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Abstract

In this paper, we present a finite difference and a compact finite dif-
ference schemes for the time fractional nonlinear diffusion-wave equations
(TFNDWEs) with the space fourth order derivative. To reduce the smooth-
ness requirement in time, the considered TFNDWEs are equivalently trans-
formed into their partial integro-differential forms with the classical first
order integrals and the Caputo derivative. The finite difference scheme is
constructed by using Crank-Nicolson method combined with the midpoint
formula, the weighted and shifted Grünwald difference formula and the sec-
ond order convolution quadrature formula to deal with the temporal dis-
cretizations. Meanwhile, the classical central difference formula and fourth
order Stephenson scheme are used in spacial direction. Then, the compact
finite difference scheme is developed by using the fourth order compact dif-
ference formula for the spatial direction. The stability and convergence
of the proposed schemes are strictly proved by using the discrete energy
method. Finally, some numerical experiments are presented to support our
theoretical results.

Keywords Fractional nonlinear diffusion-wave equations. Linearized schemes.
Fourth order derivative. Stability. Convergence.

1 Introduction

Fractional partial differential equations (FPDEs) have attracted considerable
attention in various fields. Though research shows that many phenomena can
be described by FPDEs such as physics [1, 2], engineering [3, 4], and other
sciences [5, 6, 7]. However, finding the exact solutions of FPDEs by using current
analytical methods such as, Laplace transform, Green’s function, and Fourier-
Laplace transform (see [8, 9, 10, 11] for examples) are difficult to achieve if not
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impossible [12, 9]. Thus, proposing new methods to find numerical solutions
of these equations has practical importance. Due to this fact, in recent years
several numerical methods were proposed for solving FPDEs, for instances see
[13, 14, 15, 16, 17, 18, 19, 20] and the references therein.

In this paper, the following nonlinear time fractional diffusion-wave equation
with fourth order derivative in space and homogeneous initial boundary condi-
tions will be considered

∂2u(x, t)

∂t2
+ C

0 D
α
t u(x, t) +Kc

∂4u(x, t)

∂x4
=

∂2u(x, t)

∂x2
+ g(u) + f(x, t), (1.1)

where 1 < α < 2, f(x, t) is a known function, g(u) is a nonlinear function of u
with g(0) = 0 and satisfies the Lipschitz condition, and C

0 D
α
t u(x, t) denotes the

temporal Caputo derivative with order α defined as

C
0 D

α
t u(x, t) =

1

Γ(2− α)

∫ t

0
(t− s)1−α∂

2u(x, s)

∂s2
ds.

Recently, there exist many works on numerical methods for time fractional
diffusion-wave equations (TFDWEs), see [21, 22, 23, 24, 25, 26, 27, 28, 29, 30]
and the references therein. Chen et al. [23] proposed the method of separa-
tion of variables with constructing the implicit difference scheme for fractional
diffusion-wave equation with damping. Heydari et al. [26] have proposed Leg-
endre wavelets (LWs) for solving TFDWEs where fractional operational matrix
of integration for LWs was derived. Bhrawy et al. [21] have proposed Jacobi
tau spectral procedure combined with the Jacobi operational matrix for solving
TFDWEs. Ebadian et al. [24] have proposed triangular function (TFs) methods
for solving a class of nonlinear TFDWEs where fractional operational matrix
of integration for the TFs was derived. Mohammed et al. [29] have proposed
shifted Legengre collocation scheme and sinc function for solving TFDWEs with
variable coefficients. Zhou et al. [30] have applied Chebyshev wavelets colloca-
tion for solving a class of TFDWEs where fractional integral formula of a single
Chebyshev wavelets in the Riemann-Liouville sense was derived. Khalid et al.
[28] have proposed the third degree modified extended B-spline functions for solv-
ing TFDWEs with reaction and damping terms. Some other numerical methods
are presented for solving time fractional diffusion equations, see [31, 32, 33, 34]
and the references therein.

To the best of our knowledge, there is no existing numerical method which
can be used to solve Eq. (1.1) neither directly nor by transferring Eq. (1.1) into
equivalent integro-differential equation. Thus, the aim of this study is devoted to
constructing the high order numerical schemes to solve Eq. (1.1), and carrying
out the corresponding numerical analysis for the proposed schemes. Herein,
we firstly transform Eq. (1.1) into the equivalent partial integro-differential
equations by using the integral operator. Secondly, the Crank-Nicolson technique
is applied to deal with the temporal direction. Then, we use the midpoint formula
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to discretize the first order derivative, use the weighted and shifted Grüunwald
difference formula to discretize the Caputo derivative, and apply the second order
convolution quadrature formula to approximate the first order integral. The
classical central difference formula, the fourth order Stephenson scheme, and the
fourth order compact difference formula are applied for spatial approximations.

The rest of this paper is organized as follows. In Section 2, some preparations
and useful lemmas are provided and discussed. In Section 3 the finite difference
scheme is constructed and analyzed. In Section 4, the compact finite differ-
ence scheme is deduced, and the convergence and the unconditional stability are
strictly proved. Numerical experiments are provided to support the theoretical
results in Section 5. Finally, some concluding remarks are given.

2 Preliminaries

Lemma 2.1. (see [35]) Eq. (1.1) is equivalent to the following partial integro-
differential equation,

∂u(x, t)

∂t
+ C

0 D
α−1
t u(x, t) +Kc · 0Jt

∂4u(x, t)

∂x4
= 0Jt

∂2u(x, t)

∂x2
+ 0Jtg(u) + F (x, t),

(2.1)

where F (x, t) = 0Jtf(x, t) and 0Jt is first order integral operator, i.e., 0Jtu(·, t) =∫ t
0 u(·, s)ds.

To discretize Eq. (2.1), we introduce the temporal step size τ = T/N with
a positive integer N , tn = nτ , and tn+1/2 = (n + 1/2)τ . Similarly, define the
spatial step size h = L/M with a positive integer M , and denote xi = ih. Then,
define a grid function space Θh = {vni |0 ≤ n ≤ N, 0 ≤ i ≤ M, vn0 = vnM = 0}, and
introduce the following notations, inner product, and norm, i.e., for un, vn ∈ Θh,
we define

∆xu
n
i =

1

2h

(
uni+1 − uni−1

)
, δ2xu

n
i =

1

h2
(
uni−1 − 2uni + uni+1

)
,

⟨un, vn⟩ =h

M−1∑
i=1

uni v
n
i , ||un||2 = ⟨un, un⟩,

Huni =

{ (
1 + h2

12 δ
2
x

)
uni = 1

12

(
uni−1 + 10uni + uni+1

)
, 1 ≤ i ≤ M − 1,

uni , i = 0 or M.

Lemma 2.2. (see [36, 37]) If u(·, t) ∈ C2([0, T ]) and 0 < γ < 1, then it holds

0Jtu(·, tn+1/2) =
1

2
[0Jtu(·, tn+1) + 0Jtu(·, tn)] +O(τ2).

Furthermore, if u(·, t) ∈ C3([0, T ]), then we have

ut(·, tn+1/2) =
u(·, tn+1)− u(·, tn)

τ
+O(τ2) = δtu(·, tn+1/2) +O(τ2),
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and

C
0 D

γ
t u(·, tn+1/2) =

1

2

(
C
0 D

γ
t u(·, tn+1) +

C
0 D

γ
t u(·, tn)

)
+O(τ2).

Lemma 2.3. (see [38, 39]) Let {ωk} be the weights from generating function(
3/2− 2z + z2/2

)−1
, i.e., ωk = 1− 3−(k+1). If u(·, t) ∈ C2 ([0, T ]) and u(·, 0) =

ut(·, 0) = 0, then we have

0Jtn+1u(·, t)− τ

n+1∑
k=0

ωn+1−ku(·, tk) = O(τ2).

Lemma 2.4. (see [40]) For u(·, t) ∈ L1(R), RL
−∞Dγ+2

t u(·, t) and its Fourier trans-
form belong to L1(R), if we use the weighted and shifted Grünwald difference
operator to approximate the Riemann-Liouville derivative, then it holds

RL
0 Dγ

0u(·, tk+1) = τ−γ
k+1∑
j=0

σ
(γ)
j u(·, tk+1−j) +O(τ2), 0 < γ < 1,

where

σ
(γ)
0 =

2 + γ

2
c
(γ)
0 , σ

(γ)
j =

2 + γ

2
c
(γ)
j − γ

2
c
(γ)
j−1, j ≥ 1,

and c
(γ)
j = (−1)j

(
γ
j

)
for j ≥ 0.

Lemma 2.5. (see [41]) Suppose u(x, ·) ∈ C4([xi−1, xi+1]), let ζ(s) = u(4)(xi +
sh, ·) + u(4)(xi − sh, ·), then

δ2xu(xi, ·) =
u(xi−1, ·)− 2u(xi, ·) + u(xi+1, ·)

h2
= uxx(xi, ·) +

h2

24

∫ 1

0
ζ(s)(1− s)3ds.

Lemma 2.6. (see [41]) Suppose u(x, ·) ∈ C6 ([xi−1, xi+1]), 1 ≤ i ≤ M − 1, and
ζ(s) = 5 (1− s)3 − 3 (1− s)5. Then it holds that

1

12
[uxx(xi−1, ·) + 10uxx(xi, ·) + uxx(xi+1, ·)]−

1

h2
[u(xi−1, ·)− 2u(xi, ·) + u(xi+1, ·)]

=
h4

360

∫ 1

0

[
u(6)(xi − sh, ·) + u(6)(xi + sh, ·)

]
ζ(s)ds.

Lemma 2.7. (see [37]) Assume that u(·, t) ∈ C1([0, T ]) ∩ C2((0, T ]), then the
following approximation holds

u(·, tn+1) = 2u(·, tn)− u(·, tn−1) +O(τ2).

Lemma 2.8. (see [42]) For any grid function wn ∈ Θh, we have

2

3
∥wn∥2 ≤ ⟨Hwn, wn⟩ ≤ ∥wn∥2.
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Lemma 2.9. (see [43]) For any grid function wn, vn ∈ Θh, it holds

⟨δ2xwn, vn⟩ = −⟨δxwn, δxv
n⟩.

Lemma 2.10. (see [44]) Let {σ(α−1)
k } be the weighted coefficients defined in

Lemma 2.4, then for any positive integer n and wn ∈ Θh, it holds that

n∑
m=0

m∑
k=0

σ
(α−1)
k ⟨Hwm−k, wm⟩ ≥ 0.

Lemma 2.11. (see [19, 45]) Let {ωk} and {σ(α−1)
k } be the weights defined in

Lemma 2.3 and 2.4, respectively. Then for any positive integer K and real vector
(V1, V2, · · · , VK)T , the inequalities

K−1∑
n=0

 n∑
j=0

ωjVn+1−j

Vn+1 ≥ 0,

K−1∑
n=0

 n∑
j=0

σ
(α−1)
j Vn+1−j

Vn+1 ≥ 0

hold.

Lemma 2.12. (see [46, 47]) Assume that u(x, ·) ∈ C8 ([0, L]) with u(0, ·) =
u(L, ·) = ux(0, ·) = ux(L, ·) = 0, and define the operator δ4x by

δ4xu
n
i =

12

h2
(
∆xv

n
i − δ2xu

n
i

)
,

where vni is a compact approximation of ux(xi, tn), i.e.,

1

6
vni−1 +

2

3
vni +

1

6
vni+1 = ∆xu

n
i .

Then we have the following approximation

δ4xu
n
i =

∂4u(xi, tn)

∂x4
+O(h4).

Furthermore, let un =
(
un1 , u

n
2 , · · · , unM−1

)T
, then the matrix representation of

the operator δ4x is

Sun =
6

h4
(
3KP−1K+ 2D

)
un,

where

K =


0 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 0


(M−1)×(M−1)

,
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P =


4 1
1 4 1

. . .
. . .

. . .

1 4 1
1 4


(M−1)×(M−1)

,

and D = 6I−P with the identity matrix I.

Lemma 2.13. (see [46]) The matrix S defined in Lemma 2.12 is symmetric
positive definite.

It follows from Lemma 2.13, there is an invertible matrix B such that, S =
BTB. Then for wn, vn ∈ Θh, we have

⟨Swn, vn⟩ = ⟨BTBwn, vn⟩ = ⟨Bwn,Bvn⟩. (2.2)

3 Derivation and analysis of the finite difference scheme

In this section, a finite difference scheme with the accuracy O(τ2 + h2) for non-
linear Problem (2.1) is constructed and analyzed.

Assume that u(x, t) ∈ C8,3
x,t ([0, L]× [0, T ]), and u(·, 0) = ut(·, 0) = 0. Consider

Eq. (2.1) at the point u(xi, tn+1/2), we have

∂u(xi, t)

∂t

∣∣∣∣
t=tn+1/2

=− C
0 D

α−1
tn+1/2

u(xi, t)−Kc · 0Jtn+1/2

∂4u(xi, t)

∂x4
+ 0Jtn+1/2

∂2u(xi, t)

∂x2

+ 0Jtn+1/2
g(u(xi, t)) + F (xi, tn+1/2).

The Crank-Nicolson technique and Lemma 2.2 for the above equation yield

u(xi, tn+1)− u(xi, tn)

τ
=− 1

2

[
C
0 D

α−1
tn+1

u(xi, t) +
C
0 D

α−1
tn u(xi, t)

]
− Kc

2

[
0Jtn+1

∂4u(xi, t)

∂x4
+ 0Jtn

∂4u(xi, t)

∂x4

]
+

1

2

[
0Jtn+1

∂2u(xi, t)

∂x2
+ 0Jtn

∂2u(xi, t)

∂x2

]
+

1

2

[
0Jtn+1g(xi, t) + 0Jtng(xi, t)

]
+ F (xi, tn+1/2) +O(τ2). (3.1)

Let u(xi, tn) = uni . Since the initial values are 0, thus the Riemann−liouville
derivative is equivalent to Caputo derivative. We apply Lemmas 2.3 and 2.4 to
discretize the first order integral operator and Caputo derivative in Eq. (3.1) re-

spectively, apply Lemma 2.12 to discretize ∂4u(xi,t)
∂x4 , and Lemma 2.5 to discretize
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∂2u(xi,t)
∂x2 , then we get

un+1
i − uni

τ
=− τ1−α

2

[
n+1∑
k=0

σ
(α−1)
k un+1−k

i +

n∑
k=0

σ
(α−1)
k un−k

i

]

− Kcτ

2

[
n+1∑
k=0

ωkδ
4
xu

n+1−k
i +

n∑
k=0

ωkδ
4
xu

n−k
i

]

+
τ

2

[
n+1∑
k=0

ωkδ
2
xu

n+1−k
i +

n∑
k=0

ωkδ
2
xu

n−k
i

]

+
τ

2

[
n+1∑
k=0

ωkg(u
n+1−k
i ) +

n∑
k=0

ωkg(u
n−k
i )

]

+ F
n+ 1

2
i + (R1)

n+1
i , (3.2)

where
(R1)

n+1
i = O(τ2 + h2 + h4) = O(τ2 + h2).

It is clear that Eq. (3.2) is a nonlinear system with respect to the unknown
un+1
i . To linearly solve Eq. (3.2), we use u1i = u0i + τ(ut)

0
i +O(τ2) and Lemma

2.7 to linearize Eq. (3.2) for n = 0 and 1 ≤ n ≤ N − 1, respectively, and then
multiply Eq. (3.2) by τ , i.e.,

u1i − u0i =− τ2−α

2

[
1∑

k=0

σ
(α−1)
k u1−k

i + σ
(α−1)
0 u0i

]

− Kcτ
2

2

[
1∑

k=0

ωkδ
4
xu

1−k
i + ω0δ

4
xu

0
i

]

+
τ2

2

[
1∑

k=0

ωkδ
2
xu

1−k
i + ω0δ

2
xu

0
i

]

+
τ2

2

[
ω0g(u

0
i + τ(ut)

0
i ) + ω1g(u

0
i ) + ω0g(u

0
i )
]

+ τF
n+ 1

2
i +O(τ3 + τh2), (3.3)

and

un+1
i − uni =− τ2−α

2

[
n+1∑
k=0

σ
(α−1)
k un+1−k

i +
n∑

k=0

σ
(α−1)
k un−k

i

]

− Kcτ
2

2

[
n+1∑
k=0

ωkδ
4
xu

n+1−k
i +

n∑
k=0

ωkδ
4
xu

n−k
i

]

+
τ2

2

[
n+1∑
k=0

ωkδ
2
xu

n+1−k
i +

n∑
k=0

ωkδ
2
xu

n−k
i

]
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+
τ2

2

[
n+1∑
k=1

ωkg(u
n+1−k
i ) +

n∑
k=0

ωkg(u
n−k
i )

]

+
τ2ω0

2
g(2uni − un−1

i ) + τF
n+ 1

2
i +O(τ3 + τh2), for 1 ≤ n ≤ N − 1. (3.4)

Noting (ut)
0
i = 0, neglecting the truncation error term O(τ3+τh2) in both above

equations, and replacing the uni with its numerical solution Un
i , we deduce the

following finite difference scheme for Problem (2.1)

U1
i − U0

i =− τ2−α

2

[
1∑

k=0

σ
(α−1)
k U1−k

i + σ
(α−1)
0 U0

i

]

− Kcτ
2

2

[
1∑

k=0

ωkδ
4
xU

1−k
i + ω0δ

4
xU

0
i

]

+
τ2

2

[
1∑

k=0

ωkδ
2
xU

1−k
i + ω0δ

2
xU

0
i

]

+
τ2

2

[
ω0g(U

0
i ) + ω1g(U

0
i ) + ω0g(U

0
i )
]

+ τF
n+ 1

2
i , (3.5)

and

Un+1
i − Un

i =− τ2−α

2

[
n+1∑
k=0

σ
(α−1)
k Un+1−k

i +
n∑

k=0

σ
(α−1)
k Un−k

i

]

− Kcτ
2

2

[
n+1∑
k=0

ωkδ
4
xU

n+1−k
i +

n∑
k=0

ωkδ
4
xU

n−k
i

]

+
τ2

2

[
n+1∑
k=0

ωkδ
2
xU

n+1−k
i +

n∑
k=0

ωkδ
2
xU

n−k
i

]

+
τ2

2

[
n+1∑
k=1

ωkg(U
n+1−k
i ) +

n∑
k=0

ωkg(U
n−k
i )

]

+
τ2ω0

2
g(2Un

i − Un−1
i ) + τF

n+ 1
2

i , for 1 ≤ n ≤ N − 1. (3.6)

Now, let us analyze the convergence and the unconditional stability of the
Scheme (3.5) and (3.6).

Theorem 3.1. Assume u(x, t) ∈ C8,3
x,t ([0, L]× [0, T ]) and u(·, 0) = ut(·, 0) = 0,

and let u(x, t) be the exact solution of Eq. (2.1) and {Un
i |0 ≤ i ≤ M, 1 ≤ n ≤ N}

be the numerical solution for Scheme (3.7) and (3.8). Then, for 1 ≤ n ≤ N , it
holds that

∥un − Un∥ ≤ C(τ2 + h2x + h2y).
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Proof. Let us start by analyzing the error of (3.6). Subtracting Eq. (3.6) from
Eq. (3.4), we have

en+1
i − eni =− τ2−α

2

[
n+1∑
k=0

σ
(α−1)
k en+1−k

i +
n∑

k=0

σ
(α−1)
k en−k

i

]

− Kcτ
2

2

[
n+1∑
k=0

ωkδ
4
xe

n+1−k
i +

n∑
k=0

ωkδ
4
xe

n−k
i

]

+
τ2

2

[
n+1∑
k=0

ωkδ
2
xe

n+1−k
i +

n∑
k=0

ωkδ
2
xe

n−k
i

]

+
τ2

2

n∑
k=0

(ωk+1 + ωk)
[
g(un−k

i )− g(Un−k
i )

]
+

τ2ω0

2

[
g(2uni − un−1

i )− g(2Un
i − Un−1

i )
]

+O(τ3 + τh2),

where eni = uni − Un
i . Since e0i = 0, the above equation becomes

en+1
i − eni =− τ2−α

2

[
n∑

k=0

σ
(α−1)
k (en+1−k

i + en−k
i )

]

− Kcτ
2

2

[
n∑

k=0

ωkδ
4
x

(
en+1−k
i + en−k

i

)]

+
τ2

2

[
n∑

k=0

ωkδ
2
x

(
en+1−k
i + en−k

i

)]

+
τ2

2

n∑
k=0

(ωk+1 + ωk)
[
g(un−k

i )− g(Un−k
i )

]
+

τ2ω0

2

[
g(2uni − un−1

i )− g(2Un
i − Un−1

i )
]

+O(τ3 + τh2).

Multiplying the both sides of the above equation by h(en+1
i + eni ) and summing

over 1 ≤ i ≤ M − 1. Then using Lemmas 2.9, 2.12, and Eq. (2.2), we have

∥en+1∥2 − ∥en∥2 =− τ2−α

2

n∑
k=0

σ
(α−1)
k ⟨en+1−k + en−k, en+1 + en⟩

− Kcτ
2

2

n∑
k=0

ωk⟨B(en+1−k + en−k), B(en+1 + en)⟩

− τ2

2

n∑
k=0

ωk⟨δx(en+1−k + en−k), δx(e
n+1 + en)⟩
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+
τ2

2

n∑
k=0

(ωk+1 + ωk)⟨g(un−k)− g(Un−k), en+1 + en⟩

+
τ2ω0

2
⟨g(2un − un−1)− g(2Un − Un−1), en+1 + en⟩

+ ⟨O(τ3 + τh2), en+1 + en⟩.

Summing the above equation over n from 1 to J − 1 leads to

∥eJ∥2 − ∥e1∥2 =− τ2−α

2

J−1∑
n=1

n∑
k=0

σ
(α−1)
k ⟨en+1−k + en−k, en+1 + en⟩

− Kcτ
2

2

J−1∑
n=1

n∑
k=0

ωk⟨B(en+1−k + en−k), B(en+1 + en)⟩

− τ2

2

J−1∑
n=1

n∑
k=0

ωk⟨δx(en+1−k + en−k), δx(e
n+1 + en)⟩

+
τ2

2

J−1∑
n=1

n∑
k=0

(ωk+1 + ωk)⟨g(un−k)− g(Un−k), en+1 + en⟩

+
τ2ω0

2

J−1∑
n=1

⟨g(2un − un−1)− g(2Un − Un−1), en+1 + en⟩

+
J−1∑
n=1

⟨O(τ3 + τh2), en+1 + en⟩. (3.7)

Now, we turn to analyze ∥e1∥. Subtracting Eqs. (3.5) from Eq. (3.3), and
by the similar deductions as above, we can derive that

∥e1∥2 =− τ2−α

2
σ
(α−1)
0 ⟨e1 + e0, e1 + e0⟩

− Kcτ
2

2
ω0⟨B(e1 + e0), B(e1 + e0)⟩

− τ2

2
ω0⟨δx(e1 + e0), δx(e

1 + e0)⟩

+ τ2ω0⟨g(u0)− g(U0), e1 + e0⟩

+
τ2ω1

2
⟨g(u0)− g(U0), e1 + e0⟩

+ ⟨O(τ3 + τh2), e1 + e0⟩. (3.8)
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Sum up Eq. (3.7) and Eq. (3.8), and apply Lemma 2.11, it deduces that

∥eJ∥2 ≤τ2

2

J−1∑
n=1

n∑
k=0

(ωk+1 + ωk)⟨g(un−k)− g(Un−k), en+1 + en⟩

+
τ2ω0

2

J−1∑
n=1

⟨g(2un − un−1)− g(2Un − Un−1), en+1 + en⟩

+ τ2ω0⟨g(u0)− g(U0), e1 + e0⟩+ τ2ω1

2
⟨g(u0)− g(U0), e1 + e0⟩

+ C
J−1∑
n=1

⟨O(τ3 + τh2), en+1 + en⟩. (3.9)

Using the Lipschitz condition of g and exchanging the order of two summations
in the above inequality, we have

∥eJ∥2 ≤Cτ2
J−1∑
k=0

J−1∑
n=k

(ωn+1−k + ωn−k)∥ek∥∥en+1 + en∥

+ Cτ2
J−1∑
n=1

∥en∥∥en+1 + en∥+ C
J−1∑
n=1

(τ3 + τh2)∥en+1 + en∥. (3.10)

Assuming ∥eP ∥ = max0≤p≤N ∥ep∥. Since τ
∑N

n=k (ωn+1−k + ωn−k) is bounded
(see [39]), then the above inequality yields

∥eP ∥ ≤ Cτ
P−1∑
k=0

∥ek∥+ C(τ2 + h2). (3.11)

Once the discrete Gronwall inequality has been applied to Inequality (3.11), we
arrive at the estimate

∥eP ∥ ≤ C(τ2 + h2),

thus finishing the proof.

Theorem 3.2. Let {Un
i |0 ≤ i ≤ M, 0 ≤ n ≤ N} be the numerical solution of

Scheme (3.5) and (3.6) for Problem (2.1). Then for 1 ≤ K ≤ N , it holds

∥UK∥ ≤ C

(
max

0≤n≤N
∥g(Un)∥+ max

0≤n≤N−1
∥Fn+ 1

2 ∥
)
. (3.12)

Proof. Multiplying (3.6) by h(Un+1
i +Un

i ) and summing up for i from 1 to M−1.
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We have

∥Un+1∥2 − ∥Un∥2 =− τ2−α

2

n∑
k=0

σ
(α−1)
k ⟨Un+1−k + Un−k, Un+1 + Un⟩

− Kcτ
2

2

n∑
k=0

ωk⟨δ4x(Un+1−k + Un−k), Un+1 + Un⟩

+
τ2

2

n∑
k=0

ωk⟨δ2x(Un+1−k + Un−k), Un+1 + Un⟩

+
τ2

2

n∑
k=0

(ωk+1 + ωk)⟨g(Un−k), Un+1 + Un⟩

+
τ2ω0

2
⟨g(2Un − Un−1), Un+1 + Un⟩

− Kcτ
2

2
ωn+1⟨δ4xU0, Un+1 + Un⟩ − τ2−α

2
σ
(α−1)
n+1 ⟨U0, Un+1 + Un⟩

+
τ2

2
ωn+1⟨δ2xU0, Un+1 + Un⟩+ τ⟨Fn+ 1

2 , Un+1 + Un⟩.

Note that Eq. (1.1) is equipped with the homogeneous initial conditions, thus it
deduces

∥Un+1∥2 − ∥Un∥2 =− τ2−α

2

n∑
k=0

σ
(α−1)
k ⟨Un+1−k + Un−k, Un+1 + Un⟩

− Kcτ
2

2

n∑
k=0

ωk⟨δ4x(Un+1−k + Un−k), Un+1 + Un⟩

+
τ2

2

n∑
k=0

ωk⟨δ2x(Un+1−k + Un−k), Un+1 + Un⟩

+
τ2

2

n∑
k=0

(ωk+1 + ωk)⟨g(Un−k), Un+1 + Un⟩

+
τ2ω0

2
⟨g(2Un − Un−1), Un+1 + Un⟩

+ τ⟨Fn+ 1
2 , Un+1 + Un⟩.

Applying the similar deductions to get Eq. (3.9), it achieves that

∥UJ∥2 ≤Cτ

J−1∑
k=0

∥g(Uk)∥
(
∥Un+1∥+ ∥Un∥

)
+

τ2

2
ω0

J−1∑
n=1

∥g(2Un − Un−1)∥
(
∥Un+1∥+ ∥Un∥

)
+ Cτ

J−1∑
n=1

∥Fn+ 1
2 ∥

(
∥Un+1∥+ ∥Un∥

)
. (3.13)
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One can estimate ∥g(2Un − Un−1)∥ as the following

∥g(2Un − Un−1)∥ =∥g(2Un − Un−1)− g(Un) + g(Un)∥,
≤∥g(2Un − Un−1)− g(Un)∥+ ∥g(Un)∥,
≤C(∥Un∥+ ∥Un−1∥) + ∥g(Un)∥. (3.14)

Substituting Eq. (3.14) into Eq. (3.13) and using Young’s inequality, then we
have

∥UJ∥2 ≤ Cτ
J−1∑
n=0

∥Un∥2 + C max
0≤n≤N

∥g(Un)∥2 + C max
0≤n≤N−1

∥Fn+ 1
2 ∥2. (3.15)

By applying the Gronwall inequality to (3.15), it becomes

∥UJ∥2 ≤ C

(
max

0≤n≤N
∥g(Un)∥2 + max

0≤n≤N−1
∥Fn+ 1

2 ∥2
)
,

and this completes the proof.

4 Derivation and analysis of the compact finite dif-
ference scheme

In this section, a compact finite difference scheme with accuracy O(τ2 + h4) for
nonlinear Problem (2.1) is presented and analyzed.

Now let us act on both sides of Eq. (3.1) with the compact operator H. Then,
by using Lemma 2.6, we obtain

H
[
u(xi, tn+1)− u(xi, tn)

τ

]
=− 1

2
H

[
C
0 D

α−1
tn+1

u(xi, t) +
C
0 D

α−1
tn u(xi, t)

]
− Kc

2
H

[
0Jtn+1

∂4u(xi, t)

∂x4
+ 0Jtn

∂4u(xi, t)

∂x4

]
+

1

2

[
0Jtn+1δ

2
xu(xi, t) + 0Jtnδ

2
xu(xi, t)

]
+

1

2
H

[
0Jtn+1g(xi, t) + 0Jtng(xi, t)

]
+HF

n+ 1
2

i +O(τ2 + h4). (4.1)

Apply the similar deductions to get Eqs. (3.3) and (3.4), it achieves

H
[
u1i − u0i

]
=− τ2−α

2
H

[
1∑

k=0

σ
(α−1)
k u1−k

i + σ
(α−1)
0 u0i

]

− Kcτ
2

2
H

[
1∑

k=0

ωkδ
4
xu

1−k
i + ω0δ

4
xu

0
i

]
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+
τ2

2

[
1∑

k=0

ωkδ
2
xu

1−k
i + ω0δ

2
xu

0
i

]

+
τ2

2
H

[
ω0g(u

0
i ) + ω1g(u

0
i ) + ω0g(u

0
i )
]
+ τHF

n+ 1
2

i

+O(τ3 + τh4), (4.2)

and

H
[
un+1
i − uni

]
=− τ2−α

2
H

[
n+1∑
k=0

σ
(α−1)
k un+1−k

i +
n∑

k=0

σ
(α−1)
k un−k

i

]

− Kcτ
2

2
H

[
n+1∑
k=0

ωkδ
4
xu

n+1−k
i +

n∑
k=0

ωkδ
4
xu

n−k
i

]

+
τ2

2

[
n+1∑
k=0

ωkδ
2
xu

n+1−k
i +

n∑
k=0

ωkδ
2
xu

n−k
i

]

+
τ2

2
H

[
n+1∑
k=1

ωkg(u
n+1−k
i ) +

n∑
k=0

ωkg(u
n−k
i )

]

+
τ2ω0

2
Hg(2uni − un−1

i ) + τHF
n+ 1

2
i

+O(τ3 + τh4), for 1 ≤ n ≤ N − 1. (4.3)

Neglecting the truncation error term O(τ3 + τh4) in both above equations, and
replacing the uni with its numerical solution Un

i , we deduce the following compact
finite difference scheme for Problem (2.1)

H
[
U1
i − U0

i

]
=− τ2−α

2
H

[
1∑

k=0

σ
(α−1)
k U1−k

i + σ
(α−1)
0 U0

i

]

− Kcτ
2

2
H

[
1∑

k=0

ωkδ
4
xU

1−k
i + ω0δ

4
xU

0
i

]

+
τ2

2

[
1∑

k=0

ωkδ
2
xU

1−k
i + ω0δ

2
xU

0
i

]

+
τ2

2
H

[
ω0g(U

0
i ) + ω1g(U

0
i ) + ω0g(U

0
i )
]

+ τHF
n+ 1

2
i , (4.4)
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and

H
[
Un+1
i − Un

i

]
=− τ2−α

2
H

[
n+1∑
k=0

σ
(α−1)
k Un+1−k

i +

n∑
k=0

σ
(α−1)
k Un−k

i

]

− Kcτ
2

2
H

[
n+1∑
k=0

ωkδ
4
xU

n+1−k
i +

n∑
k=0

ωkδ
4
xU

n−k
i

]

+
τ2

2

[
n+1∑
k=0

ωkδ
2
xU

n+1−k
i +

n∑
k=0

ωkδ
2
xU

n−k
i

]

+
τ2

2
H

[
n+1∑
k=1

ωkg(U
n+1−k
i ) +

n∑
k=0

ωkg(U
n−k
i )

]

+
τ2ω0

2
Hg(2Un

i − Un−1
i ) + τHF

n+ 1
2

i , for 1 ≤ n ≤ N − 1.

(4.5)

Theorem 4.1. Assume u(x, t) ∈ C8,3
x,t ([0, L]× [0, T ]) and u(·, 0) = ut(·, 0) = 0,

and let u(x, t) be the exact solution of Eq. (2.1) and {Un
i |0 ≤ i ≤ M, 1 ≤ n ≤ N}

be the numerical solution for Scheme (4.4) and (4.5). Then, for 1 ≤ n ≤ N , it
holds that

∥un − Un∥ ≤ C(τ2 + h4).

Proof. Let us start by analyzing the error of (4.5). Subtracting Eq. (3.5) from
Eq. (4.3), we have

H
[
en+1
i − eni

]
=− τ2−α

2
H

[
n+1∑
k=0

σ
(α−1)
k en+1−k

i +

n∑
k=0

σ
(α−1)
k en−k

i

]

− Kcτ
2

2
H

[
n+1∑
k=0

ωkδ
4
xe

n+1−k
i +

n∑
k=0

ωkδ
4
xe

n−k
i

]

+
τ2

2

[
n+1∑
k=0

ωkδ
2
xe

n+1−k
i +

n∑
k=0

ωkδ
2
xe

n−k
i

]

+
τ2

2
H

n∑
k=0

(ωk+1 + ωk)
[
g(un−k

i )− g(Un−k
i )

]
+

τ2ω0

2
H

[
g(2uni − un−1

i )− g(2Un
i − Un−1

i )
]

+O(τ3 + τh4),
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where eni = uni − Un
i . Since e0i = 0, the above equation becomes

H
[
en+1
i − eni

]
=− τ2−α

2

[
n∑

k=0

σ
(α−1)
k H(en+1−k

i + en−k
i )

]

− Kcτ
2

2

[
n∑

k=0

ωkHδ4x

(
en+1−k
i + en−k

i

)]

+
τ2

2

[
n∑

k=0

ωkδ
2
x

(
en+1−k
i + en−k

i

)]

+
τ2

2

n∑
k=0

(ωk+1 + ωk)H
[
g(un−k

i )− g(Un−k
i )

]
+

τ2ω0

2
H

[
g(2uni − un−1

i )− g(2Un
i − Un−1

i )
]

+O(τ3 + τh4).

Multiplying the both sides of the above equation by h(en+1
i + eni ) and summing

over 1 ≤ i ≤ M − 1. Then using Lemmas 2.8, 2.9, and Eq. (2.2), we have

∥en+1∥2 − ∥en∥2 ≤− τ2−α

2

n∑
k=0

σ
(α−1)
k ⟨H(en+1−k + en−k), en+1 + en⟩

− Kcτ
2

2

n∑
k=0

ωk⟨HB(en+1−k + en−k), B(en+1 + en)⟩

− τ2

2

n∑
k=0

ωk⟨δx(en+1−k + en−k), δx(e
n+1 + en)⟩

+
τ2

2

n∑
k=0

(ωk+1 + ωk)⟨H
(
g(un−k)− g(Un−k)

)
, en+1 + en⟩

+
τ2ω0

2
⟨H

(
g(2un − un−1)− g(2Un − Un−1)

)
, en+1 + en⟩

+ ⟨O(τ3 + τh4), en+1 + en⟩.

Summing the above inequality over n from 1 to J − 1 leads to

∥eJ∥2 − ∥e1∥2 ≤− τ2−α

2

J−1∑
n=1

n∑
k=0

σ
(α−1)
k ⟨H(en+1−k + en−k), en+1 + en⟩

− Kcτ
2

2

J−1∑
n=1

n∑
k=0

ωk⟨HB(en+1−k + en−k), B(en+1 + en)⟩

− τ2

2

J−1∑
n=1

n∑
k=0

ωk⟨δx(en+1−k + en−k), δx(e
n+1 + en)⟩

+
τ2

2

J−1∑
n=1

n∑
k=0

(ωk+1 + ωk)⟨H
(
g(un−k)− g(Un−k)

)
, en+1 + en⟩
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+
τ2ω0

2

J−1∑
n=1

⟨H
(
g(2un − un−1)− g(2Un − Un−1)

)
, en+1 + en⟩

+

J−1∑
n=1

⟨O(τ3 + τh4), en+1 + en⟩. (4.6)

Now, we turn to analyze ∥e1∥. From Eqs. (4.4), (4.2), and by the similar
deductions as above, we can derive that

∥e1∥2 ≤− τ2−α

2
σ
(α−1)
0 ⟨H(e1 + e0), e1 + e0⟩

− Kcτ
2

2
ω0⟨HB(e1 + e0), B(e1 + e0)⟩

− τ2

2
ω0⟨δx(e1 + e0), δx(e

1 + e0)⟩

+
τ2

2
(ω1 + ω0)⟨H

(
g(u0)− g(U0)

)
, e1 + e0⟩

+
τ2ω0

2
⟨H

(
g(u0)− g(U0)

)
, e1 + e0⟩

+ ⟨O(τ3 + τh4), e1 + e0⟩. (4.7)

Sum up Eq. (4.6) and Eq. (4.7), and apply Lemmas 2.11 and 2.12, it deduces
that

∥eJ∥2 ≤τ2

2

J−1∑
n=1

n∑
k=0

(ωk+1 + ωk)⟨H
(
g(un−k)− g(Un−k)

)
, en+1 + en⟩

+
τ2ω0

2

J−1∑
n=1

⟨H
(
g(2un − un−1)− g(2Un − Un−1)

)
, en+1 + en⟩

+
τ2

2
(ω1 + ω0)⟨H

(
g(u0)− g(U0)

)
, en+1 + en⟩

+
τ2ω0

2
⟨H

(
g(u0)− g(U0)

)
, en+1 + en⟩

+ C

J−1∑
n=1

⟨O(τ3 + τh4), en+1 + en⟩.

According to the same technique as for dealing with (3.9), we can achieve

∥eP ∥ ≤ C(τ2 + h4),

thus finishing the proof.

Theorem 4.2. Let {Un
i |0 ≤ i ≤ M, 0 ≤ n ≤ N} be the numerical solution of

Scheme (4.4) and (4.5) for problem (2.1). Then for 1 ≤ K ≤ N , it holds

∥UK∥ ≤ C

(
max

0≤n≤N
∥g(Un)∥+ max

0≤n≤N−1
∥Fn+ 1

2 ∥
)
.
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5 Numerical experiments

Consider the following problem with exact solution u(x, t) = t2+α sin2(πx)

∂2u(x, t)

∂t2
+ C

0 D
α
t u(x, t) +

∂4u(x, t)

∂x4
=

∂2u(x, t)

∂x2
+ f(x, t) + g(u),

where T = 1, 0 < x < 1, 0 < t ≤ T , and 1 < α < 2. The nonlinear function
g(u) = u2 and f(x, t) is

f(x, t) = (2 + α)(1 + α)tα sin2(πx) +
Γ(3 + α)

2
t2 sin2(πx)− 8π4t2+α cos(2πx)

−2π2t2+α cos(2πx)− t2(2+α) sin4(πx).

It is clear that u(x, t) satisfies all smoothness conditions required by Theorems
3.1 and 4.1, so that both of our schemes can be applied in this example. In
Figures 1 and 2, we compare the exact solution with the numerical solution of
finite difference Scheme (3.5) and (3.6) and compact finite difference Scheme
(4.4) and (4.5). We easily see that the exact solution can be well approximated
by the numerical solutions of our schemes.

First, we in Table 1 show the computational results of finite difference Scheme
(3.5) and (3.6). We set α = 1.25, 1.5 and 1.75, respectively. Obviously, these
settings meet the smoothness assumption of Theorem 3.1. The temporal and
spatial convergence approach to 2.

In Tables 2 and 3 we test the numerical convergence order of compact finite
difference Scheme (4.4) and (4.5). It is clear that all of the settings of α in Tables
2 and 3 satisfy the conditions of Theorem 4.1. And Tables 2 and 3 show the
numerical convergence order in time and space approach to 2 and 4, respectively.

Table 1: Errors and numerical convergence orders of Scheme (3.5) and (3.6) for
different α.

τ = h
α = 1.25 α = 1.5 α = 1.75

error order error order error order

1/5 6.6627× 10−2 7.8031× 10−2 8.9815× 10−2

1/10 1.8412× 10−2 1.8555 2.1839× 10−2 1.8371 2.5456× 10−2 1.8190
1/20 4.8132× 10−3 1.9355 5.7273× 10−3 1.9310 6.6917× 10−3 1.9275
1/40 1.2137× 10−3 1.9876 1.4621× 10−3 1.9698 1.7210× 10−3 1.9591
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Figure 1: The comparison of numerical solution of Scheme (3.5) and (3.6) with the exact solution for
τ = h = 0.01 and α = 1.6.
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Figure 2: The comparison of numerical solution of the compact finite difference Scheme (4.4) and (4.5)
with the exact solution for τ = h = 0.01 and α = 1.6.
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Table 2: Errors and temporal numerical convergence orders of Scheme (4.4) and
(4.5) for h = 0.001 and different α.

τ
α = 1.25 α = 1.5 α = 1.75

error order error order error order

1/5 7.0844× 10−2 8.2129× 10−2 9.3783× 10−2

1/10 1.9012× 10−2 1.8978 2.2432× 10−2 1.8724 2.6040× 10−2 1.8486
1/20 4.9407× 10−3 1.9441 5.8538× 10−3 1.9381 6.8169× 10−3 1.9335
1/40 1.2436× 10−3 1.9901 1.4919× 10−3 1.9723 1.7506× 10−3 1.9612

Table 3: Errors and spatial numerical convergence orders of Scheme (4.4) and
(4.5) for τ = 0.0005 and different α.

h
α = 1.25 α = 1.5 α = 1.75

error order error order error order

1/5 3.8110× 10−3 3.7871× 10−3 3.7555× 10−3

1/10 2.5308× 10−4 3.9125 2.5141× 10−4 3.9130 2.4922× 10−4 3.9135
1/20 2.2087× 10−5 3.5183 2.1851× 10−5 3.5243 2.1557× 10−5 3.5312
1/40 1.8261× 10−6 3.5964 1.7163× 10−6 3.6703 1.5904× 10−6 3.7607

6 Concluding Remarks

We in this paper constructed two linearized finite difference schemes for modified
time fractional nonlinear diffusion-wave equations with the space fourth-order
derivative. The equations are reduced to equivalent partial integro-differential
equations, the Crank-Nicolson technique and the midpoint formula, the weighted
and shifted Grünwald difference formula and the second order convolution for-
mula based on the generating function (3/2 − 2z + z2/2)−1, the classical cen-
tral difference formula, the fourth-order approximation, and the compact differ-
ence approach. The finite difference Scheme (3.5) and (3.6) has the accuracy
O(τ2 + h2). The compact finite difference Scheme (4.4) and (4.5) has the ac-
curacy O(τ2 + h4). It should be mentioned that our schemes require the exact
solution u(·, t) ∈ C3([0, T ]), while it requires u(·, t) ∈ C4([0, T ]) if one discretize
Eq. (1.1) directly to get the second order accuracy in time. Theoretically, the
convergence and the unconditional stability of the two proposed schemes are
proved and discussed. All of the numerical experiments can support our theo-
retical results.
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