References
1. Luhadia, S.K., Steroid resistant asthma. J Assoc Physicians India, 2014. 62 (3 Suppl): p. 38-40.
2. Maltby, S., et al., Mouse models of severe asthma: Understanding the mechanisms of steroid resistance, tissue remodelling and disease exacerbation. Respirology, 2017. 22 (5): p. 874-885.
3. Dunn, R.M., P.J. Busse, and M.E. Wechsler, Asthma in the elderly and late-onset adult asthma. Allergy, 2018. 73 (2): p. 284-294.
4. Aghasafari, P., U. George, and R. Pidaparti, A review of inflammatory mechanism in airway diseases. Inflamm Res, 2019.68 (1): p. 59-74.
5. Zhou-Suckow, Z., et al., Airway mucus, inflammation and remodeling: emerging links in the pathogenesis of chronic lung diseases. Cell Tissue Res, 2017. 367 (3): p. 537-550.
6. Budde, J. and G.S. Skloot, Is aging a ”comorbidity” of asthma?Pulm Pharmacol Ther, 2018. 52 : p. 52-56.
7. Kennedy, B.K., et al., Geroscience: linking aging to chronic disease. Cell, 2014. 159 (4): p. 709-713.
8. Wang, Z.N., et al., Potential Role of Cellular Senescence in Asthma. Front Cell Dev Biol, 2020. 8 : p. 59.
9. Conte, E., et al., Anti-inflammatory and antifibrotic effects of resveratrol in the lung. Histol Histopathol, 2015. 30 (5): p. 523-529.
10. Johnson, A.A., et al., The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res, 2012.15 (5): p. 483-494.
11. Field, A.E., et al., DNA Methylation Clocks in Aging: Categories, Causes, and Consequences. Mol Cell, 2018. 71 (6): p. 882-895.
12. Yang, I.V., et al., Relationship of DNA methylation and gene expression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 2014. 190 (11): p. 1263-1272.
13. Zhu, H., G. Wang, and J. Qian, Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet, 2016.17 (9): p. 551-565.
14. Morales-Nebreda, L., F.S. McLafferty, and B.D. Singer, DNA methylation as a transcriptional regulator of the immune system. Transl Res, 2019. 204 : p. 1-18.
15. Nicodemus-Johnson, J., et al., DNA methylation in lung cells is associated with asthma endotypes and genetic risk. JCI Insight, 2016. 1 (20): p. e90151.
16. Morrow, J.D., et al., DNA methylation profiling in human lung tissue identifies genes associated with COPD. Epigenetics, 2016.11 (10): p. 730-739.
17. Morrow, J.D., et al., Human Lung DNA Methylation Quantitative Trait Loci Colocalize with Chronic Obstructive Pulmonary Disease Genome-Wide Association Loci. Am J Respir Crit Care Med, 2018.197 (10): p. 1275-1284.
18. Du, X., et al., Variable DNA methylation of aging-related genes is associated with male COPD. Respir Res, 2019. 20 (1): p. 243.
19. Global Strategy for Asthma Management and Prevention . Available from:https://ginasthma.org/gina-reports/.
20. Yuan, L., et al., ITGB4 deficiency induces senescence of airway epithelial cells through p53 activation. Febs j, 2019.286 (6): p. 1191-1203.
21. Yuan, L., et al., Airway epithelial integrin β4 suppresses allergic inflammation by decreasing CCL17 production. Clin Sci (Lond), 2020. 134 (13): p. 1735-1749.
22. Koshy, L., et al., Evaluating genomic DNA extraction methods from human whole blood using endpoint and real-time PCR assays. Mol Biol Rep, 2017. 44 (1): p. 97-108.
23. Li, J.J., et al., Familial Hypercholesterolemia Phenotype in Chinese Patients Undergoing Coronary Angiography. Arterioscler Thromb Vasc Biol, 2017. 37 (3): p. 570-579.
24. Miravitlles, M., et al., Factors associated with increased risk of exacerbation and hospital admission in a cohort of ambulatory COPD patients: a multiple logistic regression analysis. The EOLO Study Group. Respiration, 2000. 67 (5): p. 495-501.
25. Fluss, R., D. Faraggi, and B. Reiser, Estimation of the Youden Index and its associated cutoff point. Biom J, 2005. 47 (4): p. 458-472.
26. Saito, H., et al., Decreased Serum Concentration of Total IgG Is Related to Tumor Progression in Gastric Cancer Patients. Yonago Acta Med, 2017. 60 (2): p. 119-125.
27. Mazurek, J.M. and G. Syamlal, Prevalence of Asthma, Asthma Attacks, and Emergency Department Visits for Asthma Among Working Adults - National Health Interview Survey, 2011-2016. MMWR Morb Mortal Wkly Rep, 2018. 67 (13): p. 377-386.
28. Vignola, A.M., et al., Aging and asthma: pathophysiological mechanisms. Allergy, 2003. 58 (3): p. 165-175.
29. Bullone, M. and J.P. Lavoie, The Contribution of Oxidative Stress and Inflamm-Aging in Human and Equine Asthma. Int J Mol Sci, 2017. 18 (12).
30. Amarin, J.Z., et al., An intronic single-nucleotide polymorphism (rs13217795) in FOXO3 is associated with asthma and allergic rhinitis: a case-case-control study. BMC Med Genet, 2017.18 (1): p. 132.
31. Hu, W.P., et al., Identification of novel candidate genes involved in the progression of emphysema by bioinformatic methods. Int J Chron Obstruct Pulmon Dis, 2018. 13 : p. 3733-3747.
32. Barkund, S., et al., FOXO3a Gene Polymorphism Associated with Asthma in Indian Population. Mol Biol Int, 2015. 2015 : p. 638515.
33. Hwang, J.W., et al., FOXO3 deficiency leads to increased susceptibility to cigarette smoke-induced inflammation, airspace enlargement, and chronic obstructive pulmonary disease. J Immunol, 2011. 187 (2): p. 987-998.
34. Hashimoto, Y., et al., 27-Hydroxycholesterol accelerates cellular senescence in human lung resident cells. Am J Physiol Lung Cell Mol Physiol, 2016. 310 (11): p. L1028-41.
35. Perez, R.F., et al., Distinct chromatin signatures of DNA hypomethylation in aging and cancer. Aging Cell, 2018. 17 (3): p. e12744.
36. Sundar, I.K., et al., DNA methylation profiling in peripheral lung tissues of smokers and patients with COPD. Clin Epigenetics, 2017.9 : p. 38.
37. Xu, Q., et al., Targeting amphiregulin (AREG) derived from senescent stromal cells diminishes cancer resistance and averts programmed cell death 1 ligand (PD-L1)-mediated immunosuppression.Aging Cell, 2019. 18 (6): p. e13027.
38. Gao, S., et al., E2F1 mediates the downregulation of POLD1 in replicative senescence. Cell Mol Life Sci, 2019. 76 (14): p. 2833-2850.
39. Martins, R., G.J. Lithgow, and W. Link, Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell, 2016. 15 (2): p. 196-207.
40. Wu, D. and C. Prives, Relevance of the p53-MDM2 axis to aging. Cell Death Differ, 2018. 25 (1): p. 169-179.
41. Wang, S., et al., Ablation of toll-like receptor 4 attenuates aging-induced myocardial remodeling and contractile dysfunction through NCoRI-HDAC1-mediated regulation of autophagy. J Mol Cell Cardiol, 2018.119 : p. 40-50.
42. de Sousa Neto, I.V., et al., Effects of Resistance Training on Matrix Metalloproteinase Activity in Skeletal Muscles and Blood Circulation During Aging. Front Physiol, 2018. 9 : p. 190.
43. von Bernhardi, R., L. Eugenin-von Bernhardi, and J. Eugenin,Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci, 2015. 7 : p. 124.
44. Huang, W., et al., ATG3, a Target of miR-431-5p, Promotes Proliferation and Invasion of Colon Cancer via Promoting Autophagy.Cancer Manag Res, 2019. 11 : p. 10275-10285.
45. Xu, W., Expression data analysis to identify biomarkers associated with asthma in children. Int J Genomics, 2014.2014 : p. 165175.
46. Nakagome, K. and M. Nagata, Pathogenesis of airway inflammation in bronchial asthma. Auris Nasus Larynx, 2011.38 (5): p. 555-563.
47. Toujani, S., et al., Role of metalloproteinases MMP-2 in asthma. Tunis Med, 2016. 94 (6): p. 167-171.
48. Hur, G.Y. and D.H. Broide, Genes and Pathways Regulating Decline in Lung Function and Airway Remodeling in Asthma. Allergy Asthma Immunol Res, 2019. 11 (5): p. 604-621.
49. Butler, C.A., et al., Glucocorticoid receptor beta and histone deacetylase 1 and 2 expression in the airways of severe asthma. Thorax, 2012. 67 (5): p. 392-398.
50. Wang, J., et al., Amphiregulin potentiates airway inflammation and mucus hypersecretion induced by urban particulate matter via the EGFR-PI3Kα-AKT/ERK pathway. Cell Signal, 2019. 53 : p. 122-131.
51. Enomoto, Y., et al., Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack. J Allergy Clin Immunol, 2009.124 (5): p. 913-920.
52. Frudd, K., T. Burgoyne, and J.R. Burgoyne, Oxidation of Atg3 and Atg7 mediates inhibition of autophagy. Nat Commun, 2018.9 (1): p. 95.
53. Xing, Y., et al., Identification of hub genes of pneumocyte senescence induced by thoracic irradiation using weighted gene coexpression network analysis. Mol Med Rep, 2016. 13 (1): p. 107-116.
54. Xuan, L.L. and Q. Hou, [Recent advances in the study of AMPK and inflammatory pulmonary disease]. Yao Xue Xue Bao, 2014.49 (8): p. 1089-1096.
55. Tsai, M.J., et al., Deducting MicroRNA-Mediated Changes Common in Bronchial Epithelial Cells of Asthma and Chronic Obstructive Pulmonary Disease-A Next-Generation Sequencing-Guided Bioinformatic Approach. Int J Mol Sci, 2019. 20 (3).
56. Greenlee, K.J., Z. Werb, and F. Kheradmand, Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted.Physiol Rev, 2007. 87 (1): p. 69-98.
57. Dragicevic, S., N. Petrovic-Stanojevic, and A. Nikolic, TGFB1 Gene Promoter Polymorphisms in Serbian Asthmatics. Adv Clin Exp Med, 2016. 25 (2): p. 273-278.
58. Wang, C., et al., Identification of differentially expressed genes associated with asthma in children based on the bioanalysis of the regulatory network. Mol Med Rep, 2018. 18 (2): p. 2153-2163.
59. Shan, L., et al., Effects of Single-Nucleotide Polymorphisms in the TLR7 and TLR9 Genes of Asthmatic Children. Ann Clin Lab Sci, 2018. 48 (5): p. 601-607.
60. Haberle, V. and A. Stark, Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol, 2018. 19 (10): p. 621-637.
61. Lefaudeux, D., et al., U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. J Allergy Clin Immunol, 2017. 139 (6): p. 1797-1807.
62. Li, Y., et al., Elevated Expression of IL-33 and TSLP in the Airways of Human Asthmatics In Vivo: A Potential Biomarker of Severe Refractory Disease. J Immunol, 2018. 200 (7): p. 2253-2262.
63. Bae, D.J., et al., Epigenetic Changes in Asthma: Role of DNA CpG Methylation. Tuberc Respir Dis (Seoul), 2020. 83 (1): p. 1-13.