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When confronted with a public health emergency where the pre-existing standard of care is inadequate, sig-
nificant innovative treatment protocols can sometimes be discovered by medical doctors at the front lines based
on repurposed medications. We propose a statistical framework for analyzing the case series of patients treated
with such new protocols, that enables a comparison with our prior knowledge of expected outcomes, in the ab-
sence of treatment. The goal of the proposed methodology is not to provide a precise measurement of treatment
efficacy, but to establish the existence of treatment efficacy, in order to facilitate the binary decision of whether
the treatment protocol should be adopted on an emergency basis. The methodology consists of a frequentist
component that compares a treatment group against the probability of an adverse outcome in the absence of
treatment, and calculates an efficacy threshold that has to be exceeded by this probability, in order to control the
corresponding p-value, and reject the null hypothesis. The efficacy threshold is further adjusted with a Bayesian
technique, in order to also control the false positive rate. A random selection bias threshold is then calculated
from the efficacy threshold to control for random selection bias. Exceeding the efficacy threshold establishes
the existence of efficacy by the preponderance of evidence, and exceeding the more demanding random selec-
tion bias threshold establishes the existence of efficacy by the clear and convincing evidentiary standard. The
combined techniques are applied to case series of high-risk COVID-19 outpatients, that were treated using the
early Zelenko protocol and the more enhanced McCullough protocol.
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I. INTRODUCTION

In medical research, the efficacy of new drugs or treatment
protocols is established by controlled studies in which a treat-
ment group is compared against a control group. A case series
is one half of a controlled study consisting only of the treat-
ment group. At the beginning of the COVID-19 pandemic,
practicing medical doctors were confronted with having no
treatment to offer to their patients that can prevent or minimize
hospitalization and/or death. In response, some doctors were
compelled to innovate and discover, on their own, treatment
protocols using repurposed off-label medications. Most no-
table examples, amongst several others, include Didier Raoult
[1] in the IHU Méditerranée Infection hospital in Marseilles
France, Vladimir Zelenko [2] in upstate New York, George
Fareed and Brian Tyson [3] in California, Shankara Chetty
[4] in South Africa, Jackie Stone [5] in Zimbabwe, and Paul
Marik’s group [6, 7], which was in the beginning based at the
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Eastern Virginia Medical School. Their efforts to treat patients
generated case series of successfully treated patients that con-
stitute real-world evidence [8].

The goal of this paper is to present a statistical framework
for rapidly analyzing systematic case series data of early treat-
ment protocols with binary endpoints (e.g. hospitalization or
death), and comparing them against our prior knowledge of
the likelihood of adverse outcomes in the absence of treat-
ment. Although, the development of the proposed statistical
technique was originally motivated by the need to assess avail-
able case series [2, 9–13] of multi-drug treatment protocols
[2, 14–16] for COVID-19, it can also play a very important
role in the public health response to future pandemics or epi-
demics with no established treatment protocols. Furthermore,
the potential scope of our methodology is very broad and it
can be used to compare any treatment group case series, with
binary endpoints, against our prior knowledge of the proba-
bility of adverse outcomes based on population-level histori-
cal controls. A limitation of the methodology is that it should
be used only for treatment protocols that are based on repur-
posed medications [17] with known acceptable safety. The
main advantage of the technique is that it can be very good at
rapidly validating and enabling the deployment of treatment
protocols, based on repurposed medications, when there is a
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sufficiently strong signal of efficacy. When confronted with
a mass casualty event, it is critically important to be able to
rapidly leverage the direct clinical experience of medical doc-
tors, towards formulating an evidence-based standard of care,
while also being able to rigorously quantify the quality of the
available evidence.

The closest concept to our approach is the idea of using a
virtual control group [18], in which the outcomes observed
in a treatment group case series are compared against the pre-
dicted outcomes for the same patient cohort without treatment,
using a trained statistical model, based on data accumulated
before the discovery of the treatment in question. The virtual
control group method aims to not only establish the existence
of efficacy, but to also measure the corresponding treatment
efficacy. Our idea is to abandon any attempt to obtain an
unbiased measure of the treatment efficacy, and to focus on
establishing, with sufficient confidence, the existence of some
positive treatment efficacy. We do this by comparing the treat-
ment group case series with a probability lower-bound for the
expected negative outcomes without treatment. Such lower
bounds can be easily extracted from available data, and can
be facilitated by applying risk-stratification on the treatment
group case series, when necessary. Thus, our aim is to es-
tablish, with sufficient confidence, a positive lower bound for
treatment efficacy, quickly and without expending substantial
resources, using real-world evidence that has been accumu-
lated from the efforts of practicing physicians. In turn, this
can be sufficient for a positive recommendation to adopt the
corresponding treatment protocol.

Because case-series are susceptible to selection bias, we
define two cross-over thresholds for making a positive rec-
ommendation: an efficacy threshold, corresponding to a pre-
ponderance of evidence standard, where we assume there
is no selection bias, and a random selection bias threshold
corresponding to the clear and convincing evidentiary stan-
dard which controls for random selection bias in the case se-
ries. Following the recommendation of the American Statis-
tical Association statement on statistical significance and p-
values [19], the proposed approach combines use of the p-
value, which enables one to reject the null hypothesis, with
a Bayesian factor analysis framework [20–24] for controlling
the false positive rate [25] in the calculation of the efficacy
threshold. Empirically, we have found that the frequentist p-
value framework has done a pretty good job on its own, at
least for the analysis of the case series data considered in this
paper. However, complementing it with Bayesian factor anal-
ysis is a reasonable precaution as it can help raise the red flag
when dealing with small sample sizes and/or weak signals.

The broader context in which the proposed statistical
methodology is situated is as follows. Shortly before COVID-
19 was declared a pandemic by the World Health Organiza-
tion, an article [26] was published on February 23, 2020 in
the New England Journal of Medicine arguing that “the re-
placement of randomized trials with non-randomized obser-
vational status is a false solution to the serious problem of en-
suring that patients receive treatments that are both safe and
effective”. The opposing viewpoint was published earlier in
2017 by Frieden [27], highlighting the limitations of random-

ized controlled trials (hereafter RCT) and the need to leverage
and overcome the limitations of all available sources of ev-
idence, including real world evidence [8], in order to make
lifesaving public health decisions. In particular, Frieden [27]
stressed that the very high cost of RCTs and the long time-
lines needed for planning, recruiting patients, conducting the
study, and publishing it, are limitations that “affect the use of
randomized controlled trials for urgent health issues, such as
infectious disease outbreaks for which public health decisions
must be made quickly on the basis of limited and imperfect
data.”

Deaton and Cartwright [28] presented the conceptual
framework that underlies RCTs and highlighted several lim-
itations. Among them, they have stressed that randomization
requires very large samples on both arms of the trial, other-
wise, an RCT should not be presumed to be methodologically
superior to a corresponding observational study. For exam-
ple, the randomized controlled trial study of hydroxychloro-
quine by Dubee et al [29], was administratively stopped after
recruiting 250 patients, with 124 in the treatment group and
123 in the control group. Although a two-fold mortality rate
reduction was observed by day 28, the study failed to reach
statistical significance, due to the small sample size. Even if
statistical significance had been achieved via a stronger mor-
tality rate reduction signal, the small sample size would have
still prevented sufficient randomization. Consequently, al-
though the study has gone through the motions of an RCT, it is
not methodologically superior to a retrospective observational
study. There are several other RCT studies of hydroxychloro-
quine with similar shortcomings [30].

Furthermore, although a properly conducted RCT has inter-
nal validity, in that the inferences are applicable to the specific
group of patients that participated in the trial, the external va-
lidity of the RCT outcomes needs to be justified conceptually
on the basis of prior knowledge, which is either observational,
or based on a deeper understanding of the underlying mech-
anisms of action. Because COVID-19 mortality risk in the
absence of early treatment can span three orders of magnitude
(from 0.01% to more than 10%) [31–37], depending on age
and comorbidities, trials using low-risk patient cohorts are not
informative about expected outcomes on the high-risk patient
cohorts and vice versa. Likewise, the timing of treatment and
the medication dosage/duration of treatment will confound the
results of an RCT. In general, better results are expected when
treatment is initiated earlier rather than later, and negative re-
sults can be caused by inappropriate medication dosage (i.e.,
too much or too little). These are all relevant considerations
for establishing the external validity of an RCT.

As was noted by Risch [38], when interpreting evidence
from RCTs, and more broadly from any study, we should bear
in mind that results of efficacy or toxicity of a treatment reg-
imen on hospitalized patients cannot be extrapolated to out-
patients and vice versa. Likewise, Risch [38] noted that ev-
idence of efficacy or lack of efficacy of a single drug do not
necessarily extrapolate to using several drugs in combination.
This latter point is further amplified when there is an algorith-
mic overlay governing, which drugs should be used and when,
based on the individual patient’s medical history and ongoing
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response to treatment. Consequently, RCTs that compare a
single drug monotherapy against supportive care are not al-
ways informative about whether the drug should be included
in a multi-drug protocol.

In addition to all that, we are also confronted with an ethi-
cal concern. If the available observational evidence are suffi-
ciently convincing, then there is a crossover point where it is
no longer ethical to justify randomly refusing treatment to a
large number of patients, in order to have a sufficiently large
control group. The corresponding mathematical challenge is
being able to quantify the quality of our observational evi-
dence in order to determine whether or not we are already
situated beyond this ethical crossover point.

Just as the quality of evidence provided by randomized con-
trolled trials is fluid, with respect to successful randomization
and external validity, the same is true about the quality of real
world evidence [8] that will inevitably become available from
the initial response to an emerging new pandemic. We envi-
sion that a successful pandemic response, in the area of early
outpatient treatment, will proceed as follows: The first ele-
ment of pandemic response is to assess and monitor the situa-
tion by prospectively collecting data, needed to construct pre-
dictive models of the probability of hospitalization and death,
in the absence of treatments that have yet to be discovered,
as a function of the patient’s medical profile/history. These
models do not necessarily need to be sophisticated at the early
stages of pandemic response. It could be sufficient to be able
to predict good lower bounds for the hospitalization or mortal-
ity probabilities, as opposed to more precise estimates. This
early data can be used to identify the predictive factors for
hospitalization or death and risk stratify the patients into low
risk and high risk categories. They can also be used as a his-
torical control group that establishes our prior knowledge of
expected outcomes, in the absence of treatment, that has yet
to be discovered.

In parallel with gathering and analyzing data, which is the
primary duty and responsibility of our public health and aca-
demic institutions, medical doctors have an ethical responsi-
bility to use the emerging scientific understanding of the new
disease and it’s mechanisms of actions to try to save the lives
of as many patients as possible. Under article 37 of the 2013
Helsinki declaration [39], it is ethically appropriate for physi-
cians to “use an unproven intervention, if in the physician’s
judgment it offers hope of saving life, re-establishing health
or alleviating suffering”, provided, there is informed consent
from the patient, and “where proven interventions do not exist,
or other known interventions have been ineffective”.

When this effort leads to the discovery of a treatment proto-
col, with an empirical signal of benefit and acceptable safety,
and using the treatment protocol results in a case series of
treated patients, then the confluence of the following condi-
tions makes it possible to statistically establish the existence
of treatment efficacy: First, the proposed treatment proto-
cols should use repurposed drugs [17] with known acceptable
safety. When testing new drugs, we have no prior knowl-
edge of the risks involved and a rigorous controlled study is
required to determine the balance of risks and benefits. Sec-
ond, we need data that give us prior knowledge of the prob-

ability risk of the relevant binary endpoints (i.e. hospitaliza-
tion and/or death) in the absence of treatment, as a function of
the relevant stratification parameters. Third, and most impor-
tantly, the case series corresponding to treated patients should
exhibit a very strong signal of benefit, relative to our prior ex-
perience with untreated patients, prior to the discovery of the
respective treatment protocol.

Under these conditions, the idea that is proposed in this pa-
per works as follows. Our input is the number N of high-
risk patients treated, the number of patients a with an adverse
outcome (i.e. hospitalization or death) and selection criteria
for extracting the high-risk cohort under consideration, from
which we can deduce, based on prior knowledge, that the un-
known probability x of an adverse outcome without treatment
is bounded by p1 ≤ x ≤ p2. We also choose the desired level
of p-value upper bound p0, which is typically p0 = 0.05 (95%
confidence), although we shall also consider p0 = 0.01 and
p0 = 0.001. The output is an efficacy threshold x0(N, a, p0)
that gives us the following rigorous mathematical statement:
if x0(N, a, p0) < x, then we have more than 1 − p0 confi-
dence that the treatment is effective relative to the standard
of care. This statement has to be paired with the subjective
assessment of our prior knowledge, based on which we need
to show that x0(N, a, p0) < p1. The upper bound p2 is used
by the Bayesian factor technique as part of finalizing the cal-
culation of the efficacy threshold x0(N, a, p0). Implicit in this
argument is the assumption of no selection bias, allowing us to
apply the probability x at the population level to our particular
case series. From the sample size N and the finalized efficacy
threshold x0, we also calculate a random selection bias thresh-
old x1(N, x0, p0), higher than x0, that quantifies how large the
gap between p1 and x0 needs to be, in order to mitigate with
1 − p0 confidence, any possible random selection bias in the
case-series sample (N, a).

As a result, we can assert the existence of treatment efficacy
using two distinct standards of evidence. If we can establish
x0 < p1, then the preponderance of evidence is in favor of
the existence of treatment efficacy, and this can justify its pro-
visional adoption on an emergency basis, in order to gather
more evidence. If we can establish that x1 < p1, then the
evidence becomes clear and convincing, and if these results
are replicated by multiple treatment centers, then it becomes
ethically questionable to deny patients access to the treatment
protocol, for the purpose of conducting an RCT, or simply due
to therapeutic nihilism by public health authorities. In Fig. 1,
we show how the proposed statistical methodology can be in-
tegrated into an epidemic or pandemic response that leverages
and deploys the direct experience of frontline medical doc-
tors, resulting from their efforts to treat their patients. We
stress again that this approach is appropriate only for treat-
ment protocols using repurposed medications with known ac-
ceptable safety. When new medications, as opposed to re-
purposed drugs, are introduced into a pre-existing treatment
protocol, then they should be rigorously tested both for safety
and efficacy with prospective RCTs.

The paper is organized as follows. On Section II we present
the technique for calculating the efficacy threshold and the
random selection bias threshold. We also explain the relation-
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FIG. 1: This flowchart shows the suggested interactions between medical doctors, public health agencies, and the proposed statistical method-
ology that are needed, in order to implement an emergency epidemic or pandemic response that leverages the direct experience of frontline
medical doctors treating their patients.

ship of the proposed technique with the exact Fisher test and
with the binomial proportion confidence interval problem. On
Section III, we present a Bayesian technique for adjusting the
efficacy thresholds in order to also control the corresponding
false positive rate. In Section IV, we illustrate an application
of both techniques to the Zelenko case series [2, 9, 10] as well
as the Procter [11, 12] and Raoult [13] case series. Discussion
and conclusions are given in Section V. With the exception of

Section III, which is mainly relevant to a more careful anal-
ysis by biostatisticians, we have strived to make Section II
and Section IV of the paper relevant and accessible to both
clinicians and biostatisticians, by minimizing the mathemati-
cal details. Material that is relevant only to biostatisticians is
relegated to the appendices. The computer code and the corre-
sponding calculations are included in the supplementary data
document [40].
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II. FREQUENTIST METHODS FOR CASE SERIES
ANALYSIS

In this section, we present the technique for comparing a
treatment group case series of high-risk patients against the
expected probability x of an adverse outcome without treat-
ment, based on prior knowledge. Since our prior knowledge
bounds the probability x inside an interval p1 < x < p2 but
the precise value of x is unknown, we calculate the minimum
value (efficacy threshold) that this probability has to exceed
in order to be able to reject the null hypothesis, that the treat-
ment has no efficacy. The proposed technique is equivalent
to an exact Fisher test where we take the limit of an infinitely
large control group with probability of an adverse outcome
set equal to x. We also explain the relationship of the pro-
posed approach with the binomial proportion confidence in-
terval problem, and provide evidence that the corresponding
coverage probability is conservative. The assumption of con-
servative coverage is used, in turn, to derive a random selec-
tion bias threshold that x should exceed in order reject the
possibility of a false positive result due to random selection
bias.

A. Comparing treatment group against expected adverse
event rate without treatment.

Suppose that we have a treatment group of high-risk pa-
tients in which N patients have received treatment, and a pa-
tients have had an adverse outcome. Let us also assume that
all N patients in the case series satisfy precise selection cri-
teria, used to classify them as high-risk patients, from which
we can infer, from our prior knowledge, that in the absence of
treatment, the probability x of an adverse outcome for a sim-
ilar population is bounded in the interval p1 ≤ x ≤ p2. To
establish the existence of treatment efficacy, we assume the
null hypothesis, that the treatment has no effect and that con-
sequently, the probability of an adverse outcome in the treat-
ment group is also equal to x. Under this null hypothesis the
probability of observing a patients with an adverse outcome
out of a total of N patients is given by

pr(N, a |x) =
(
N
a

)
xa (1 − x)N−a, (1)

which corresponds to a binomial distribution. The first factor
gives the number of combinations for choosing the a patients
that have an adverse outcome out of all N patients. The sec-
ond factor xa is the probability that the chosen a patients have
an adverse outcome, under the assumption of the null hypoth-
esis. The third factor (1 − x)N−a is likewise the probability
that the remaining N − a patients will not have an adverse
outcome. Consequently, the product of the three factors is the
probability of seeing the event (N, a) under the null hypothe-
sis.

The corresponding p-value is calculated by adding to the
probability of the event (N, a), the probability of all other

events with smaller or equal probability, and it reads

p(N, a, x) =
N∑
n=0

pr(N, n|x)H (pr(N, a |x) − pr(N, n|x)), (2)

where H is the modified Heaviside function given by

H (x) =
{

1, if x ≥ 0
0, if x < 0 . (3)

The Heavyside function factor in Eq. (2) selects the events
(N, n) that are less probable than the observed event (N, a) for
inclusion in the probability sum, as per the formal definition
of the p-value.

In order to reject the null hypothesis, we need to construct
a convincing argument that establishes that p(N, a, x) < p0,
with p0 = 0.05 in order to achieve 95% confidence. Such
an argument, in effect, is a hypothesis test that compares the
treatment group (N, a) outcome against a fixed probability x
for an adverse outcome in the absence of treatment. Our pro-
posal for doing so is conceptually very simple. First we cal-
culate an efficacy threshold x0(N, a, p0) such that

x0(N, a, p0) < x ≤ 1 =⇒ p(N, a, x) < p0. (4)

In doing so, we are seeking the smallest possible value of x0
that satisfies Eq. (4). If our prior belief about x is that it satis-
fies p1 ≤ x ≤ p2, then it follows that if we show that our prior
belief about the lower bound p1 of the probability x of an ad-
verse outcome without treatment exceeds the efficacy thresh-
old x0, then we have a statistically significant signal of benefit
in favor of the proposed treatment protocol. This is, in turn,
sufficient to recommend to other physicians to consider using
the treatment protocol, on an emergency basis, in order to save
as many patients as possible, as soon as possible.

We stress again that implicit in this reasoning is the assump-
tion that all observed adverse events in the treatment group
case series have been caused by the disease and not by the
treatment. For this reason, this methodology has to be lim-
ited only to the evaluation of treatment protocols using re-
purposed medications [17] with previously known acceptable
safety. Furthermore, in order to have a prior belief constrain-
ing the probability x of an adverse outcome for high-risk pa-
tients, in the absence of treatment, it is necessary for pub-
lic health agencies and academic institutions to prospectively
collect data on the predictive factors for hospitalizations or
death, as soon as possible at the beginning of an emerging
new disease. These data can then be used both to define the
selection criteria for identifying patients as high-risk and to
constrain the corresponding probability x within the interval
p1 ≤ x ≤ p2. Finally, the above argument is predicated on
the assumption of no selection bias in the case series (N, a),
in order for the inequality p1 ≤ x ≤ p2 to be applicable to the
case series. We extend the argument to account for selection
bias in Section II C.

B. Comments on the proposed hypothesis testing technique

We now make the following comments about the above hy-
pothesis testing technique. First, we note that the p-value
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FIG. 2: We plot the p-value calculated from an exact Fisher test that
compares the treatment group from the DSZ study [2] (141 high-risk
patients treated with 1 death) against an artificial control group with
3.8% mortality rate. Note that the exact p-value in the infinite control
group limit should be 0.047, which is approached to three decimals
when we get to control group size between 160,000 and 180,000

p(N, a, x), corresponding to a comparison of a case series
(N, a) of a treatment group against the probability x of an ad-
verse outcome without treatment, as given by Eq. (2), can be
also obtained by running an exact Fisher test with an artificial
control group (M, b) of M patients with b adverse outcomes,
with x = b/M , in the limit where the size of this artificial
control group goes to infinity. In appendix A, we give a math-
ematical proof of this claim and also explain the mathemati-
cally precise formulation of the statement. This convergence
property is in fact, a consequence of a known relationship
[41–43] between the hypergeometric distribution, used in the
calculation of the exact Fisher test p-value, and the binomial
distribution used in the calculation of p(N, a, x).

Paradoxically, as shown from the example in Fig. 2, the
convergence of the p-value is not monotonic with respect to
the control group size. Intuitively, increasing the size of the
control group should increase confidence in rejecting the null
hypothesis, which should result in a monotonically decreas-
ing p-value. Instead, we see that the p-value increases, as the
control group size is increased, with intermittent downward
jumps driving the convergence to p(N, a, x). We also see that
the convergence is slower than we might expect. Neverthe-
less, the result of Appendix A assures us that, in the limit of
an infinite control group, the p-value eventually does converge
to p(N, a, x).

Second, the proposed hypothesis technique is also mathe-
matically related with the well-researched binomial propor-
tion confidence interval problem [44]. Given the case series
(N, a) of a treatment group of N patients, with a patients hav-
ing an adverse outcome, the challenge of the binomial propor-
tion confidence interval problem is to identify a probability

interval (q1, q2), such that we can assert, with 1 − p0 confi-
dence, that the probability of an adverse event with treatment
is inside the interval (q1, q2).

If the null hypothesis is satisfied, then the probability of
an adverse outcome with treatment is equal to the probabil-
ity of an adverse event without treatment, and it follows that
the intervals (p1, p2) and (q1, q2) have to intersect. The con-
trapositive of this deduction is that if the intervals (p1, p2)
and (q1, q2) do not intersect, then the null hypothesis is false.
This argument shows that the upper endpoint q2 is the efficacy
threshold x0(N, a, p0) that has to be exceeded by all probabili-
ties in the interval (p1, p2) in order to reject the null hypothesis
and claim a signal of benefit. More specifically, the method
proposed in the preceding section for calculating the efficacy
threshold x0(N, a, p0) is equivalent to calculating the upper
endpoint of the Sterne interval [45] for the corresponding bi-
nomial proportion confidence interval problem.

It is worth noting that although several alternative tech-
niques have been proposed for solving the binomial propor-
tion confidence interval problem, none of them has coverage
consistent with the desired statistical confidence and most of
them do not have conservative coverage [46]. This means that,
given a case series (N, a) for a treatment group, the obtained
95% confidence interval (q1, q2) for the probability of an ad-
verse event, with treatment, could be wider or narrower than it
should be, depending on the sample size N and the unknown
true value of that probability. Furthermore, it has already been
proven that no solution to the binomial proportion confidence
interval problem exists with perfect coverage [47]. For our
purposes, a solution technique with conservative coverage that
always overestimates the efficacy threshold x0(N, a, p0) is ac-
ceptable, and to be preferred over techniques that will some-
times overestimate and sometimes underestimate the efficacy
threshold.

The coverage of a specific solution technique is quantified
via the coverage probability c(N, p0 |x), which is defined as
the conditional probability of observing a case series (N, a),
given a fixed sample size N , for which our solution technique
will yield a confidence interval that includes the true proba-
bility of an adverse event, under the condition that this true
probability is equal to x. Here, 1 − p0 is the desired level of
confidence. For very large sample sizes, c(N, p0 |x) is calcu-
lated using computer simulations, however for smaller sam-
ples, it can be calculated analytically [48] from the equation,

c(N, p0 |x) =
N∑
n=0

I (N, n, x, p0) pr(N, n|x), (5)

where I (N, n, x, p0) is an indicator function, such that
I (N, n, x, p0) = 1 if and only if x is in the confidence inter-
val obtained by the proposed solution technique for a given
case series (N, n) corresponding to 1 − p0 confidence. Other-
wise we set I (N, n, x, p0) = 0. Conservative coverage requires
that our solution technique satisfy c(N, p0 |x) ≥ 1 − p0 for all
values 0 ≤ x ≤ 1 of the probability x.

The Clopper-Pearson interval [49] is a very well-known
solution technique to the binomial proportion confidence in-
terval problem that is known to have conservative coverage.
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FIG. 3: Coverage probability for the Sterne interval [45] with sam-
ple sizes N = 20 and N = 100. The black curve corresponds to
N = 20 and the blue curve, which is situated below the black curve,
corresponds to N = 100. The coverage probabilities were calculated
using 0.01 increments on the horizontal axis.

However, an efficacy threshold, defined as the upper limit of
the Clopper-Pearson interval, is not equal to what we would
have obtained from an exact Fisher test in the limit of an in-
finite control group, unlike with the Sterne interval [45]. In
Fig. 3, we show the coverage probability for the Sterne inter-
val for sample sizes N = 20 and N = 100 and note that it also
has conservative coverage, which is very desirable in the con-
text of hypothesis testing. In Fig. 4, we compare the coverage
probability of the Clopper-Pearson interval against the cover-
age probability of the Sterne interval and note that although
they are both conservative, the Sterne interval has less conser-
vative coverage probability than the Clopper-Pearson interval,
over the same sample size.

Our third comment concerns the numerical calculation
of the efficacy thresholds x0(N, a, p0) from the function
p(N, a, x). To illustrate this calculation with an example, on
Fig. 5, we plot the p-value p(N, a, x) against the expected
mortality rate x without early outpatient treatment of COVID-
19, based on Procter’s combined case series [12] of 869 high
risk patients that received an early treatment protocol with
2 reported deaths. The figure has vertical lines marking the
crossover to 95%, 99% and 99.9% confidence. The corre-
sponding efficacy thresholds are located at the points where
the zigzag graph of the function p(N, a, x) intersects with the
vertical lines. Finding the intersection points numerically with
an efficient algorithm is challenging, due to the zigzag shape
of the graph. An efficient such algorithm was discovered very
recently [50], although we did not use it in our calculations
[40].

The discontinuous behavior of p(N, a, x) may seem para-
doxical, since we would have expected it to be monotonically
decreasing with respect to x, but we have found that it is

FIG. 4: Comparison of the coverage probability for the Clopper-
Pearson interval [49] versus the Sterne interval [45] with sample size
N = 100. The black curve shows the coverage probability for the
Clopper Pearson interval, and the blue curve, which is situated be-
low the black curve, shows the coverage probability for the Sterne
interval. The coverage probabilities were calculated using 0.01 in-
crements on the horizontal axis.

caused by some of the right-tail contributions to the p-value
sum given by Eq. (2). If we make an unwarranted approxi-
mation, replacing the right-tail sum with the left-tail sum, we
obtain the smooth curve shown in Fig. 5. The intersection
points of the smooth curve with the vertical lines, give the
upper endpoint of the Clopper-Pearson interval [49]. Similar
graphs for all case series considered in the study have been
included in our supplementary data document [40]. We have
found empirically, at least for the case series being studied
here, that both the correct zigzag curve and the approximate
smooth curve give almost the same values for all relevant ef-
ficacy thresholds.

C. Selection bias mitigation and selection bias thresholds

The idea of hypothesis testing, in which we compare a case
series of treated patients against the historical population level
(or possibly a more limited) control group, is vulnerable to
the criticism of possible selection bias in the treatment case
series in favor of establishing treatment efficacy. Some of
the selection bias could be systemic (i.e., there may be a ten-
dency towards selecting healthier high-risk patients), but even
in the absence of any systemic bias, some selection bias will
inevitably occur randomly, as a consequence of using a small
sample of patients for the treatment case series, randomly cho-
sen out of the general population. We propose the following
idea for mitigating random selection bias, and then we discuss
the problem of selection bias more broadly.

Suppose that we have a case series (N, a), of N treated pa-
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FIG. 5: Relationship between p-value and expected mortality rate
for high risk patients without early treatment, based on the case series
data from Procter’s dataset of 869 high-risk patients [12]. The zigzag
curve follows p(N, a, x) given by Eq. (2), whereas the smooth curve
approximates the right tail terms in the p-value sum by replacing
them with the left-tail terms on the horizontal axis.

tients with a adverse outcomes, and suppose that we have
calculated the efficacy threshold x0 for this case series. We
can choose x0 to be either set equal to x0(N, a, p0), or we
can choose to have it further increased, if necessary, using
the Bayesian technique of Section III. In either case, if we
have a prior belief that the probability of an adverse event,
without treatment, in the high-risk part of the general popu-
lation, under the same high-risk patient selection criteria used
to form the case series, is equal to x, then, when selecting a
random sample of N high-risk patients out of the general pop-
ulation, we can have 1 − p0 confidence that the true rate x ′

of adverse events without treatment for that particular sam-
ple will range according to a discretized confidence interval
m1(N, x, p0)/N ≤ x ′ ≤ m2(N, x, p0)/N . Here, m1(N, x, p0)
is the minimum number of adverse events and m2(N, x, p0)
is the maximum number of adverse events that we expect to
see in any one particular sample of N high-risk patients, in
the absence of treatment, with confidence 1 − p0. The possi-
ble criticism of our approach is that, perhaps, for the specific
sample of patients in our case series, the true adverse event
rate x ′, without treatment, could happen to be below the ef-
ficacy threshold x0, in spite of the corresponding population
level adverse event rate x exceeding the efficacy threshold x0.
This raises the question of how big does the gap between x and
x0 need to be, to ensure that the entire confidence interval of
x ′ lies above the efficacy threshold x0? Since the lower end-
point of this confidence interval is m1(N, x, p0)/N , the answer
to this question defines a new higher threshold x1(N, x0, p0),
which we shall call the random selection bias threshold, if set
is equal to the minimum value of x1 that satisfies

x1(N, x0, p0) < x ≤ 1 =⇒ x0 < m1(N, x, p0)/N . (6)

In Appendix B we prove that this random selection bias
threshold can be calculated by choosing the smallest possible
value of x1 that satisfies the implication

x1(N, x0, p0) < x ≤ 1 =⇒ p(N, dx0Ne, x) < p0. (7)

Here, the notation dx0Ne represents rounding the number x0N
upwards towards the nearest integer. We note that the cal-
culation of the confidence interval for x ′, as given by Ap-
pendix B, uses the assumption that the Sterne interval solu-
tion [45] of the binomial proportion confidence interval prob-
lem has conservative coverage. Given the random selection
bias threshold x1, and the prior knowledge that in a similarly
high-risk cohort at the population level, the probability x of
an adverse outcome in the absence of treatment, ranges be-
tween p1 ≤ x ≤ p2, establishing that x1 < p1 with some gap
between x1 and p1 can be used to rule out random selection
bias, with 1 − p0 confidence, as the sole cause of a signal of
efficacy.

Generally speaking, it is more likely than not that a strong
efficacy signal cannot be caused in a particular observation,
solely as a result of random selection bias, as long as x, which
is near the center of the confidence interval for x ′, exceeds the
efficacy threshold x0. Even if part of the x ′ confidence interval
is below x0, more than half of the interval will be above x0.
As a result, the efficacy threshold x0 and the random selec-
tion bias threshold x1 quantify two levels of evidence. Show-
ing x0 < p1 establishes the existence of treatment efficacy
by the preponderance of evidence. Meeting this evidentiary
standard should be sufficient for communicating the proposed
treatment protocol to other physicians for emergency adop-
tion, with a caveat that it is still investigational, and that more
data is needed before making a definitive claim. Showing
that x1 < p1 establishes the existence of treatment efficacy
by the clear and convincing evidentiary standard. Our view
is that exceeding the random selection bias threshold x1, for a
treatment protocol with acceptable safety, is an objective mile-
stone, beyond which therapeutic nihilism and even the denial
of treatment for research purposes becomes unethical.

With regards to the broader problem of systemic bias, there
are multiple possibilities to consider: There may be some
population-level geographic bias in the patients that live in
the geographic area served by a particular treatment center;
there may be reporting bias, in that we hear about case series
because of the good outcomes, without these outcomes being
representative of the actual outcomes at the national or inter-
national level; there may be bias in the patient demograph-
ics (ratio of low vs high risk patients), and with respect to
the timing of treatment (early vs late treatment). The latter
concern can be addressed by stratifying the case series with
respect to risk and/or timing of treatment. Geographic bias
can be addressed by investigating case series across multi-
ple geographic locations and/or by using localized population
statistics for the historical control. Outcome reporting bias
can be minimized, if we have consecutive case series from the
same treatment center, where the initially reported outcomes
are replicated by subsequent results.

Further mitigation of systemic selection bias is possible by
establishing a large gap between the random selection bias
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threshold x1 and the lower bound p1 for adverse outcomes
in the historical control statistics. To quantify the magni-
tude of systemic selection bias, consider the likelihood ratio
L = x/(1 − x) of selecting unhealthy vs healthy patients if
the selection is truly random, i.e. without any systemic bias.
Here we define unhealthy patients to be the high-risk patients
that will have an adverse outcome without early treatment,
if symptomatically infected, and we define healthy patients
to be the patients that are not unhealthy patients. If there is
systemic bias in favor of selecting healthy patients, then that
could account for a false positive signal of efficacy. It would
also reduce the corresponding likelihood ratio to L/F, with
F ≥ 1 a numerical factor measuring how much more likely
it is to choose healthy patients due to systemic selection bias.
In Appendix B we have also shown that the systemic selec-
tion bias threshold x1(F |N, x0, p0), that x has to overcome in
order to mitigate systemic selection bias with magnitude F is
related with the random selection bias threshold x1(N, x0, p0)
via the equation:

x1(F |N, x0, p0) =
Fx1(N, x0, p0)

1 + (F − 1)x1(N, x0, p0)
. (8)

Given our prior belief that, at the population level, the prob-
ability x of an adverse outcome in high-risk patients with-
out treatment satisfies p1 ≤ x ≤ p2, we can find the max-
imum amount Fmax of selection bias that can be tolerated,
before the evidence quality falls back to the preponderance
of evidence evidentiary standard, by solving the equation
x1(F |N, x0, p0) = p1 with respect to F. The corresponding
solution is given by

Fmax =
p1[1 − x1(N, x0, p0)]
x1(N, x0, p0)(1 − p1)

. (9)

This means that if the systemic bias tends to select healthy
high-risk patients F times more likely than the likelihood cor-
responding to their proportion in the general population of
high-risk patients, then 1 ≤ F < Fmax implies that we can
have at least 1 − p0 confidence that the observed positive sig-
nal of efficacy cannot be explained solely as a consequence of
systemic selection bias.

Last, but not least, statistical quantitative evidence can be
corroborated and amplified with more qualitative evidence
based on the Bradford Hill criteria [51]. Particularly rele-
vant, in that regard, are: (1) plausibility, i.e. the existence
of a known biological mechanism of action that explains why
the treatment protocol is expected to work; (2) consistency,
i.e. observing the same effect in different treatment centers in
different locations; (3) biological gradient, i.e. observing im-
proved outcomes with increased medication dosage or length
of treatment, additional medications, or by initiating treatment
earlier, rather than later. (4) temporality, i.e. immediate im-
provement in symptoms, following the administration of the
treatment protocol. The statistical evidence alone, speak in
support of only the strength of association criterion, but that
is only one of the several criteria proposed by Bradford Hill
[51]. If we can establish that these additional criteria are sat-
isfied, then that constitutes additional evidence on top of the

statistical evidence, that treatment efficacy exists, and that the
signal of benefit cannot be explained away, as a result solely
caused by selection bias.

III. BAYESIAN FACTOR ANALYSIS OF EFFICACY
THRESHOLDS

The methodology that we proposed in Section II is also
vulnerable to the criticism that rejecting the null hypothesis,
solely on the basis that the p-value satisfies p < 0.05, is not
sufficient for asserting that treatment efficacy is statistically
significant. This is indeed the position of the recent Ameri-
can Statistical Association statement on statistical significance
and p-values [19]. The problem is that p-values only measure
how incompatible the data are with the null hypothesis. How-
ever, this measure does not always do a good job at controlling
the probability of a false positive result [52]. To estimate the
latter probability we would have to formulate the appropriate
alternate hypothesis and consider how much the data is com-
patible or incompatible with that alternate hypothesis. This
has prompted recommendations to lower the p-value thresh-
old down to 0.01 or 0.001 [52, 53]. However, this is only
a stopgap measure that does not fundamentally address the
problem.

In this section, we supplement the p-value based analysis of
Section II, with a proposal for a Bayesian factor analysis [20–
24]. The Bayesian factor compares the alternate hypothesis
(treatment efficacy), against the null hypothesis and can be
used to calculate the probability of a false positive result [25].
We do not mean to suggest that the Bayesian factor should
replace the p-value in hypothesis testing. Our view is that
we need to use both. That is, use the p-value to reject the
null hypothesis, and then use the Bayesian factor to assess the
strength of the evidence in favor of the alternate hypothesis.
This viewpoint is similar to earlier proposals for conditional
frequentist testing [20].

In the following, we will briefly review the Bayesian fac-
tor framework and then outline our specific proposal for
validating and adjusting, as needed, the efficacy threshold
x0(N, a, p0). We note that the calculation of the random selec-
tion bias threshold x1 is independent of the technique used to
calculate the efficacy threshold x0. In terms of procedure, one
could initially calculate the efficacy threshold x0 using only
the technique of Section II and then use that to calculate the
corresponding random selection bias threshold x1. Alterna-
tively, a more detailed analysis would involve first calculating
the efficacy threshold using the technique of Section II, then
adjusting it using the technique presented in this section, and
then using the adjusted efficacy threshold x0 to calculate the
corresponding random selection bias threshold x1.

A. Bayesian factor and the false positive rate

Let ,A, B, be two arbitrary events in some probability space.
From the definition of conditional probability, we obtain the
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Bayes rule, noting that

p(B |A) =
p(B ∩ A)

p(A)
=

p(A ∩ B)
p(A)

(10)

=
p(A|B)p(B)

p(A)
. (11)

Let D represent our data, H0 represent the null hypothesis,
and H1 represent the alternate hypothesis. In the Bayesian
statistics framework, we assign probabilities p(H0), p(H1) to
the hypotheses H0, H1 representing our prior belief about how
likely each hypothesis is, and then calculate the updated prob-
abilities p(H0 |D) and p(H1 |D) on the condition of observing
the data D. In this way, Bayesian statistics is distinct from
frequentist statistics where probabilities are not assigned to
the hypotheses themselves.

From the Bayes rule we have,

p(H1 |D) =
p(D |H1)p(H1)

p(D)
, (12)

p(H0 |D) =
p(D |H0)p(H0)

p(D)
, (13)

and dividing the two equations gives

p(H1 |D)
p(H0 |D)

=
p(D |H1)
p(D |H0)

p(H1)
p(H0)

. (14)

The Bayes factor B(D |H1, H0) is defined to read

B(D |H1, H0) =
p(D |H1)
p(D |H0)

, (15)

and it is the numerical factor that amplifies our prior belief
about the odds ratio b(H1, H0) = p(H1)/p(H0) after seeing
the data D. Here, p(D |H1) is the probability of seeing the
data D if H1 is true and p(D |H0) is likewise the probability of
seeing the data D if H0 is true.

To interpret the meaning of the Bayesian factor, the fol-
lowing argument is used to calculate the posterior probabil-
ities p(H1 |D) and p(H0 |D) in terms of B(D |H1, H0) and
b(H1, H0) = p(H1)/p(H0). We assume that H0, H1 satisfy
p(H0) + p(H1) = 1 and p(H0 |D) + p(H1 |D) = 1. Combin-
ing the second equation with Eq. (12) and Eq. (13) gives the
Bayes theorem

p(D) = p(D |H0)p(H0) + p(D |H1)p(H1), (16)

and it follows that the probability of a false positive result is
given by

p(H0 |D) =
p(D |H0)p(H0)

p(D)
(17)

=
p(D |H0)p(H0)

p(D |H0)p(H0) + p(D |H1)p(H1)
(18)

=
p(D |H0)p(H0)

p(D |H0)p(H0)[1 + B(D |H1, H0)b(H1, H0)]
(19)

=
1

1 + B(D |H1, H0)b(H1, H0)
. (20)

We see that the false positive probability approximately
scales as the inverse of the Bayes factor B(D |H1, H0). On
the other hand, the dependence of p(H0 |D)) on the prior like-
lihood ratio b(H1, H0), which measures our subjective belief
about the odds ratio between H1 and H0, before seeing the
data D, is uncomfortable. There are three ways to cope with
that: First, one can simply join the frequentist camp, consider
probabilities based on beliefs as meaningless, and forget about
the whole thing. Second, one can use an uninformed prior,
meaning that we assume that both hypotheses H0 and H1 are
equally probable, not having any prior knowledge that favors
one over the other, and choose p(H0) = p(H1) = 1/2, which
corresponds to b(H1, H0) = 1. An interesting third way is
to use the reverse Bayesian analysis technique proposed by
Colquhoun [25], which is based on the equivalence

p(H0 |D) < p0 ⇐⇒ b(H1, H0) >
1 − p0

p0B(D |H1, H0)
, (21)

which relates an upper bound p0 on the probability p(H0 |D)
with a corresponding lower bound bmin(p0, B) on the prior
likelihood ratio b(H1, H0), which is given by

bmin(p0, B) =
1 − p0
p0B

, (22)

with B being the value of the corresponding Bayesian factor.
The meaning of Eq. (22) is that, given a desired lower bound
p0 for the false positive rate and a threshold B for the Bayesian
coefficient, bmin(p0, B) is the minimum prior likelihood ratio
p(H1)/p(H0) for our prior knowledge of the extent to which
the alternate hypothesis H1 is favored over the null hypothesis
H0, for which the Bayesian threshold B can control the false
positive rate and keep it below p0. As such, given our subjec-
tive choice for bmin, one can calculate the threshold B for the
Bayesian factor corresponding to the minimum tolerated false
positive rate p0.

Since we wish to constrain the false positive rates to less
than 0.05, in order to claim 95% statistical significance, we
choose p0 = 0.05. Kass and Raftery [24] and Jeffries [54]
both recommend that the threshold B > 100 be used for a de-
cisive acceptance of the alternate hypothesis H1 over the null
hypothesis H0. Using B = 100 we find that bmin(0.05, 100) =
0.19. This means that if we associate the decisive threshold
B > 100 with 95% confidence, doing so is equivalent to a
prior belief that the null hypothesis is 5 times more likely than
the alternate hypothesis. In turn, this prior belief can be used
to deduce Bayesian factor thresholds for higher levels of confi-
dence, consistently with our choice to associate B > 100 with
95% confidence. This choice can be interpreted as defining
the word “decisive” to mean 95% confidence, in the context
of stating that B > 100 is “decisive”. It could be critiqued
as being an arbitrary choice, but the same can be said for the
p0 = 0.05 p-value threshold and the Bayesian Factor B > 100
threshold. Our particular approach has the advantage of being
more transparent, in terms of an intuitive interpretation, than
an arbitrary choice made in terms of the prior probabilities for
H0 and H1.
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B. Application to hypothesis testing for case series

Now, let us consider how Bayesian factor analysis can be
applied to a case series with a treatment group of N patients,
where a patients have an adverse outcome. Let x0 be the cor-
responding efficacy threshold, determined via the techniques
of Section II, and let x be the probability of an adverse out-
come with treatment. We define a null hypothesis H0 and an
alternate hypothesis H1 about the value of x such that

H0 : x0 < x ≤ 1, (23)
H1 : 0 < x ≤ x0. (24)

We use for x0 the upper endpoint of the binomial propor-
tion confidence interval corresponding to the observed data
(N, a). Consequently, the null hypothesis H0 has been defined
to place x outside and above that interval, and the alternative
hypothesis H1 considers the remaining possible values for x.

Because both H0 and H1 are composite hypotheses, it
is necessary to introduce prior probabilities pr(x |H0) and
pr(x |H1), corresponding to H0 and H1. It may seem tempting
to just use uninformed priors, both for H0 and H1, however,
doing so would certainly not be appropriate for the null hy-
pothesis H0 in almost all situations, since with many illnesses,
we can rule out probabilities of adverse outcome beyond some
upper bound p2. We can thus use instead an uninformed prior
on the interval [x0, p2], given by

pr(x |H0(x0, p2)) =
{

1/(p2 − x0), if x ∈ [x0, p2]
0, if x ∈ (p2, 1], (25)

and perform an appropriate sensitivity analysis on the param-
eter p2. In general, increasing p2 will tend to increase the
Bayes factor, since doing so will tend to increase the contrast
between the null and alternate hypotheses. So we can explore
how much p2 can be decreased and still maintain a decisive
Bayes factor. Likewise, for the alternate hypothesis H1, we
will use an uninformed prior on the interval [0, t] with t ≤ x0
given by

pr(x |H1(x0, t)) =
{

1/t, if x ∈ [0, t]
0, if x ∈ (t, x0]. (26)

The reason for this choice is that we have found empirically
that in some cases, the Bayes factor may actually increase,
if instead of an uninformed prior on [0, x0] we use an unin-
formed prior on the shorter interval [0, t]. From an intuitive
standpoint, we surmise that if the data has a very strong ef-
ficacy signal, then the contrast between the null and alternate
hypotheses is increased when one eliminates the relatively un-
likely values of x between t and x0. For this reason, we shall
use the maximum value of the Bayes factor taken over all val-
ues t ∈ (0, x0), on a decimal logarithmic scale, which is given
by

b(x0, p2) = max
t∈(0,x0]

b0(x0, p2, t), (27)

b0(x0, p2, t) = log B(N, a |H1(x0, t), H0(x0, p2)). (28)

In appendix C we prove that the function b0(x0, p2, t) is ini-
tially increasing and then decreasing with respect to t with a

maximum in the interval [a/N, 1]. If this maximum is located
in the narrower interval [a/N, x0] then the optimal Bayes fac-
tor is indeed obtained when we use a choice t ∈ (0, p0) for the
prior distribution of the alternate hypothesis H1. If the max-
imum is formally located at t > x0, then the optimal Bayes
factor is obtained at t = x0. The resulting metric b(x0, p2) is
still dependent on the parameter p2 of the prior distribution of
the null hypothesis H0.

To complete the metric definition by Eq. (27) and
Eq. (28), we now show the calculation of the Bayes factor
B(N, a |H1(x0, t), H0(x0, p2)) between H1 and H0 as of func-
tion of x0, p2, t and the data N, a. We note that the probabil-
ities for seeing the data (N, a) under the hypotheses H1 and
H0 are given by:

pr(N, a |H0(x0, p2)) =
∫ 1

x0

dx pr(N, a |x) pr(x |H0(x0, p2))

(29)

=
1

p2 − x0

∫ p2

x0

dx pr(N, a |x) (30)

=
1

p2 − x0

(
N
a

) ∫ p2

x0

xa (1 − x)N−a dx, (31)

and

pr(N, a |H1(x0, p2)) =
∫ x0

0
dx pr(N, a |x) pr(x |H1(x0, t))

(32)

=
1
t

∫ t

0
dx pr(N, a |x) (33)

=
1
t

(
N
a

) ∫ t

0
xa (1 − x)N−a dx, (34)

consequently, the corresponding Bayes factor is given by

B(N, a |H1(x0, t), H0(x0, p2)) =
pr(N, a |H1(x0, p2))
pr(N, a |H0(x0, p2))

(35)

=
p2 − x0

t

∫ t

0
xa (1 − x)N−a dx∫ p2

x0

xa (1 − x)N−a dx
. (36)

The integrals can be calculated using exact algebra or numeri-
cally with the open source computer algebra software Maxima
[55]. The exact algebra calculation takes longer to carry out,
but we have confirmed that the numerical calculation using
the function quad qagr is just as accurate.

In order to control for the false positive rate, we propose
that the efficacy thresholds x0(N, a, p0) with p0 = 0.05 should
be increased, if necessary, by requiring that they also sat-
isfy b(x0, p2) ≥ 2. Since the threshold used for a decisive
Bayes factor with p0 = 0.05 corresponds approximately to
bmin(p0, B) = 1/5, it is reasonable to use the empirical for-
mula

b(x0, p2) ≥ log
(
5(1 − p0)

p0

)
, (37)
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to adjust the efficacy thresholds x0(N, a, p0) for an arbitrary
value of demanded confidence p0. For p0 = 0.01, this gives
b(x0, p2) ≥ 2.7 and for p0 = 0.001 we find b(x0, p2) ≥ 3.7
as the Bayes factor thresholds corresponding to a prior like-
lihood ratio p(H1)/p(H0) = 1/5 and, as such, they are the
thresholds that we recommend imposing on the Bayes factors
for the purpose of adjusting the corresponding efficacy thresh-
olds x0(N, a, p0) for the choices p0 = 0.01 and p0 = 0.001.

IV. APPLICATION TO THE ANALYSIS OF EARLY
OUTPATIENT COVID-19 TREATMENT CASE SERIES

We shall now apply the proposed framework to the process-
ing of available high-risk COVID-19 patient case series by
Zelenko [2, 9, 10], Procter [11, 12], and Raoult [13] that pro-
vide evidence for the original Zelenko triple-drug protocol [2]
and the more advanced McCullough protocol [14–16], which
are both based on safe repurposed medications. Section IV A
reviews the rationale and the biological mechanism of action
for the respective treatment protocols. Section IV B reviews
the case series under consideration and Section IV C summa-
rizes the data and the calculation of the corresponding efficacy
and random selection bias thresholds. These are used in Sec-
tion IV D and Section IV E to assess the evidence in support
of mortality rate reduction and hospitalization rate reduction
correspondingly. Section IV F shows that the Bayesian factor
analysis of the efficacy threshold has negligible impact for the
specific case series under consideration.

A. Background and biological mechanism of action for the
Zelenko and McCullough protocols

The original Zelenko protocol was first announced on
March 23, 2020 [56]. The proposed approach was to risk-
stratify patients into two groups (low-risk vs high-risk), pro-
vide supportive care to the low-risk group, and treat the high-
risk group with a triple-drug protocol (hydroxychloroquine,
azithromycin, zinc sulfate). Results were reported in an April
28, 2020 letter [9] and a June 14, 2020 letter [10], and the lab-
confirmed subset of the April data was published in a formal
case-control study [2]. Zelenko’s letters have been attached to
our supplementary material document [40].

The rationale for the triple-drug therapy was based on the
following mechanisms of action: Hydroxychloroquine pre-
vents the virus from binding with the cells, and also acts as a
zinc ionophore that brings the zinc ions inside the cells, which
in turn inhibit the RDRP (RNA Dependent RNA Polymerase)
enzyme used by the virus to replicate [57, 58]. Azithromycin’s
role is to guard against a secondary infection, but we have
since learned that it also has its own anti-viral properties [59–
61], and a signal of the efficacy of adding azithromycin on top
of hydroxychloroquine can be clearly discerned in a study of
nursing home patients in Andorra, Spain [62].

It is interesting that chloroquine was shown in vitro to have
antiviral properties against the previous SARS-CoV-1 virus
[63], and that there is an anecdotal report from 1918 [64]

about the successful use of quinine dihydrochloride injections
as an early treatment of the Spanish flu. In hindsight, it is
now known that influenza viruses also use the RDRP pro-
tein to replicate [65], which can be inhibited with intracel-
lular zinc ions [57, 58]. Consequently, there is a mechanism
of action that can explain why we should anticipate the com-
bination of zinc with a zinc ionophore (i.e. hydroxychloro-
quine, or quercetin [66], or EGCG [67]) to inhibit the repli-
cation of the influenza viruses. Other RNA viruses, includ-
ing the respiratory syncytial virus (RSV) [68] and the highly
pathogenic Marburg and Ebola viruses [69, 70], are also using
the RDRP protein to replicate, raising the question of whether
the zinc/zinc ionophore concept could also play a useful role
against them.

Zelenko’s protocol was soon extended into a sequenced
multi-drug approach, known as the McCullough protocol [14–
16], which is based on the insight that COVID-19 is a tri-
phasic illness that manifests in three phases: (1) an initial
viral replication phase, in which the virus infects cells and
uses them to replicate and make new viral particles, during
which patients present with flu-like symptoms; (2) an inflam-
matory hyper-dysregulated immune-modulatory florid pneu-
monia, that presents with a cytokine storm, coughing, and
shortness of breath, triggered by the toxicity of the spike pro-
tein [71], when it is released, as viral particles are destroyed by
the immune system, triggering release of interleukin-6 and a
wave of cytokines; (3) a thromboembolic phase, during which
microscopic blood clots develop in the lungs and the vascu-
lar system, causing oxygen desaturation, and very damag-
ing complications that can include embolic stroke, deep vein
thrombosis, pulmonary embolism, myocardial injury, heart at-
tacks, and damage to other organs.

The rationale of the original Zelenko protocol was that early
intervention to stop the initial viral replication phase could
prevent the disease from progressing to the second and third
phase, and, in doing so, prevent hospitalizations or death. The
McCullough protocol [14–16] extends the Zelenko protocol
by using multiple drugs in combination sequentially to mit-
igate each of the three phases of the illness, depending on
how they present for each individual patient. McCullough’s
therapeutic recommendations for handling the cytokine in-
jury phase and the thrombosis phase of the COVID-19 illness
are, for the most part, standard on-label treatments for treat-
ing hyper-inflammation and preventing blood clots. The most
noteworthy innovations to the antiviral part of the protocol
are the addition of ivermectin [72–77], which has 20 known
mechanisms of action against COVID-19 [78], to be used as
an alternative or in conjunction with hydroxychloroquine, the
addition of a nutraceutical bundle [79–81] combined with a
zinc ionophore (quercetin [66] or EGCG [67]) for both low-
risk and high-risk patients, and lowering the age threshold for
high-risk patients to 50 years. The MATH+ protocol [6, 7],
developed for hospitalized patients by Marik’s group, follows
the same principles of a sequenced multi-drug treatment. A
similar treatment protocol, based on similar insights, was in-
dependently discovered and published on May 2020 by Chetty
[4] in South Africa.

McCullough’s protocol [14–16] was adopted by some treat-
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ment centers throughout the United States and overseas, but
has not been endorsed by the United States public health agen-
cies, ostensibly due to lack of support of the entire sequenced
treatment algorithm by an RCT. In spite of the urgent need
for safe and effective early outpatient treatment protocols for
COVID-19, there has been no attempt to conduct any such
trials of any comprehensive multi-drug outpatient treatment
protocols throughout the pandemic. Instead, the prevailing ap-
proach has been to try to build treatment protocols, one drug
at a time, after validating each drug with an RCT. Because
COVID-19 is a multifaceted tri-phasic illness, and there is no
a priori reason to expect that a single drug alone will work
for all 3 phases of the disease. Consequently, the first prior-
ity should be to validate the efficacy of treatment protocols
that use multiple drugs in combination, since this is what is
actually going to be used in practice to treat patients. To that
end we have been interested in analyzing the case series by
Zelenko [2, 9, 10], Procter [11, 12], and Raoult [13], where
such multidrug outpatient treatment protocols have been used
by practicing physicians.

B. Review of the Zelenko, Procter and Raoult case series

In the Zelenko April 2020 letter [9], Zelenko reported on
his outcomes based on a total of 1,450 patients that he treated
for COVID-19 until April 28, 2020 in an Orthodox Jewish
community in upstate New York. From this cohort, 405 pa-
tients were classified as high risk and treated with his triple-
drug therapy (hydroxychloroquine, azithromycin, zinc sul-
fate). The reported outcomes were 6 hospitalizations and 2
deaths. From amongst the patients classified as low risk, who
were given only supportive care, there were no hospitaliza-
tions or deaths. Zelenko’s criteria for risk stratification define
three categories of high risk patients: (1) every patient older
than 60; (2) every patient younger than 60 but with comorbidi-
ties or obesity (BMI ≥ 30kg/m2); (3) patients younger than
60 and without comorbidities that presented with shortness of
breath.

A subset of the April 28, 2020 case series was published in
a case controlled study [2] that included only the treated pa-
tients with COVID-19 infection that was confirmed by a PCR
test or an antibody IgG test. The remaining patients were
clinically diagnosed from symptomatic presentation and via
ruling out a bacterial or influenza infection. This Derwand–
Scholz–Zelenko study (hereafter DSZ study) [2] included 335
patients of which, 141 patients were classified as high-risk pa-
tients and treated with the triple drug protocol with 4 hospi-
talizations and 1 death. Detailed demographic data is given
for the high-risk patient treatment group, including a detailed
breakdown in the three high-risk categories. The study also in-
cluded a control group of 377 patients who were seen by other
treatment centers in the same community, that were only of-
fered supportive care and no early outpatient treatment. From
this untreated group, 13 patients died and 58 patients were
hospitalized. The untreated group includes both low-risk and
high-risk patients, so we expect that it underestimates both
the hospitalization and mortality risk for high-risk patients.

Unfortunately, demographic data was not available for the un-
treated group, so from a strictly methodological point of view,
one cannot entirely rule out the theoretical possibility that the
untreated group might have consisted of patients that are at
higher risk on average than those of the high-risk treatment
group. On the other hand, using a case series of untreated
patients from Israel [34], with demographic data indicating a
combination of low and high-risk patients, with 143 deaths
reported out of 4,179 untreated patients, gives the same mor-
tality rate as in the DSZ control group, suggesting that the
DSZ control group also consists of a mixed demographic of
low and high risk patients.

The June 2020 Zelenko case series [10] is reported in a let-
ter that Zelenko sent to the Israeli Health Minister at the time,
Dr. Moshe Bar Siman-Tov, on June 14, 2020, which was later
made publicly available. In the letter, Zelenko reported that
a total of approximately 2,200 patients were seen as of June
14, 2020, with 800 patients deemed high-risk under the same
criteria and treated with the triple-drug therapy, since the be-
ginning of the pandemic. The reported cumulative outcomes
are, 12 hospitalizations, 2 deaths, no serious side effects, and
no cardiac arrhythmias.

During the April 2020–June 2020 interval, Zelenko en-
hanced his triple drug therapy protocol with oral dexametha-
sone and budesonide nebulizer at the beginning of May 2020.
He introduced the blood thinner Eliquis towards the end of
May 2020 and beginning of June 2020. Ivermectin was not
used by Zelenko until October 2020. Consequently, the DSZ
study [2] and the Zelenko April 2020 case series [9] reflect
the outcomes of the triple drug therapy, when used by itself
as an early outpatient treatment. The Zelenko June 2020 case
series [10] includes the use of steroid medications and a blood
thinner, so the underlying treatment protocol is closer to the
McCullough protocol [14–16].

It is worth noting that both letters [9, 10] were originally
posted on Google Drive by Zelenko and were censored by
Google during 2021. The April 2020 letter [9] was cited by
Risch [38], whose paper has also preserved the corresponding
case series data. The June 2020 letter case series data [10]
was independently reported by a subsequent publication by
Risch [82], however, it included only the number of reported
deaths, and not the number of hospitalizations. The authors
have attached copies of all three Zelenko letters [9, 10, 56] to
our supplementary material document [40].

The Procter case series were reported consecutively in two
publications [11, 12]. The first paper [11] reports on 922 pa-
tients that were seen between April 2020 and September 2020,
of which 320 were risk stratified as high-risk patients and
treated with the McCullough protocol [14–16]. The outcome
was, 6 hospitalizations and 1 death. The second paper [12] re-
ports on an additional patient cohort seen between September
2020 and December 2020. Out of the total number of patients
during that time period, 549 were risk stratified as high-risk
and treated with an outcome of 14 hospitalizations and one
death. For both case series, the risk stratification criteria were
similar to those used by Zelenko. However, the age threshold
used to risk stratify patients as high-risk was lowered to 50
years. The medications used were customized for each patient
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in accordance with the McCullough protocol [14–16] and in-
cluded hydroxychloroquine, ivermectin, zinc, azithromycin,
doxycycline, budesonide, foliate, thiamin, IV fluids, and for
more severe cases, dexamethasone and ceftriaxone were also
added. Demographic details for the cohorts were reported in
the respective publications [11, 12].

The final high-risk patient case series is extracted from a
recent cohort study [13] of 10,429 patients that were seen
between March 2020 and December 2020 by Raoult’s IHU
Méditerranée Infection hospital in Marseille, France. From
the entire cohort, 8,315 patients were treated with hydroxy-
chloroquine, azithromycin and zinc. Of those patients, those
older than 70 or with comorbidities were also treated with
enoxaparin and low-dose dexamethasone was given on a case
by case basis to patients that presented with inflammatory
pneumonopathy, high viral loads, or on a case by case ba-
sis. This treatment protocol is consistent to some extent with
the principles that underlie the McCullough protocol [14–16].
The remaining 2,114 patients did not receive hydroxychloro-
quine or azithromycin or both because it was either contraindi-
cated or because the patients did not consent to using one or
two of these medications. This cohort was used in the Raoult
study [13] as a control group. The study risk-stratified the pa-
tients by age (see Table 1 of Ref. [13]) making it possible to
extract a case series of high-risk patients under the restriction
age ≥ 60. In the treatment group, this results in 1,495 high-
risk patients with 5 deaths and 106 hospitalizations. In the
control group, under the age ≥ 60 constraint, there are 520
high-risk patients with 38 hospitalizations and 11 deaths. The
authors note that no serious adverse events to the medications
were reported and that the reported deaths were not related to
side effects of hydroxychloroquine or azithromycin. Further-
more, no deaths were reported for age < 60 cohort in both the
treatment group and control group.

C. Tabular summaries of the Zelenko, Procter and Raoult case
series

Table 1 summarizes the aforementioned case series, includ-
ing the treatment groups from the DSZ study [2], the Zelenko
[2, 9, 10] and Procter [11, 12] case series and the age ≥ 60
treatment group from the Raoult study [13]. Note that the Ze-
lenko June 2020 case series and the Procter II case series as
reported on Table 1, combine the two respective consecutive
case series. We also report on Table 1 the DSZ study’s con-
trol group [2], the alternative Israeli control group [34] and
the age ≥ 60 part of the Raoult control group [13]. We em-
phasize that all reported treatment group case series consist of
high-risk patients.

From a cursory examination of Table 1, we see that the
mortality rate is consistent across all treatment groups, which
speaks to the consistency Bradford Hill criterion [51]. Hos-
pitalization rates are also consistent between the Zelenko
[2, 9, 10] and Procter case series [11, 12], but there is a
clear discrepancy with the hospitalization rates reported in the
Raoult treatment case series [13]. We believe that the reason
for the discrepancy is that both Zelenko and Procter explicitly

Case series Total High-risk Hospitalizations & Deaths

DSZ study [2] 712 141 4 (2.8%) 1 (0.7%)
Zelenko 04/2020 [9] 1450 405 6 (1.4%) 2 (0.4%)
Zelenko 06/2020 [10] 2200 800 12 (1.5%) 2 (0.25%)
Procter I [11] 922 320 6 (1.8%) 1 (0.3%)
Procter II [12] ? 869 20 (2.3%) 2 (0.2%)
Raoult [13] 10429 1495 106 (7.0%) 5 (0.3%)

Control groups Total High-risk Hospitalizations & Deaths

DSZ control [2] 377 < 377 58 (>15%) 13 (>3.4%)
Israeli control [34] 4179 < 4179 N/A 143 (>3.4%)
Raoult control [13] 2114 520 38 (7.3%) 11 (2%)

TABLE 1: Case series list: The table lists the total number of pa-
tients, the subset of high risk patients that were treated with a se-
quenced multidrug regimen, number of patients that were hospital-
ized, and number of deaths, for the following case series: Derwand-
Scholtz-Zelenko study treatment group [2], Zelenko’s complete
April 2020 data set [9], Zelenko’s complete June 2020 data set [10],
Procter’s observational studies [11, 12], and Raoult’s high risk (older
than 60) treatment group [13]. The table also lists the same data for
the control group in the DSZ study [2], the untreated group in the
Israeli study [34], and the control group in the Raoult study [13].

Study odds ratio 95% CI p-value

Exact Fisher tests on mortality rates

DSZ study vs DSZ control 0.2 0.02–1.54 0.12
Zelenko 04/2020 vs DSZ control 0.13 0.03–0.61 0.003
Zelenko 06/2020 vs DSZ control 0.07 0.01–0.31 10−5

DSZ vs Israeli control 0.2 0.03–1.45 0.09
Zelenko 04/2020 vs Israeli control 0.14 0.03–0.57 0.0002
Zelenko 06/2020 vs Israeli control 0.07 0.02–0.28 10−9

Exact Fisher tests on hospitalization rates

DSZ vs DSZ control 0.16 0.05–0.45 0.02
Zelenko 04/2020 vs DSZ control 0.08 0.03–0.19 10−13

Zelenko 06/2020 vs DSZ control 0.08 0.04–0.16 10−19

TABLE 2: Exact Fisher test comparing the mortality rate reduc-
tion and hospitalization rate reduction between the high risk patient
treated group the DSZ study [2], Zelenko’s complete April 2020 data
set [9], and Zelenko’s complete June 2020 data set [10] against the
low risk and high risk patient control groups in the DSZ study [2]
and the Israeli study [34]. The p-values where there is a failure to
establish 95% confidence are highlighted.

aimed to prevent hospitalizations due to the poor outcomes of
the inpatient treatment protocols used in the United States. In
Marseille, France, Raoult had the option of using his IHU
Méditerranée Infection hospital, for short hospitalizations, in
order to closely monitor his more concerning cases.

In Table 2, we show the results of comparing the Zelenko
April 2020 [9] and Zelenko June 2020 [10] case series against
both the original DSZ control group [2] as well as the alterna-
tive control group from Israel [34]. The confidence intervals
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Study 95% threshold 99% threshold 99.9% threshold

Mortality rate efficacy thresholds

DSZ study 3.8% (9.2%) 5.3% (12.8%) 7.0% (14.6%)
Zelenko 04/2020 1.8% (4.0%) 2.4% (5.2%) 2.9% (6.9%)
Zelenko 06/2020 1.0% (2.0%) 1.2% (2.7%) 1.6% (3.7%)
Procter I 1.7% (4.1%) 2.3% (5.8%) 3.1% (7.8%)
Procter II 0.84% (1.82%) 1.08% (2.46%) 1.4% (3.37%)
Raoult 0.79% (1.40%) 0.96% (1.87%) 1.18% (2.46%)

Hospitalization rate efficacy thresholds

DSZ study 7.0% (12.7%) 8.8% (17.5%) 10.6% (21.5%)
Zelenko 04/2020 3.2% (5.4%) 3.9% (7.2%) 4.7% (9.5%)
Zelenko 06/2020 2.7% (4.2%) 3.0% (5.0%) 3.5% (6.4%)
Procter I 4.1% (7.3%) 4.9% (9.1%) 5.9% (11.6%)
Procter II 3.6% (5.2%) 4.0% (6.1%) 4.5% (7.5%)

TABLE 3: Mortality and hospitalization rate reduction efficacy
thresholds, defined as the upper end of the Sterne interval [45], cor-
responding to 95%, 99%, and 99.9% confidence, for the DSZ study
treatment group [2], Zelenko’s complete April 2020 data set [9], Ze-
lenko’s complete June 2020 data set [10], Procter’s observational
studies [11, 12], and Raoult’s high risk (older than 60) treatment
group [13]. In parenthesis, we also display the corresponding higher
random selection bias thresholds.

were calculated using Woolf’s formula [83, 84]. Although in
the original DSZ study [2] mortality rate reduction was not
statistically significant, we have found that comparing either
the Zelenko April 2020 case series [9] or the June 2020 case
series [10] against either control group, gives more than 90%
mortality rate reduction, which is also statistically significant
in terms of both p-value and confidence interval. Likewise, we
see at least 90% hospitalization rate reduction when the Ze-
lenko April 2020 case series or Zelenko June 2020 case series
is compared against the DSZ control group, which is statisti-
cally significant as well. Because the control groups consist of
a combination of both low-risk and high-risk patients, whereas
the treatment groups consist of only high-risk patients, the re-
sulting comparisons are biased towards the null, and are thus
underestimating the actual efficacy of the respective treatment
protocols. This comparison is compelling, due to the con-
sistency between the two control groups, as evidence in fa-
vor of showing the existence of treatment efficacy. However,
methodologicaly, it may not be convincing enough by itself in
terms of measuring the extent of treatment efficacy.

We have also calculated the efficacy threshold for mortality
rate reduction and hospitalization rate reduction correspond-
ing to the case series by Zelenko [2, 9, 10], Procter [11, 12],
and Raoult [13]. The calculations are shown in the supple-
mentary material document [40]. The results are tabulated in
Table 3. We display the efficacy thresholds for 95%, 99%
and 99.9% confidence, which are calculated as the upper end
points of the corresponding Sterne interval [45] and, in paren-
theses, we display the corresponding random selection bias
thresholds. We use precision of 0.1% for most case series, ex-
cept for the two largest ones, Procter II [12] and Raoult [13],

where we use 0.01% precision.
Each threshold corresponds to a mathematically rigorous

conditional statement about rejecting the null hypothesis that
the corresponding early outpatient treatment protocol is inef-
fective. For example, the 1.8% efficacy threshold correspond-
ing to 95% confidence for rejecting the null hypothesis in the
Zelenko April 2020 case series [9] corresponds to the follow-
ing statement: if the expected mortality rate for an equivalent
cohort without early outpatient treatment exceeds 1.8%, then
the null hypothesis can be rejected with at least 95% confi-
dence. Similar statements can be formulated for each efficacy
threshold metric on Table 3. Likewise, the 4.0% random se-
lection bias threshold for the Zelenko April 2020 case series
[9] corresponds to the following statement: If the observed
mortality rate, at the population level, for high risk patients,
classified as such using the same selection criteria as in the
treatment case series, exceeds 4.0%, then we can be 95% con-
fident that the observed signal of efficacy cannot be attributed
solely to random selection bias, and we can also reject the
null hypothesis with at least 95% confidence. Similar state-
ments are implied from all of the other random selection bias
thresholds, reported on Table 3.

These statements are mathematical facts. However, to com-
plete the inference argument, they need to be paired with an
inevitably subjective statement that provides an estimate, or
at least a lower bound, on the expected mortality or hospital-
ization rates of similar cohorts without early outpatient treat-
ment. Secondarily, we need an inference about the intervals
of mortality or hospitalization rates, in the absence of early
outpatient treatment, in order to do the Bayesian adjustment
of the efficacy thresholds.

D. Analysis of mortality rate reduction efficacy

To establish that early treatment protocols result in mortal-
ity rate reduction, when administered to high-risk patients, we
recall that patients have been classified as high-risk based on
the following three categories: (1) old age; (2) comorbidities
or obesity (with BMI ≥ 30kg/m2); (3) shortness of breath
upon presentation. The age threshold for high risk classifica-
tion is age ≥ 60 for the Zelenko [2, 9, 10] and Raoult [13]
case series, and age ≥ 50 for the Procter [11, 12] case series.
The high-risk treatment groups for the Zelenko [2, 9, 10] and
Procter [11, 12] case series include the demographic distribu-
tion of all three categories of high-risk patients, whereas in the
Raoult [13] case series we have included only age ≥ 60 pa-
tients. Our approach, in the following, is to lower bound the
mortality rate, in the absence of early outpatient treatment,
separately for each of the three high-risk patient categories.
Then, the common lower bound becomes applicable to any
demographic distribution of the three categories. To establish
the existence of treatment efficacy, it is sufficient for this lower
bound to exceed the corresponding thresholds of Table 3. In
the following, we shall now consider the mortality rate for
each of the three high-risk patient categories separately.

With regards to the first category of patients classified as
high-risk due to old age, the earliest data from China [33] as
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Age Deaths Cases CFR

10-19 0 416 0%
20-29 7 3619 0.193%
30-39 18 7600 0.237%
40-49 38 8571 0.4%
50-59 130 10008 1.3%
60-69 309 8583 3.6%
70-79 312 3918 7.96%
≥ 80 208 1408 14.8%

≥ 60 829 13909 5.96%

TABLE 4: Crude Case Fatality Rate data, in the absence of early
outpatient treatment, based on early data from China as of February
11, 2020, and published on March 30, 2020. [33]

Age Italy CFR China CFR

0-9 0% 0%
10-19 0% 0.2%
20-29 0% 0.2%
30-39 0.3% 0.2%
40-49 0.4% 0.4%
50-59 1.0% 1.3%
60-69 3.5% 3.6%
70-79 12.8% 8.0%
≥ 80 20.2% 14.8%

TABLE 5: Crude Case Fatality Rate data, in the absence of early
outpatient treatment, based on early data from China and Italy as of
March 17, 2020 and published on March 23, 2020 [31, 32].

of February 11, 2020, estimated a minimum of 3.6% mortal-
ity rate for patients older than 60 and a minimum of 1.3%
mortality rate for patients older than 50 (see Table 4). These
numbers are consistent with numbers from China [31] and
Italy [32] as of March 17, 2020 (see Table 5). We can also
estimate the mortality risk of the first category of high risk
patients (age ≥ 60 or age ≥ 50) using adjusted estimates
by the CDC [35–37] of COVID-19 deaths per symptomatic
cases. The CDC report attempts to adjust for the differences in
underreporting of symptomatic illness, hospitalizations, and
deaths, and it is based on reports ranging from February 2020
to September 2021. The raw data and a copy of the CDC
report website are given in our supplementary material docu-
ment [40]. From that, we calculate for the age ≥ 50 group a
mortality rate of 2.26% (95% CI: 1.94% – 2.61%). We cannot
deduce an age ≥ 60 mortality rate from the CDC report, but
note that the age ≥ 65 mortality rate, according to the CDC
is 4.79% (95% CI: 4.11% to 5.52%). We observe that the
stratification of mortality risk with respect to age is consistent
between three distinct geographical regions.

The second category of high risk patients are patients with
comorbidities regardless of age. In Table 6, we show case fa-
tality rates with respect to comorbidities (i.e. cardiovascular

Comorbidity CFR from Chinese study [31]

Comorbidity Deaths Cases CFR

Cardiovascular disease 92 873 10.5%
Diabetes 80 1102 7.3%

Respiratory disease 32 511 6.3%
Hypertension 161 2683 6%

Cancer 6 107 5.6%

Comorbidity CFR from Israeli study [34]

Comorbidity Deaths Cases CFR

Cardiovascular disease 87 518 16.7%
Diabetes 71 531 13%

Respiratory disease 23 361 6%
Hypertension 102 744 13.7%

Cancer 37 264 10%

TABLE 6: Case fatality rate based on early-stage analysis of COVID-
19 outbreak in China in the period up to February 11, 2020 [31] vs
similar statistics from Israel published on September 7, 2020 [34].

disease, diabetes, respiratory disease, hypertension, cancer),
based on data from China [31] in the period up to February 11,
2020, and additional data from Israel [34] with patients diag-
nosed in the period up to April 16, 2020, and deaths recorded
up to July 16, 2020. There is variability in mortality rates from
5% to 15%. The Israeli data appear to show higher mortality
rates than the data from China, and the reason for that could be
that the Israeli study [34] accounted for the time lag between
patient diagnosis and death. Nevertheless, with respect to us-
ing 5% as a lower bound mortality rate for high-risk patients
with comorbidities, the available data from both locations is
consistent.

These studies do not account for the mortality risk from
obesity and also do not account for the mortality risk cor-
responding to the third category of high-risk patients that
present with shortness of breath. A collaborative study by
Risch and a research group in Brazil [85], found, using multi-
variate regression analysis, that both obesity and dyspnea pose
a higher mortality risk than heart disease (see Table 2 of Ref.
[85]), therefore, we expect that they both lie in the same 5%
to 15% interval as patients with other comorbidities.

For the case of obesity, as a mortality risk factor, this con-
clusion is also supported by more recent meta-analysis [86],
showing that obesity is a greater mortality risk factor than dia-
betes and hypertension, and one that increases with increasing
BMI. A study of 148,494 patients across 238 hospitals by the
CDC [87] also confirms that obesity is an increasing mortality
risk factor with increasing BMI. It is known that obesity is as-
sociated with increased levels of the inflammatory cytokines
TNF-α (tumor necrosis factor alpha), IL-1β (interleukin-1-
beta), and IL-6 (interleukin 6), produced by macrophages in
the adipose tissue [88]. A study of 9390 hospitalized pa-
tients in Abu Dhabi, United Arab Emirates, has found that
patients with severe COVID-19 symptoms, requiring inten-
sive care, had significantly elevated IL-6 biomarker relative
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to patients that presented with mild or moderate symptoms
[89]. An earlier meta-analysis [90] has also confirmed that
the IL-6 biomarker is associated with severe progression of
the COVID-19 disease. Consequently, there is a very com-
pelling biological mechanism that explains why obesity is a
severe risk factor for progression of the disease to the covid-
19 pneumonia phase, requiring a high risk classification and
immediate early outpatient treatment.

For the case of patients presenting with shortness of breath,
it is important to appreciate the fact that, without an early out-
patient treatment intervention, such presentation implies that
the disease is progressing beyond the viral replication phase,
into the COVID-19 pneumonia phase, soon to be followed
with the thromboembolic stage, oxygen desaturation, and hos-
pitalization. It is thus self-evident that these patients should be
classified as high-risk and treated immediately. Assuming that
most of such patients will be hospitalized without outpatient
treatment, we can also estimate the corresponding mortality
risk, in the absence of outpatient treatment, by looking at the
conditional probability of death, assuming hospitalization has
already taken place. A study by the Houston Methodist Hos-
pital [91] has shown an average mortality rate of 5.8% for hos-
pitalized patients between March 2020 and July 2020, in spite
of the use of hydroxychloroquine and anticoagulants. Further-
more, the study reports 12.1% mortality rate, for hospitalized
patients between March 13th 2020 and May 15th 2020, and
3.5% mortality rate between May 16th 2020 and July 7, 2020,
corresponding to two consecutive surges, noting that the sec-
ond surge targeted younger patients than the first surge. A
prospective multicenter study [92] from Italy of 1050 patients
in the Coracle registry, between February 22, 2020 and April
1, 2020, showed an overall 13% average mortality rate, and
more specifically, 7.4% mortality rate for hospitalized patients
that do not require supplemental oxygen or invasive ventila-
tion, 12.8% mortality rate for hospitalized patients that require
supplemental oxygen, and 22.9% mortality rate for hospital-
ized patients that are invasively ventilated.

Based on the above arguments, we can lower bound the un-
treated mortality risk by 3.5% for the age ≥ 60 demographic
and by 5.0% for the high risk patients with comorbidities, obe-
sity, or shortness of breath presentation. For the age ≥ 50 de-
mographics, we have an expected 2.26% mortality rate for the
United States demographic distribution, as estimated by the
CDC. The common lower bound for high risk patients in all
three categories of the Zelenko case series is thus estimated as
3.5% and it exceeds the efficacy thresholds for both the Ze-
lenko April 2020 [9] and the Zelenko June 2020 [10] case se-
ries, and exceeds the random selection bias threshold for the
Zelenko June 2020 case series [10] with Fmax ≥ 1.77. The
same untreated mortality rate, lower bound of 3.5% applies to
the Raoult case series [13], which exceeds the efficacy thresh-
old 0.79% and the random selection bias threshold 1.40% by
a wide margin with Fmax ≥ 2.55. Finally, using the CDC
mortality rate of 2.26%, which includes a minority of treated
patients and a majority of untreated patients for the age ≥ 50
demographic in the United States as a conservative untreated
mortality rate lower bound for the Procter case series, we find
that it exceeds the efficacy threshold for both Procter I [11]

FIG. 6: Cumulative case fatality rate in the United States and France
between April 2020 and November 2021.

and Procter II [12] case series, and also exceeds the random
selection bias threshold for the Procter II case series [12] with
Fmax ≥ 1.24. We stress that the estimates for Fmax are lower
bounds and note that the results from the Raoult case series
[13] are particularly robust against systemic selection bias.

A completely different approach is to compare the efficacy
and random selection bias thresholds against the CFR for the
entire population [93]. The CFR for the United States and
France is displayed on Fig. 6 for the time period between
April 2020 and October 2021. During 2020, the CFR ranged
from 2% to 6% in the United States and from 2% to 16% in
France. In both countries, the CFR converged to 1.7% during
2021 and remained roughly constant, with very small oscil-
lations throughout 2021. The minimum value of 1.7% ex-
ceeds the mortality rate reduction efficacy thresholds for the
Zelenko June 2020 [10], Procter II [12], and Raoult case se-
ries [13]. It also exceeds the random selection bias thresh-
old for the Raoult case series [13]. Using 2.0% as the min-
imum CFR during 2020, we note that it exceeds the random
selection bias threshold for the Procter II case series [12] and
it equals the random selection bias threshold for the Zelenko
June 2020 case series [10]. Taking the CFR at face value, this
is a very strong signal of efficacy, because the CFR includes
asymptomatic, low-risk, and high-risk patients, regardless of
whether they received early treatment, against solely high-risk
patients in the treatment groups of the respective case series.
This comparison strongly biases against being able to reject
the null hypothesis, and nevertheless, we are still able to do
so.

In particular, we note that in the United States, the CFR
ranged from 2% to 6% during 2020, which lies above the
1.8% mortality rate reduction efficacy threshold for Zelenko
April 2020 case series [9]. This is an indicator that the pre-
ponderance of evidence was in favor of adopting Zelenko’s
triple-drug protocol at that time on an emergency basis, but
was nonetheless not officially adopted in the United States
for outpatients [94]. By June 2020, the respective efficacy
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threshold decreased to 1.0%, and the random selection bias
threshold decreased to 2.0% while the CFR was still in the
neighborhood of 3.0%. Thus, the evidence in favor of adopt-
ing the Zelenko triple drug therapy had just crossed over to
the clear and convincing evidentiary standard by the summer
of 2020. Raoult’s data [13] was available by December 2020,
and strongly corroborate Zelenko’s results [9, 10, 57]. In par-
ticular, the Fmax ≥ 2.55 lower bound, obtained for the Raoult
case series [13], means that even if there is systemic selection
bias in favor of selecting healthy high-risk patients by a factor
of 2.55, we can be 95% confident that the observed signal of
benefit cannot be explained by systemic selection bias alone.

E. Analysis of hospitalization rate reduction efficacy

In Table 3, we see that the 95% efficacy thresholds for hos-
pitalization rate reduction range from 2.7% to 4.1% for all
case series, with the exception of the DSZ case series, where
it is at 7.0%, due to the smaller sample size. Likewise, the
random selection bias thresholds for hospitalization rate re-
duction with 95% confidence range from 4.2% to 7.3% for all
case series, except for the DSZ case series [2].

These thresholds can be compared against the following
empirical data. At the beginning of the pandemic, based on
data from China until February 11, 2020, there was an initial
estimate [33] that the probability of hospitalization for a high-
risk age ≥ 60 cohort would range from 10% to 18%. The con-
trol group from Zelenko’s study [2] consisting of both low and
high-risk patients, again at the beginning of the pandemic here
in the United States, reported 377 patients with 58 hospitaliza-
tions, corresponding to 15% hospitalization rate. In the Cleve-
land study [95], which was used to train a predictive model for
the risk of hospitalization and death based on patient medical
history, the entire dataset consisted of a total of 4,536 patients
between March 8, 2020 and June 5, 2020. There were 582
hospitalizations corresponding to 21% hospitalization rate. In
the Mass General Brigham hospital study [96], from a cohort
of 12,347 patients that tested positive, there were 3,401 hos-
pitalizations between March 4, 2020 and July 14, 2020, corre-
sponding to a 27% hospitalization rate. This was also a cohort
that included both low-risk and high-risk patients. The CDC
adjusted data [35–37] between February 2020 and September
2021, estimate 13.79% (95% CI: 17.09% to 28.52%) hospi-
talization probability for the age ≥ 50 group, given a symp-
tomatic infection. For the age ≥ 65 cohort, this estimate in-
creases to 22.09% (95% CI: 17.09% to 28.52%)

Overall, our observation is that we tend to see numbers
ranging from 10% to 28% with substantial variability between
various cohorts, all of which were not given early outpatient
treatment. On the other hand, we see that the case series of
high risk patients shown in Table 3, have efficacy thresholds
for hospitalization rate reduction ranging from 2.7% to 4.1%,
which have a substantial separation from the 10% to 28% in-
terval. Most remarkably, the hospitalization rate reduction
random selection bias thresholds also have a substantial sep-
aration from the 10% to 28% interval. We interpret this big
gap between the two intervals as strong evidence of the exis-

Bayes factors at the mortality rate efficacy thresholds

Study 95% threshold p2 = 0.02 p2 = 0.05 p2 = 0.1
DSZ study 3.8% N/A 1.38 1.99
Zelenko 04/2020 1.8% 1.17 2.04 2.45
Zelenko 06/2020 1.0% 2.06 2.66 3.02
Procter I 1.7% 1.28 2.07 2.47
Procter II 0.84% 1.92 2.48 2.82
Raoult 0.79% 1.91 2.45 2.79

Bayes factors at the hospitalization rate efficacy thresholds

Study 95% threshold p2 = 0.10 p2 = 0.15 p2 = 0.20
DSZ study 7.0% 1.30 1.71 1.92
Zelenko 04/2020 3.2% 2.00 2.24 2.39
Zelenko 06/2020 2.7% 2.24 2.47 2.61
Procter I 4.1% 1.89 2.15 2.32
Procter II 3.6% 1.98 2.23 2.39

TABLE 7: Bayes factor (decimal logarithm) corresponding to the
95% efficacy threshold (Sterne interval [45]) for mortality and hos-
pitalization rate reduction, using maximum untreated mortality rate
p2 for high risk patients at p2 ∈ {0.02, 0.05, 0.10} and maximum
untreated hospitalization rate p2 for high risk patients at p2 ∈
{0.10, 0.15, 0.20}, for the DSZ study treatment group [2], Zelenko’s
complete April 2020 data set [9], Zelenko’s complete June 2020 data
set [10], Procter’s observational studies [11, 12], and Raoult’s high
risk (older than 60) treatment group [13].

tence of hospitalization rate reduction efficacy as a result of
the respective early outpatient treatment protocols in the Ze-
lenko April 2020 [9], Zelenko June 2020 [10], Procter I [11],
Procter II case series [12]

F. Bayesian analysis of efficacy thresholds

We shall now assess whether the efficacy thresholds need to
be increased, using the Bayesian technique described in Sec-
tion III, in order to control the false positive rate. In Table 7,
we have calculated the logarithmic Bayesian metric b(x0, p2),
given by Eq. (27), for the mortality and hospitalization rate re-
duction efficacy thresholds corresponding to 95% confidence,
using a range of values of p2 for the purpose of sensitivity
analysis. The calculation details are available in our supple-
mentary material document [40]. Recall from Section III, that
p2 corresponds to our sense of the worst possible probability
of the respective adverse outcome (hospitalization or death)
in high-risk patients in the absence of early outpatient treat-
ment. As such, 5% to 10% is a typical range for mortality
rates in untreated high-risk patients, making p2 = 5% a highly
conservative choice. We did not consider values higher than
10%, even though worse probabilities are possible, because
for p2 > 10%, we see that all logarithmic Bayesian factors al-
ready satisfy b(x0, p2) ≥ 2. We have also looked at p2 = 2%,
which is obviously entirely unrealistic, because it corresponds
to the mortality rate of the Raoult control group [13] where
some partial treatment was given. Likewise, for the hospi-
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Mortality rate Bayesian efficacy thresholds

Study 95% log Bayes = 2 thresholds
threshold p2 = 2% p2 = 5% p2 = 10%

DSZ study 3.8% N/A N/A 3.9%
Zelenko 04/2020 1.8% N/A 1.8% 1.5%
Zelenko 06/2020 1.0% 1.0% 0.8% 0.6%
Procter I 1.7% N/A 1.9% 1.3%
Procter II 0.84% 0.87% 0.7% 0.6%
Raoult 0.79% 0.82% < 0.7% < 0.7%

Hospitalization rate Bayesian efficacy thresholds

Study 95% log Bayes = 2 thresholds
threshold p2 = 10% p2 = 15% p2 = 20%

DSZ study 7.0% 9.5% 7.8% 7.2%
Zelenko 04/2020 3.2% 3.2% 3.0% 2.9%
Zelenko 06/2020 2.7% 2.6% 2.5% 2.4%
Procter I 4.1% 4.3% 4.0% 3.7%
Procter II 3.6% 3.7% 3.5% 3.4%

TABLE 8: Comparison of the 95% confidence efficacy threshold
(Sterne interval [45]) for mortality and hospitalization rate reduc-
tion with the Bayes factor efficacy thresholds at log Bayes = 2, us-
ing maximum untreated mortality rate p2 for high risk patients at
p2 ∈ {0.02, 0.05, 0.10} and maximum untreated hospitalization rate
p2 for high risk patients at p2 ∈ {0.10, 0.15, 0.20}, for the DSZ study
treatment group [2], Zelenko’s complete April 2020 data set [9], Ze-
lenko’s complete June 2020 data set [10], Procter’s observational
studies [11, 12], and Raoult’s high risk (older than 60) treatment
group [13].

talization rate reduction efficacy thresholds, we have used the
values p2 = 10%, 15%, 20% based on our expectation of a typ-
ical 10% to 28% range for the probability of hospitalization,
in the absence of early outpatient treatment. We did not con-
sider p2 > 20% since almost all of the logarithmic Bayesian
factors satisfy b(x0, p2) ≥ 2 at p2 = 20%.

In Table 8, we compare the efficacy thresholds for rejecting
the null hypothesis with the corresponding 95% confidence
Bayesian thresholds, obtained by the inequality b(x0, p2) ≥ 2
for accepting the alternate hypothesis. For the DSZ study [2],
we see that the corresponding Bayesian thresholds for hos-
pitalization rate reduction range from 7.2% to 9.5%, which
lie above the 7.0% threshold obtained via the p-value. So, the
most cautious course of action is to opt for the 9.5% threshold,
which is still below most of our estimates for hospitalization
probability of untreated patients. For the DSZ study [2], for
both p2 = 2% and p2 = 5%, the logarithmic Bayesian fac-
tor for mortality rate reduction does not go above the decisive
threshold for any value of x with a/N ≤ x ≤ p2, consequently
the corresponding Bayesian thresholds are undefined, and for
p2 = 10% we find a Bayesian mortality rate reduction thresh-
old of 3.9% which is slightly larger than the p-value threshold
of 3.8%. For the Procter I case series [11], there is a weak indi-
cation that the 4.1% efficacy threshold for hospitalization rate
reduction might have to be increased to 4.3%, and the mor-
tality rate reduction threshold increased from 1.7% to 1.9%.

Bayes factors at the mortality rate efficacy thresholds

Study 99% threshold p2 = 0.02 p2 = 0.05 p2 = 0.1
DSZ study 5.3% N/A N/A 2.70
Zelenko 04/2020 2.4% N/A 2.81 3.27
Zelenko 06/2020 1.2% 2.53 3.21 3.57
Procter I 2.3% N/A 2.72 3.17
Procter II 1.08% 2.55 3.17 3.53
Raoult 0.96% 2.57 3.16 3.51

Bayes factors at the hospitalization rate efficacy thresholds

Study 99% threshold p2 = 0.10 p2 = 0.15 p2 = 0.20
DSZ study 8.8% 1.83 2.42 2.67
Zelenko 04/2020 3.9% 2.75 3.00 3.17
Zelenko 06/2020 3.0% 2.77 3.00 3.16
Procter I 4.9% 2.55 2.85 3.02
Procter II 4.0% 2.63 2.89 3.05

TABLE 9: Bayes factor (decimal logarithm) corresponding to the
99% efficacy threshold (Sterne interval [45]) for mortality and hos-
pitalization rate reduction, using maximum untreated mortality rate
p2 for high risk patients at p2 ∈ {0.02, 0.05, 0.10} and maximum
untreated hospitalization rate p2 for high risk patients at p2 ∈
{0.10, 0.15, 0.20}, for the DSZ study treatment group [2], Zelenko’s
complete April 2020 data set [9], Zelenko’s complete June 2020 data
set [10], Procter’s observational studies [11, 12], and Raoult’s high
risk (older than 60) treatment group [13].

Likewise for the Procter II case series [12], an increase of the
hospitalization rate reduction efficacy threshold from 3.6% to
3.7% is weakly indicated. Both adjustments are negligible
and inconsequential. For the Zelenko April 2020 [9] and Ze-
lenko June 2020 [10] case series, where the sample sizes are
much larger, we see that the overall trend is for the Bayesian
thresholds to be far more lenient than the ones obtained via
the p-value. This is possibly attributed to a very strong signal
of efficacy in the data.

It is interesting to repeat the Bayesian analysis on the ef-
ficacy thresholds for mortality rate reduction and hospitaliza-
tion rate reduction for 99% confidence and 99.9% confidence.
We have seen that the Bayesian adjustments to the 95% con-
fidence efficacy thresholds, when they are needed, are very
small, so the relevant question is whether this pattern con-
tinues when the demanded confidence increases to 99% or
99.9%. Table 9 and Table 10 show the values of the loga-
rithmic Bayesian factor b2(x0, p2) at the mortality and hospi-
talization efficacy thresholds for 99% and 99.9% confidence,
as determined solely from the p-value, and for various val-
ues of p2, as previously discussed. Note that for Table 9 the
decisive Bayesian factor threshold corresponding to 99% con-
fidence is b2(x0, p2) ≥ 2.7. Likewise, in Table 10, the decisive
Bayesian factor threshold corresponding to 99.9% confidence
is b2(x0, p2) ≥ 3.7. We see that for the most part the logarith-
mic Bayesian factors are either above or near their respective
thresholds.

Likewise, in Table 11 and Table 12 we are comparing the
mortality and hospitalization rate reduction efficacy thresh-
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Bayes factors at the mortality rate efficacy thresholds

Study 99.9% threshold p2 = 0.02 p2 = 0.05 p2 = 0.1
DSZ study 7.0% N/A N/A 3.51
Zelenko 04/2020 2.9% N/A 3.47 4.00
Zelenko 06/2020 1.6% 3.43 4.34 4.73
Procter I 3.1% N/A 3.59 4.16
Procter II 1.4% 3.38 4.15 4.53
Raoult 1.18% 3.49 4.16 4.52

Bayes factors at the hospitalization rate efficacy thresholds

Study 99.9% threshold p2 = 0.10 p2 = 0.15 p2 = 0.20
DSZ study 10.6% N/A 3.17 3.49
Zelenko 04/2020 4.7% 3.68 3.97 4.15
Zelenko 06/2020 3.5% 3.75 4.00 4.16
Procter I 5.9% 3.45 3.80 3.99
Procter II 4.5% 3.54 3.82 3.99

TABLE 10: Bayes factor (decimal logarithm) corresponding to the
99.9% efficacy threshold (Sterne interval [45]) for mortality and
hospitalization rate reduction, using maximum untreated mortality
rate p2 for high risk patients at p2 ∈ {0.02, 0.05, 0.10} and maxi-
mum untreated hospitalization rate p2 for high risk patients at p2 ∈
{0.10, 0.15, 0.20}, for the DSZ study treatment group [2], Zelenko’s
complete April 2020 data set [9], Zelenko’s complete June 2020 data
set [10], Procter’s observational studies [11, 12], and Raoult’s high
risk (older than 60) treatment group [13].

olds determined via the p-value, against the corresponding ef-
ficacy thresholds determined using the logarithmic Bayesian
factor b2(x0, p2), for 99% and 99.9% confidence correspond-
ingly. We see that the Bayesian perturbations to the efficacy
thresholds are for the most part negligible for both 99% and
99.9% confidence, continuing the similar pattern that we have
observed for the 95% confidence efficacy thresholds.

Based on these results we conclude that for the case series
under consideration, we see that the Bayesian adjustments to
the efficacy thresholds for mortality and hospitalization rate
reduction are negligible and therefore do not impact the anal-
ysis of the preceding sections.

V. DISCUSSION AND CONCLUSIONS

Our findings fully support risk stratification in the man-
agement of acute COVID-19, with the intent of reducing the
intensity and duration of symptoms and by that mechanism,
lower the risk of hospitalization and death. Although COVID-
19 is generally known as a respiratory disease, there is an ac-
cumulation of evidence [71, 97, 98] that it is also, if not pri-
marily, a vascular disease, with endothelial injury having a
major role in sustained permanent injuries, hospitalizations,
and death. The spike protein has been shown to damage
the vascular endothelial cells [71] by downregulating ACE2,
thereby inhibiting mitochondrial function, and by impairing
the bioavailability of nitric oxide to endothelial cells. The
spike protein also triggers immune dysregulation, triggering

Mortality rate Bayesian efficacy thresholds

Study 99% log Bayes = 2.7 thresholds
threshold p2 = 2% p2 = 5% p2 = 10%

DSZ study 5.3% N/A N/A 5.3%
Zelenko 04/2020 2.4% N/A 2.4% 2.0%
Zelenko 06/2020 1.2% 1.3% 1.1% 0.9%
Procter I 2.3% N/A 2.3% 1.9%
Procter II 1.08% 1.14% 0.92% 0.80%
Raoult 0.96% 1.0% 0.86% 0.77%

Hospitalization rate Bayesian efficacy thresholds

Study 99% log Bayes = 2.7 thresholds
threshold p2 = 10% p2 = 15% p2 = 20%

DSZ study 8.8% N/A 9.5% 8.9%
Zelenko 04/2020 3.9% N/A 3.7% 3.5%
Zelenko 06/2020 3.0% 3.0% 2.9% 2.8%
Procter I 4.9% 5.1% 4.8% 4.6%
Procter II 4.0% 4.1% 3.9% 3.8%

TABLE 11: Comparison of the 99% confidence efficacy threshold
(Sterne interval [45]) for mortality and hospitalization rate reduc-
tion with the Bayes factor efficacy thresholds at log Bayes = 2.7,
using maximum untreated mortality rate p2 for high risk patients
at p2 ∈ {0.02, 0.05, 0.10} and maximum untreated hospitalization
rate p2 for high risk patients at p2 ∈ {0.10, 0.15, 0.20}, for the DSZ
study treatment group [2], Zelenko’s complete April 2020 data set
[9], Zelenko’s complete June 2020 data set [10], Procter’s observa-
tional studies [11, 12], and Raoult’s high risk (older than 60) treat-
ment group [13].

endothelial cells to transition to an activated immune response
state, which causes both macrovascular and diffuse microvas-
cular thrombosis, leading to myocardial injury and other or-
gan damage [97, 98]. Early outpatient treatment, using mul-
tiple drugs in combination, prevents these adverse outcomes
by stopping viral replication at the first phase of the illness,
and mitigating the injuries caused by the hyper inflammatory
COVID-19 pneumonia phase and the subsequent thromboem-
bolic phase.

One of the lessons learned during the COVID-19 pandemic
is that some of the key discoveries for the successful treat-
ment of a novel disease emerge from the experience of the
frontline doctors that are directly confronted with the need to
find a way to help their patients. Although the orthodox ap-
proach is to consider possible treatments as unproven until
they are validated with an RCT, in real life, it is possible to
be confronted with a situation where the observational data is
sufficiently strong to justify the immediate adoption of a treat-
ment protocol, and to raise the ethical concern of whether it is
appropriate to even conduct the RCT, and deny treatment to a
very large cohort of patients, in order to form a control group.
Consequently, there is a need to be able to analyze the quality
of observational data in a statistically rigorous way.

We have provided a hybrid statistical framework for as-
sessing observational evidence that combines both frequentist
and Bayesian methods; the frequentist methods aim to con-
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Mortality rate Bayesian efficacy thresholds

Study 99.9% log Bayes = 3.7 thresholds
threshold p2 = 2% p2 = 5% p2 = 10%

DSZ study 7.0% N/A N/A 7.4%
Zelenko 04/2020 2.9% N/A 3.1% 2.7%
Zelenko 06/2020 1.6% 1.8% 1.4% 1.3%
Procter I 3.1% N/A 3.2% 2.8%
Procter II 1.4% 1.53% 1.26% 1.14%
Raoult 1.18% 1.23% 1.08% 1.01%

Hospitalization rate Bayesian efficacy thresholds

Study 99.9% log Bayes = 3.7 thresholds
threshold p2 = 10% p2 = 15% p2 = 20%

DSZ study 10.6% N/A 11.9% 11.1%
Zelenko 04/2020 4.7% 4.8% 4.5% 4.4%
Zelenko 06/2020 3.5% 3.5% 3.4% 3.3%
Procter I 5.9% 6.2% 5.8% 5.7%
Procter II 4.5% 4.6% 4.5% 4.4%

TABLE 12: Comparison of the 99.9% confidence efficacy threshold
(Sterne interval [45]) for mortality and hospitalization rate reduc-
tion with the Bayes factor efficacy thresholds at log Bayes = 3.7,
using maximum untreated mortality rate p2 for high risk patients
at p2 ∈ {0.02, 0.05, 0.10} and maximum untreated hospitalization
rate p2 for high risk patients at p2 ∈ {0.10, 0.15, 0.20}, for the DSZ
study treatment group [2], Zelenko’s complete April 2020 data set
[9], Zelenko’s complete June 2020 data set [10], Procter’s observa-
tional studies [11, 12], and Raoult’s high risk (older than 60) treat-
ment group [13].

trol the p-value for rejecting the null hypothesis, whereas the
Bayesian methods aim to control the false positive rate. The
two methods are complementary and not mutually exclusive.
We have also proposed a formalism for assessing the signal
of efficacy with respect to both random and systemic selec-
tion bias, and explain how it can be integrated with the pro-
posed hybrid frequentist-Bayesian method. We stress that the
method aims to answer only the question of whether we are
confident that the proposed treatment protocol works, in order
to facilitate the binary choice of whether or not it should be
adopted. An exact measurement of the efficacy is not our pri-
mary concern; we only need to establish positive as opposed
to null or negative efficacy.

The main weakness of the proposed statistical methodology
is that it has to be limited only to the assessment of treat-
ments that are based on repurposed medications [17] with
known acceptable safety. It would be highly inappropriate
to use this approach on new medications, or other counter-
measures, where the balance of risks and benefits is yet to be
determined. Furthermore, the analysis of the treatment group
case series needs to be compared with a model that can at min-
imum lower-bound the probability of adverse outcomes with-
out treatment, based on our prior knowledge. On the other
hand, the development of this model can be done indepen-
dently from the analysis of the treatment group case series.

One way in which our approach deviates from the usual

way of doing things, is that we are using the proposed statisti-
cal methodology to assess the efficacy of the entire treatment
algorithm against supportive care. Both of the original Ze-
lenko protocol [2] and the more enhanced McCullough proto-
col [14–16] are examples of sequenced multi-drug treatment
protocols. Furthermore, both protocols are algorithmic, in
the sense that treatment is customized to the individual pa-
tient, based on the patient’s medical history and the response
to treatment. For the case of the Zelenko protocol [2] this
is done via the risk stratification of patients to low-risk and
high-risk patients. For the case of the McCullough protocol
[14–16], this is done both by risk stratification and also by ac-
counting for the progression of the illness through the three
distinct stages and response to treatment. Consequently, the
immediate goal is not to establish that any one particular drug
is effective. The goal is to establish that the treatment algo-
rithm itself is effective, so that it can be deployed rapidly on
an emergency basis and be subsequently improved over time
with further research.

A possible theoretical criticism is that the particular case
series that we have considered may have selection bias. This
is mitigated to some extent by the fact that we have reported
case series from three different treatment centers, two in the
United States and one in France, with consistent mortality
rates, therefore this consistency is compelling statistical ev-
idence against geographic selection bias. More importantly,
for both of the Zelenko [2, 9, 10] and Procter [11, 12] case
series, we have two consecutive reports over two consecutive
time intervals replicating the hospitalization and mortality rate
reduction outcomes, and these replications are additional sta-
tistical evidence against reporting selection bias. Furthermore,
the treatment protocols have known biological mechanisms of
action that have been reviewed in Section IV A. Finally, we
have introduced the idea of random selection bias thresholds
that can be used to account for random selection bias. For
the Zelenko June 2020 [10], Procter II [12] and Raoult [13]
case series, we can have 95% confidence that random selec-
tion bias cannot be entirely responsible for the positive signal
of benefit in mortality and hospitalization rate reduction. Fur-
thermore, for the Raoult case series [13], systemic selection
bias that favors the selection of high-risk healthy patients by a
factor of up to 2.55 (a conservative estimate) is not sufficient
to overturn the positive signal of efficacy.

The case series that we have analyzed in this paper add up
to a total of 3164 high-risk patients. It is currently estimated
that the total number of high-risk patients that have been
treated with early outpatient treatment protocols throughout
the United States may exceed this number by one or two or-
ders of magnitude [99]. Unfortunately, no resources have been
allocated to study this data by our public health agencies, but
we can make some suggestions about how such an analysis
could be carried out. One idea for quickly analyzing a very
large dataset is to extract the age > 50 and/or age > 65 part of
the database, calculate the corresponding efficacy thresholds
for hospitalization rate reduction and mortality rate reduction,
and compare them with the CDC estimates [35–37] for num-
ber of hospitalizations and deaths for these age groups over the
total number of cases with symptomatic illness. Given a large
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enough data set, it would also be interesting to risk-stratify
the age > 50 and/or age > 65 cohorts further with respect
to number of days between initial symptoms and initiation of
treatment and calculate the efficacy thresholds as a function
of the delay in initiating treatment. This analysis would inad-
vertently not include younger patients that are high risk due
to comorbidities or shortness of breath presentation, however,
it has the advantage that it can be carried out quickly with
limited resources.

Furthermore, it would be useful to break down the case se-
ries data in sequential time intervals corresponding to differ-
ent waves and different variants of the SARS-CoV-2 virus.
The case-series considered in this paper are limited to 2020,
before the vaccine roll out, during which natural immunity
held up at preventing reinfection [100] up until the emergence
of the omicron variants near the end of 2021, which broke
through natural immunity from previous variants, but also pro-
vided back immunity to the delta variant [101]. Nevertheless,
in terms of general methodology, it would also be useful to
subject any results to sensitivity analysis with respect to host
immunity (i.e. history of previous infection and or vaccina-
tion status), as needed. Analyzing the data from several more
treatment centers, that have adopted early outpatient treatment
protocols for high-risk patients would further mitigate the po-
tential for selection bias.

With substantial resources, a more detailed analysis, based
on the virtual control group methodology [18], is possible that
can consider the entire dataset and actually estimate the treat-
ment efficacy. Given a case series of N patients, one can input
the medical history of each patient to the Cleveland Clinic
calculator [95] and use their mathematical model to predict
the probability of hospitalization and death for each patient
individually. Knowing the corresponding sequence of proba-
bilities q = (p1, p2, . . . , pN ) for an adverse outcome (hospital-
ization or death) for all patients, the probability pr(N, a |q) of
seeing a adverse outcomes follows a Poisson binomial dis-
tribution [102], and it can be substituted to Eq. (2) in or-
der to calculate the p-value for rejecting the null hypothesis
of no treatment efficacy. Because the probability of an ad-
verse outcome is known for each patient, note that there is no
need to worry about selection bias or calculating any efficacy
thresholds, and it is possible instead to directly calculate the
p-value for rejecting the null hypothesis.. Furthermore, since
the mean of the Poisson binomial distribution is the average
q = (1/N )(p1 + p2 + . . . + pn) of the individual probabilities,
one can calculate the risk ratio via the equation RR = a/(qN ).
To conduct the corresponding Bayesian analysis, we can as-
sume that the effect of the early outpatient treatment is to re-
duce the probabilities of adverse outcome by a numerical fac-
tor x to xq = (xp1, xp2, . . . , xpN ) with 0 ≤ x ≤ 1 and use
the Poisson binomial distribution pr(N, a |xq) in Eq. (30) and
Eq. (33) to calculate the corresponding integrals needed for
the Bayesian factor. All other aspects of the Bayesian analysis
would remain the same, except that the hypothesis being val-
idated would not concern any efficacy thresholds but it would
instead concern hypotheses about the actual efficacy x of the
early outpatient treatment protocol.

That said, we do not mean to imply that such a detailed

analysis is necessary in order to greenlight the use of the in-
vestigated early outpatient treatment protocols for COVID-19.
However, we wish to highlight that such a detailed analysis
is indeed possible to carry out, using existing data and prior
mathematical modeling, in order to validate the McCullough
protocol, and would mitigate any selection bias concerns far
beyond what we are able to do with this study. A limitation of
the Cleveland Clinic calculator is that it should ideally be used
in conjunction with case series over time intervals that are
aligned with the data set used to train the calculator’s math-
ematical predictive model. Because the Cleveland Clinic cal-
culator used data collected between March 4th 2020 and July
14th 2020 it can certainly be applied to case series up until
July 2020. However, we believe that it can also be extended
up until and including the Delta variant, that became domi-
nant towards the end of 2021, since all of these subsequent
variants were just as hard to treat or harder than the initial
waves in 2020.

Notwithstanding the hesitancy confronting the adoption of
early treatment protocols for COVID-19 [94, 103], everything
that we have been through during the last two years vindi-
cates the position of Frieden [27] that there is an urgent need
to leverage and overcome the limitations of real-world evi-
dence data, in order to deploy a timely life-saving response
to urgent health issues. There is still an opportunity to learn
much by analyzing data from various treatment centers here
in the United States that treated COVID-19 with early out-
patient treatment protocols, as well as treatment centers from
all around the world. The proposed statistical framework pro-
vides a rigorous technique for quantifying the quality of case-
series real world evidence for novel treatment protocols, us-
ing repurposed medications. This can help to make objective
policies on the appropriate thresholds for adopting such treat-
ments as a standard of care. It is now necessary to reflect
on and develop policies and procedures for leveraging the di-
rect experience of frontline doctors treating patients, towards
an agile and effective response to future epidemics and pan-
demics.
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Appendix A: Exact Fisher test in the limit of an infinite control
group

Let N be the total number of patients in the treatment group,
let a be the number of patients with an adverse outcome (hos-
pitalization or death) in the treatment group, let M be the
total number of patients in the control group, and let b be
the number of patients in the control group with an adverse
outcome. In this appendix we will show that in the limit of
an infinite control group (M, b) with x = b/M , the p-value
p(N, a, M, b) obtained from the two-tail exact Fisher test con-
verges to p(N, a, x).

In the exact Fisher test, we assume that N , M , and a+b, are
fixed numbers, and under the null hypothesis, we also assume
that the distribution of the total a + b patients with an ad-
verse outcome between the treatment group and control group
is random, with equal probability for every possible combina-
tion. It follows that under the null hypothesis, the probability
of seeing a particular event (N, a, M, b) is given by

pr(N, a, M, b) =

(
a + b

b

) (
N + M − a − b

N − a

)
(
N + M

N

) . (A1)

The corresponding p-value is the probability of observing the event (N, a, M, b) or any other less probable event, and it is given
by

p(N, a, M, b) =
min{N,a+b }∑

n=0
pr(N, n, M, a + b − n)H (pr(N, a, M, b) − pr(N, n, M, a + b − n)), (A2)

We note that the summation variable n is restricted by both the total size N of the treatment group and the total number a + b of
the patients with an adverse outcome, so the permissible range for all possible events is 0 ≤ n ≤ min{N, a + b}.

A key insight is that in the definition of pr(N, a, M, b), the variable M can be replaced with a continuous real number, because
it appears only in the top argument of the corresponding binomial coefficients. Recall that for all a ∈ R and n ∈ N the extended
definition of the binomial coefficient is given by(

a
n

)
=

1
n!

n∏
λ=1

(a + 1 − λ) =
1
n!

n∏
λ=1

(a + 1 − (n − λ + 1)) =
1
n!

n∏
λ=1

(a − n + λ). (A3)

On the second step we have used the transformation λ 7→ n− λ + 1 which effectively reverses the order of factors in the product.
It follows that for all M ∈ R the corresponding M-dependent binomial coefficients are given by(

N + M − a − b
N − a

)
=

1
(N − a)!

N−a∏
λ=1

((N + M − a − b) − (N − a) + λ) =
1

(N − a)!

N−a∏
λ=1

(M − b + λ), (A4)

and(
N + M

N

)
=

1
N!

N∏
λ=1

((N + M) − N + λ) =
1

N!

N∏
λ=1

(M + λ), (A5)
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and thus, the hypergeometric probability distribution pr(N, a, M, b) can be rewritten as

pr(N, a, M, b) =

(
a + b

b

) (
N + M − a − b

N − a

)
(
N + M

N

) (A6)

=
(a + b)!

a!b!



1
(N − a)!

N−a∏
λ=1

(M − b + λ)



N!

N∏
λ=1

(
1

M + λ

) (A7)

=
N!

a!(N − a)!
(a + b)!

b!

N−a∏
λ=1

(M − b + λ)
N∏
λ=1

(
1

M + λ

)
(A8)

=

(
N
a

) a∏
λ=1

(b + λ)
N−a∏
λ=1

(M − b + λ)
a∏
λ=1

(
1

M + λ

) N−a∏
λ=1

(
1

M + a + gl

)
(A9)

=

(
N
a

) a∏
λ=1

(
b + λ
M + λ

) N−a∏
λ=1

(
M − b + λ
M + a + λ

)
. (A10)

To take the limit of an infinite control group with probability x of an adverse outcome, we set b = xM , or equivalently M =
(1/x)b, and take a sequence limit b ∈ N to infinity. We conclude that

lim
b∈N

pr(N, a, (1/x)b, b) =
(
N
a

) 
a∏
λ=1

lim
b∈N

(
b + λ

(1/x)b + λ

)


N−a∏
λ=1

lim
b∈N

(
(1/x)b − b + λ
(1/x)b + a + λ

) (A11)

=

(
N
a

) (
1

1/x

)a (
1/x − 1

1/x

)N−a
(A12)

=

(
N
a

)
xa (1 − x)N−a = pr(N, a |x). (A13)

An immediate consequence is that the corresponding p-values
satisfy a similar relationship that reads

lim
b∈N∗

p(N, a, (1/x)b, b) = p(N, a |x). (A14)

The probability sums on both sides of Eq. (A14) involve a
variable n that goes from 0 to N , making the number of terms
on the left-hand-side probability sum independent of the size
of the control group, as soon as b is large enough. This makes
it possible to derive Eq. (A14) as an immediate consequence
of Eq. (A13).

Appendix B: Calculation of the selection bias thresholds

We provide the mathematical justification for the calcula-
tion of the random selection bias threshold given by Eq. (7)
and Eq. (8). Suppose that we have a case series (N, a) of
N treated patients, with a adverse outcomes, and have already
calculated an appropriate efficacy threshold x0, using the tech-
niques detailed in Section II and Section III. Let x be the cor-
responding probability of an adverse event, in the absence of
treatment, as has been observed at the population level, under
the same selection criteria for high-risk patient classification,
as used for forming the treated case series.

The true rate x ′ of an adverse event for the selected
N patients, had they not received treatment, could range
from a minimum value m1(N, x, p0)/N to a maximum value
m2(N, x, p0)/N , and we would like to be able to assert with
1−p0 confidence that m1(N, x, p0)/N ≤ x ′ ≤ m2(N, x, p0)/N .
The problem of determining m1 and m2 is the “mirror im-
age” of the binomial proportion confidence interval problem.
With the latter case, we have a known observed event and
seek a confidence interval for the probability that generated
the event. Here, we have a given probability x and need the
confidence interval for the number of adverse events that we
expect to see in the finite sample of N patients chosen out of
the general population.

To calculate the confidence interval for x ′, we consider the
inequality

p(N,m, x) ≥ p0, (B1)

and let m1(N, x, p0) be the minimum natural number and
m2(N, x, p0) be the maximum natural number for the parame-
ter m that satisfies Eq. (B1). We note that both of these num-
bers are dependent on the sample size N , the probability x of
an adverse outcome without treatment, and the p-value thresh-
old p0 for establishing statistical confidence. Let S(N, x, p0)
be the set of all natural numbers between m1(N, x, p0) and
m2(N, x, p0), also including m1(N, x, p0) and m2(N, x, p0).
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Let S0(N, x, p0) be the set of all m that satisfy Eq. (B1). Be-
cause p(N,m, x) is not monotonic with respect to x, the solu-
tion set S0(N, x, p0) could be punctuated with empty gaps, and
therefore we expect that S0(N, x, p0) ⊆ S(N, x, p0). We also
note that Eq. (B1) defines the indicator function I (N, n, x, p0)
for the Sterne interval solution [45] of the binomial proportion
confidence interval problem, which is given by

I (N, n, x, p0) =



1, if p(N, n, x) ≥ p0

0, if p(N, n, x) < p0,
(B2)

and proceed with the assumption that Sterne interval [45] has
conservative coverage probability.

From the above, we conclude that the probability
p(N, p0 |x) for seeing an outcome of n adverse events with
m1(N, x, p0) ≤ n ≤ m2(N, x, p0), in the absence of treatment,
for a cohort of N patients, that are equivalent in every respect
to the selected N patients that did receive treatment in our
treatment group case series, satisfies,

p(N, p0 |x) =
∑

n∈S(N,x,p0)

pr(N, n|x) (B3)

≥
∑

n∈S0 (N,x,p0)

pr(N, n|x) (B4)

=

N∑
n=0

I (N, n, x, p0)pr(N, n|x) (B5)

= c(N, p0 |x) ≥ 1 − p0. (B6)

The first inequality step follows from S0(N, x, p0) ⊆

S(N, x, p0). The next step follows from Eq. (B2), then we
apply the definition of the coverage probability, and the last
inequality is based on the assumption that the Sterne inter-
val has conservative coverage. We conclude, therefore, that
there is at least 1 − p0 probability that the number n of ad-
verse events without treatment would have been in the interval
m1(N, x, p0) ≤ n ≤ m2(N, x, p0) for an equivalent cohort of
N patients, chosen randomly out of the general population.

Now let us consider the random selection bias threshold,
which is calculated as the minimum number x1 that satisfies
the implication

x > x1(N, x0, p0) =⇒ p(N, dx0Ne, x) < p0, (B7)

with dx0Ne the natural number obtained, if we round up
the number x0N . To show that this threshold works, we
need to show that x > x1(N, x0, p0) implies that x0 <
m1(N, x, p0)/N , which is easily done with the following ar-
gument: First, we see that Eq. (B7) implies that the number
dx0Ne is outside of the set S(N, x, p0), which in turn means
that either dx0Ne < m1(N, x, p0) or dx0Ne > m2(N, x, p0).
To rule out the second possibility, we observe that if x ex-
ceeds the random selection bias threshold x1(N, x0, p0), then
it also exceeds the efficacy threshold x0 and thus x > x0.
We also observe that the population level probability x of an
adverse outcome for untreated high risk patients has to be in-
side its own confidence interval, i.e. m1(N, x, p0)/N ≤ x ≤
m2(N, x, p0)/N . Using these inequalities, it follows that

dx0Ne ≤ dxNe ≤ d(m2(N, x, p0)/N )Ne (B8)

= dm2(N, x, p0)e = m2(N, x, p0), (B9)

and therefore we can rule out dx0Ne > m2(N, x, p0). We con-
clude that dx0Ne < m1(N, x, p0), and therefore

x0 = x0N/N ≤ dx0Ne/N < m1(N, x, p0)/N, (B10)

which gives us x0 < m1(N, x, p0)/N . Since the true rate x ′

of an adverse event for an equivalent cohort of N patients can
be bound between m1(N, x, p0)/N ≤ x ′ ≤ m2(N, x, p0)/N
with 1 − p0 confidence, we can be assured that in spite of
any random selection bias, x ′ exceeds the efficacy threshold
x0 with 1 − p0 confidence. This concludes the argument that
justifies the calculation of the random selection bias threshold
given by Eq. (7).

To calculate the selection bias threshold x1(F |N, x0, p0)
corresponding to systemic selection bias with factor F, we
can simply recycle the preceding argument by considering a
hypothetical population, that has the systemic bias effect build
into the proportions of healthy versus unhealthy patients, and
then calculating the random selection bias threshold for this
hypothetical population. Let L = x/(1 − x) be the likelihood
ratio of randomly selecting unhealthy vs healthy patients, if
there is no systemic selection bias. If there is some systemic
selection bias, this ratio is modified into L/F. Consider a hy-
pothetical population where the probability of an adverse out-
come for high-risk patients without treatment is x̃ such that
L/F = x̃/(1 − x̃). With basic algebra, we see that

x̃ =
L/F

L/F + 1
=

x
x + F (1 − x)

. (B11)

Selecting randomly from this hypothetical population is statis-
tically equivalent to selecting with systemic bias F from the
actual population, in the sense that in both cases we obtain the
same confidence interval for the probability x ′. This equiva-
lence implies that

x1(F |N, x0, p0) ≤ x ≤ 1 =⇒ x0 < m1(N, x̃, p0)/N . (B12)

Furthermore, from the definition of the random selection bias
threshold we have

x1(N, x0, p0) ≤ x̃ ≤ 1 =⇒ x0 < m1(N, x̃, p0)/N . (B13)

Combining these equations, we find the systemic selection
bias threshold by solving the inequality

x1(N, x0, p0) ≤ x̃ ≤ 1 (B14)

⇐⇒ x1(N, x0, p0) ≤
x

x + F (1 − x)
≤ 1 (B15)

⇐⇒
Fx1(N, x0, p0)

1 + (F − 1)x1(N, x0, p0)
≤ x ≤ 1, (B16)

which implies that the choice

x1(F |N, x0, p0) =
Fx1(N, x0, p0)

1 + (F − 1)x1(N, x0, p0)
, (B17)

satisfies the definition of the systemic selection bias threshold
given by Eq. (B12). Furthermore, because by definition we
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have chosen x1(N, x0, p0) to be the minimum value that sat-
isfies the implication in Eq. (6) and x1(F |N, x0, p0) increases
when x1(N, x0, p0) increases, for all values of F, it follows
that the choice given by Eq. (B17) is also the smallest possi-
ble choice that satisfies Eq. (B12). This concludes the proof
of Eq. (B17).

Appendix C: Monotonicity of the Bayesian factor

We prove that the function b0(x0, p2, t) is initially increas-
ing and then decreasing with respect to t with a maximum in
the interval [a/N, 1]. We recall that

b0(x0, p2, t) = log



p2 − x0
t

∫ t

0
xa (1 − x)N−adx∫ p2

x0

xa (1 − x)N−adx



, (C1)

consequently maximizing the function b0(x0, p2, t) is equiva-
lent to maximizing

g(t) =
1
t

∫ t

0
xa (1 − x)N−a dx, (C2)

since all other factors are independent of t. For our argument,
it is simpler to work with the more abstract definition

g(t) =
1
t

∫ t

0
f (x) dx, (C3)

and assume that the function f (x) is increasing in the interval
[0, a/N], decreasing in the interval [a/N, 1], and also satisfies
f (1) = 0 and f (x) > 0 for all x ∈ (0, 1). These are all
general assumptions that are indeed satisfied by the binomial
distribution f (x) = xa (1−x)N−a. Differentiating with respect
to t gives

g′(t) =
−1
t2

∫ t

0
f (x) dx +

f (t)
t
. (C4)

From the assumptions f (1) = 0 and f (x) > 0 for all x ∈
(0, 1), it immediately follows that

g′(1) = −
∫ 1

0
f (x) dx < 0. (C5)

Next, we apply the integral mean-value theorem on the inter-
val [0, a/N] which requires the assumption that f (x) > 0 for
all x ∈ (0, a/N] and it follows that there exists ξ ∈ [0, a/N]
such that

f (ξ) =
1

a/N

∫ a/N

0
f (x) dx. (C6)

We use this equation to show that

g′(a/N ) =
−1

(a/N )2

∫ a/N

0
f (x) dx +

f (a/N )
a/N

(C7)

=
− f (ξ)
a/N

+
f (a/N )

a/N
(C8)

=
( f (a/N ) − f (ξ))N

a
> 0. (C9)

Here, the inequality step is justified by the assumption that the
function f (x) is increasing in the interval [0, a/N]. It follows
via the Bolzano theorem that there is at least one t0 ∈ [a/N, 1]
such that g′(t0) = 0, making all such t0 critical points that are
the possible local minimum or maximum points of g(t). From
Eq. (C4), it follows that all such critical points t0 also satisfy
the equation

f (t0) =
1
t0

∫ t0

0
f (x) dx. (C10)

We shall now use the second derivative test to show that any
such critical points have to be local maxima, which in turn
implies the uniqueness of only one such local maximum point
in the interval [a/N, 1]. The second derivative of the function
g(t) is given by

g′′(t) =
d
dt

[
−1
t2

∫ t

0
f (x) dx +

f (t)
t

]
(C11)

=
2
t3

∫ t

0
f (x) dx −

f (t)
t2 −

f (t)
t2 +

f ′(t)
t

(C12)

=
2
t3

∫ t

0
f (x) dx −

2 f (t)
t2 +

f ′(t)
t

, (C13)

and for t = t0, it follows that

g′′(t0) =
2
t3
0

t0 f (t0) −
2 f (t0)

t2
0
+

f ′(t0)
t0

=
f ′(t0)

t0
< 0. (C14)

Here, the last inequality step is justified by the assumption that
the function f (x) is decreasing over the interval [a/N, 1] and
furthermore that t0 ∈ [a/N, 1]. We conclude that all critical
points in the interval [a/N, 1] have to be local maxima, and by
necessity this means that only one such local maximum actu-
ally exists in the interval [a/N, 1]. This concludes the proof
of our claim.
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