Hypotheses, 71 (2), 298-301. doi:10.1016/j.mehy.2008.03.019
Perlman, S. (2020). Another Decade, Another Coronavirus. N Engl J Med, 382 (8), 760-762. doi:10.1056/NEJMe2001126
Priyanka, Choudhary, O. P., & Singh, I. (2020). Protective immunity against COVID-19: Unravelling the evidences for humoral vs. cellular components. Travel Med Infect Dis, 39 , 101911. doi:10.1016/j.tmaid.2020.101911
Prokunina-Olsson, L., Alphonse, N., Dickenson, R. E., Durbin, J. E., Glenn, J. S., Hartmann, R., . . . Odendall, C. (2020). COVID-19 and emerging viral infections: The case for interferon lambda. Journal of Experimental Medicine, 217 (5).
Prompetchara, E., Ketloy, C., & Palaga, T. (2020). Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol, 38 (1), 1-9. doi:10.12932/ap-200220-0772
Qin, C., Zhou, L., Hu, Z., Zhang, S., Yang, S., Tao, Y., . . . Tian, D.-S. (2020). Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clinical Infectious Diseases, 71 (15), 762-768. doi:10.1093/cid/ciaa248
Rehman, S. U., Shafique, L., Ihsan, A., & Liu, Q. (2020). Evolutionary Trajectory for the Emergence of Novel Coronavirus SARS-CoV-2.Pathogens, 9 (3). doi:10.3390/pathogens9030240
Ren, L. L., Wang, Y. M., Wu, Z. Q., Xiang, Z. C., Guo, L., Xu, T., . . . Wang, J. W. (2020). Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J (Engl), 133 (9), 1015-1024. doi:10.1097/cm9.0000000000000722
Rogers, M. C., & Williams, J. V. (2018). Quis Custodiet Ipsos Custodes? Regulation of Cell-Mediated Immune Responses Following Viral Lung Infections. Annu Rev Virol, 5 (1), 363-383. doi:10.1146/annurev-virology-092917-043515
Sainz, B., Jr., Mossel, E. C., Peters, C. J., & Garry, R. F. (2004). Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology, 329 (1), 11-17. doi:10.1016/j.virol.2004.08.011
Sariol, A., & Perlman, S. (2020). Lessons for COVID-19 Immunity from Other Coronavirus Infections. Immunity, 53 (2), 248-263. doi:10.1016/j.immuni.2020.07.005
Shaw, A. C., Goldstein, D. R., & Montgomery, R. R. (2013). Age-dependent dysregulation of innate immunity. Nat Rev Immunol, 13 (12), 875-887. doi:10.1038/nri3547
Siu, K. L., Chan, C. P., Kok, K. H., Chiu-Yat Woo, P., & Jin, D. Y. (2014). Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell Mol Immunol, 11 (2), 141-149. doi:10.1038/cmi.2013.61
Siu, K. L., Kok, K. H., Ng, M. H., Poon, V. K., Yuen, K. Y., Zheng, B. J., & Jin, D. Y. (2009). Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex. J Biol Chem, 284 (24), 16202-16209. doi:10.1074/jbc.M109.008227
Smits, S. L., de Lang, A., van den Brand, J. M., Leijten, L. M., van, I. W. F., Eijkemans, M. J., . . . Haagmans, B. L. (2010). Exacerbated innate host response to SARS-CoV in aged non-human primates. PLoS Pathog, 6 (2), e1000756. doi:10.1371/journal.ppat.1000756
Song, C.-Y., Xu, J., He, J.-Q., & Lu, Y.-Q. (2020). COVID-19 early warning score: a multi-parameter screening tool to identify highly suspected patients. In: medRxiv.
Stanifer, M. L., Kee, C., Cortese, M., Triana, S., Mukenhirn, M., Kraeusslich, H.-G., . . . Boulant, S. (2020). Critical role of type III interferon in controlling SARS-CoV-2 infection, replication and spread in primary human intestinal epithelial cells. bioRxiv , 2020.2004.2024.059667. doi:10.1101/2020.04.24.059667
Ströher, U., DiCaro, A., Li, Y., Strong, J. E., Aoki, F., Plummer, F., . . . Feldmann, H. (2004). Severe acute respiratory syndrome-related coronavirus is inhibited by interferon- alpha. J Infect Dis, 189 (7), 1164-1167. doi:10.1086/382597
Tanaka, T., Narazaki, M., & Kishimoto, T. (2016). Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy, 8 (8), 959-970. doi:10.2217/imt-2016-0020
Tang, N., Li, D., Wang, X., & Sun, Z. (2020). Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost, 18 (4), 844-847. doi:10.1111/jth.14768
Thevarajan, I., Nguyen, T. H. O., Koutsakos, M., Druce, J., Caly, L., van de Sandt, C. E., . . . Kedzierska, K. (2020). Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat Med, 26 (4), 453-455. doi:10.1038/s41591-020-0819-2
To, K. K., Tsang, O. T., Leung, W. S., Tam, A. R., Wu, T. C., Lung, D. C., . . . Yuen, K. Y. (2020). Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study.Lancet Infect Dis, 20 (5), 565-574. doi:10.1016/s1473-3099(20)30196-1
Totura, A. L., & Baric, R. S. (2012). SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon.Curr Opin Virol, 2 (3), 264-275. doi:10.1016/j.coviro.2012.04.004
Travaglini, K. J., Nabhan, A. N., Penland, L., Sinha, R., Gillich, A., Sit, R. V., . . . Krasnow, M. A. (2020). A molecular cell atlas of the human lung from single cell RNA sequencing. bioRxiv , 742320. doi:10.1101/742320
Tseng, C. T., Perrone, L. A., Zhu, H., Makino, S., & Peters, C. J. (2005). Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection. J Immunol, 174 (12), 7977-7985. doi:10.4049/jimmunol.174.12.7977
Vivier, E., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J. P., Eberl, G., . . . Spits, H. (2018). Innate Lymphoid Cells: 10 Years On.Cell, 174 (5), 1054-1066. doi:https://doi.org/10.1016/j.cell.2018.07.017
Von Holle, T. A., & Moody, M. A. (2019). Influenza and Antibody-Dependent Cellular Cytotoxicity. Front Immunol, 10 , 1457. doi:10.3389/fimmu.2019.01457
Walter, J. M., Helmin, K. A., Abdala-Valencia, H., Wunderink, R. G., & Singer, B. D. (2018). Multidimensional assessment of alveolar T cells in critically ill patients. JCI insight, 3 (17).
Wang, C., Horby, P. W., Hayden, F. G., & Gao, G. F. (2020). A novel coronavirus outbreak of global health concern. Lancet, 395 (10223), 470-473. doi:10.1016/s0140-6736(20)30185-9
Wang, C. H., Liu, C. Y., Wan, Y. L., Chou, C. L., Huang, K. H., Lin, H. C., . . . Kuo, H. P. (2005). Persistence of lung inflammation and lung cytokines with high-resolution CT abnormalities during recovery from SARS. Respir Res, 6 (1), 42. doi:10.1186/1465-9921-6-42
Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., . . . Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. Jama, 323 (11), 1061-1069. doi:10.1001/jama.2020.1585
Wang, F., Nie, J., Wang, H., Zhao, Q., Xiong, Y., Deng, L., . . . Zhang, Y. (2020). Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J Infect Dis, 221 (11), 1762-1769. doi:10.1093/infdis/jiaa150
Wathelet, M. G., Orr, M., Frieman, M. B., & Baric, R. S. (2007). Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J Virol, 81 (21), 11620-11633. doi:10.1128/jvi.00702-07
Weiskopf, D., Schmitz, K. S., Raadsen, M. P., Grifoni, A., Okba, N. M. A., Endeman, H., . . . de Vries, R. D. (2020). Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol, 5 (48). doi:10.1126/sciimmunol.abd2071
Wilk, A. J., Rustagi, A., Zhao, N. Q., Roque, J., Martínez-Colón, G. J., McKechnie, J. L., . . . Blish, C. A. (2020). A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med, 26 (7), 1070-1076. doi:10.1038/s41591-020-0944-y
Wong, C. K., Lam, C. W., Wu, A. K., Ip, W. K., Lee, N. L., Chan, I. H., . . . Sung, J. J. (2004). Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol, 136 (1), 95-103. doi:10.1111/j.1365-2249.2004.02415.x
Woo, P. C., Lau, S. K., Wong, B. H., Chan, K. H., Chu, C. M., Tsoi, H. W., . . . Yuen, K. Y. (2004). Longitudinal profile of immunoglobulin G (IgG), IgM, and IgA antibodies against the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in patients with pneumonia due to the SARS coronavirus. Clin Diagn Lab Immunol, 11 (4), 665-668. doi:10.1128/cdli.11.4.665-668.2004
Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., . . . McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367 (6483), 1260-1263. doi:10.1126/science.abb2507
Wu, F., Liu, M., Wang, A., Lu, L., Wang, Q., Gu, C., . . . Huang, J. (2020). Evaluating the Association of Clinical Characteristics With Neutralizing Antibody Levels in Patients Who Have Recovered From Mild COVID-19 in Shanghai, China. JAMA Intern Med, 180 (10), 1356-1362. doi:10.1001/jamainternmed.2020.4616
Xie, J., Fan, H. W., Li, T. S., Qiu, Z. F., & Han, Y. (2006). [Dynamic changes of T lymphocyte subsets in the long-term follow-up of severe acute respiratory syndrome patients]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 28 (2), 253-255.
Xu, X., & Gao, X. (2004). Immunological responses against SARS-coronavirus infection in humans. Cell Mol Immunol, 1 (2), 119-122.
Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., . . . Wang, F. S. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med, 8 (4), 420-422. doi:10.1016/s2213-2600(20)30076-x
Yang, C. Y., Chen, C. S., Yiang, G. T., Cheng, Y. L., Yong, S. B., Wu, M. Y., & Li, C. J. (2018). New Insights into the Immune Molecular Regulation of the Pathogenesis of Acute Respiratory Distress Syndrome.Int J Mol Sci, 19 (2). doi:10.3390/ijms19020588
Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., . . . Tan, W. (2013). The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell, 4 (12), 951-961. doi:10.1007/s13238-013-3096-8
Ying, T., Li, W., & Dimitrov, D. S. (2016). Discovery of T-Cell Infection and Apoptosis by Middle East Respiratory Syndrome Coronavirus.J Infect Dis, 213 (6), 877-879. doi:10.1093/infdis/jiv381
Yu, L., Tong, Y., Shen, G., Fu, A., Lai, Y., Zhou, X., . . . Yu, Z. (2020). Immunodepletion with Hypoxemia: A Potential High Risk Subtype of Coronavirus Disease 2019. medRxiv .
Zhang, Y., Li, J., Zhan, Y., Wu, L., Yu, X., Zhang, W., . . . Lou, J. (2004). Analysis of serum cytokines in patients with severe acute respiratory syndrome. Infect Immun, 72 (8), 4410-4415. doi:10.1128/iai.72.8.4410-4415.2004
Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S. S., Fett, C., Zhao, J., . . . Perlman, S. (2014). Rapid generation of a mouse model for Middle East respiratory syndrome. Proc Natl Acad Sci U S A, 111 (13), 4970-4975. doi:10.1073/pnas.1323279111
Zhao, X., Sehgal, M., Hou, Z., Cheng, J., Shu, S., Wu, S., . . . Chang, J. (2018). Identification of residues controlling restriction versus enhancing activities of IFITM proteins on entry of human coronaviruses.J Virol, 92 (6).
Zheng, M., Gao, Y., Wang, G., Song, G., Liu, S., Sun, D., . . . Tian, Z. (2020). Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol, 17 (5), 533-535. doi:10.1038/s41423-020-0402-2
Zhou, G., & Zhao, Q. (2020). Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2. Int J Biol Sci, 16 (10), 1718-1723. doi:10.7150/ijbs.45123
Zhou, J., Chu, H., Li, C., Wong, B. H., Cheng, Z. S., Poon, V. K., . . . Yuen, K. Y. (2014). Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis.J Infect Dis, 209 (9), 1331-1342. doi:10.1093/infdis/jit504
Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., . . . Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579 (7798), 270-273. doi:10.1038/s41586-020-2012-7
Zhou, Y., Fu, B., Zheng, X., Wang, D., Zhao, C., qi, Y., . . . Wei, H. (2020a). Aberrant pathogenic GM-CSF<sup>+</sup> T cells and inflammatory CD14<sup>+</sup>CD16<sup>+</sup> monocytes in severe pulmonary syndrome patients of a new coronavirus.bioRxiv , 2020.2002.2012.945576. doi:10.1101/2020.02.12.945576
Zhou, Y., Fu, B., Zheng, X., Wang, D., Zhao, C., Qi, Y., . . . Wei, H. (2020b). Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. National Science Review, 7 (6), 998-1002. doi:10.1093/nsr/nwaa041
Zhou, Y., Yang, Y., Huang, J., Jiang, S., & Du, L. (2019). Advances in MERS-CoV vaccines and therapeutics based on the receptor-binding domain.Viruses, 11 (1), 60.
Zhu, Z., Chakraborti, S., He, Y., Roberts, A., Sheahan, T., Xiao, X., . . . Dimitrov, D. S. (2007). Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proceedings of the National Academy of Sciences, 104 (29), 12123-12128. doi:10.1073/pnas.0701000104
Zielecki, F., Weber, M., Eickmann, M., Spiegelberg, L., Zaki, A. M., Matrosovich, M., . . . Weber, F. (2013). Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus. J Virol, 87 (9), 5300-5304. doi:10.1128/jvi.03496-12
Zornetzer, G. A., Frieman, M. B., Rosenzweig, E., Korth, M. J., Page, C., Baric, R. S., & Katze, M. G. (2010). Transcriptomic analysis reveals a mechanism for a prefibrotic phenotype in STAT1 knockout mice during severe acute respiratory syndrome coronavirus infection. J Virol, 84 (21), 11297-11309. doi:10.1128/jvi.01130-10
Figure 1. The illustration of escalating phases of COVID-19 disease progression, with associated signs and symptoms from the onset to recovery or death. Infection with SARS-CoV-2 (COVID-19) can be classified into three stages of increasing severity: early infection, pulmonary phase, and hyperinflammation phase. The first phase is related to the onset of the disease and is generally characterized by the development of influenza-like symptoms from mild to moderate. Some individuals recover and some progress to the second phase. In phase 2, it is possible to detect pneumonia-like symptoms evidenced as lung opacities. Phase 3 is characterized by hyperinflammation and sepsis of lungs and patient often requires intensive care unit (ICU) and most of them unfortunately cannot overcome the infection and eventually die.
Figure 2. Manifestations of COVID-19 in body. Spike protein on the virion binds to ACE2, a cell-surface protein. TMPRSS2, an enzyme, helps the virion enter. The virion releases its RNA. Some RNA is translated into proteins by the cell’s machinery and some of these proteins form a replication complex to make more RNA. Then, RNAs are assembled into a new virion in the Golgi and released. Infection with SARS-CoV-2 leads to activation of innate immunity and DCs, which will drive the induction of virus-specific T cell and B cell responses. Hyperinflammation by innate and adaptive leads to cytokine storm thorough inflammatory cytokine secretion. COVID-19 manifestations including pulmonary involvement, ARDS, encephalitis, renal injury, and intestinal flora disturbance pneumonia and, are well recognized.
CTL, cytotoxic T lymphocyte; TFH, T follicular helper cell; TH, T helper cell; Treg, regulatory T cell; DCs, dendritic cell.
Figure 3. The time kinetics between viral load, symptoms, and host immunoglobulins (IgM, IgG) in COVID-19. The onset of symptoms is usually 5 days after infection. Seroconversion may usually be detectable between 5–7 days and 14 days after the onset of symptoms. Viral RNA is inversely correlated with neutralizing antibody titers. Higher titers have been observed in critically ill patients. The humoral response in SARS-CoV-1 is relatively short lived, altogether, suggesting that immunity with SARS-CoV-2 may reduce 1–2 years after primary infection.